Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PeerJ ; 2: e636, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25374780

RESUMO

Cellulosic waste represents a significant and underutilized carbon source for the biofuel industry. Owing to the recalcitrance of crystalline cellulose to enzymatic degradation, it is necessary to design economical methods of liberating the fermentable sugars required for bioethanol production. One route towards unlocking the potential of cellulosic waste lies in a highly complex class of molecular machines, the cellulosomes. Secreted mainly by anaerobic bacteria, cellulosomes are structurally diverse, cell surface-bound protein assemblies that can contain dozens of catalytic components. The key feature of the cellulosome is its modularity, facilitated by the ultra-high affinity cohesin-dockerin interaction. Due to the enormous number of cohesin and dockerin modules found in a typical cellulolytic organism, a major bottleneck in understanding the biology of cellulosomics is the purification of each cohesin- and dockerin-containing component, prior to analyses of their interaction. As opposed to previous approaches, the present study utilized proteins contained in unpurified whole-cell extracts. This strategy was made possible due to an experimental design that allowed for the relevant proteins to be "purified" via targeted affinity interactions as a function of the binding assay. The approach thus represents a new strategy, appropriate for future medium- to high-throughput screening of whole genomes, to determine the interactions between cohesins and dockerins. We have selected the cellulosome of Acetivibrio cellulolyticus for this work due to its exceptionally complex cellulosome systems and intriguing diversity of its cellulosomal modular components. Containing 41 cohesins and 143 dockerins, A. cellulolyticus has one of the largest number of potential cohesin-dockerin interactions of any organism, and contains unusual and novel cellulosomal features. We have surveyed a representative library of cohesin and dockerin modules spanning the cellulosome's total cohesin and dockerin sequence diversity, emphasizing the testing of unusual and previously-unknown protein modules. The screen revealed several novel cell-bound cellulosome architectures, thus expanding on those previously known, as well as soluble cellulose systems that are not bound to the bacterial cell surface. This study sets the stage for screening the entire complement of cellulosomal components from A. cellulolyticus and other organisms with large cellulosome systems. The knowledge gained by such efforts brings us closer to understanding the exceptional catalytic abilities of cellulosomes and will allow the use of novel cellulosomal components in artificial assemblies and in enzyme cocktails for sustainable energy-related research programs.

2.
Acta Crystallogr F Struct Biol Commun ; 70(Pt 8): 1061-4, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25084382

RESUMO

Cellulosomes are massive cell-bound multienzyme complexes tethered by macromolecular scaffolds that coordinate the efforts of many anaerobic bacteria to hydrolyze plant cell-wall polysaccharides, which are a major untapped source of carbon and energy. Integration of cellulosomal components occurs via highly ordered protein-protein interactions between cohesin modules, located in the scaffold, and dockerin modules, found in the enzymes and other cellulosomal proteins. The proposed cellulosomal architecture for Ruminococcus flavefaciens strain FD-1 consists of a major scaffoldin (ScaB) that acts as the backbone to which other components attach. It has nine cohesins and a dockerin with a fused X-module that binds to the cohesin on ScaE, which in turn is covalently attached to the cell wall. The ScaA dockerin binds to ScaB cohesins allowing more carbohydrate-active modules to be assembled. ScaC acts as an adaptor that binds to both ScaA and selected ScaB cohesins, thereby increasing the repertoire of dockerin-bearing proteins that integrate into the complex. In previous studies, a screen for novel cohesin-dockerin complexes was performed which led to the identification of a total of 58 probable cohesin-dockerin pairs. Four were selected for subsequent structural and biochemical characterization based on the quality of their expression and the diversity in their specificities. One of these is C12D22, which comprises the cohesin from the adaptor ScaC protein bound to the dockerin of a CBM-containing protein. This complex has been purified and crystallized, and data were collected to resolutions of 2.5 Š(hexagonal, P65), 2.16 Š(orthorhombic, P212121) and 2.4 Š(orthorhombic, P21212) from three different crystalline forms.


Assuntos
Proteínas de Bactérias/química , Proteínas de Ciclo Celular/química , Proteínas Cromossômicas não Histona/química , Cristalografia por Raios X/métodos , Ruminococcus/química , Cristalização , Eletroforese em Gel de Poliacrilamida , Ligação Proteica , Coesinas
3.
PLoS One ; 9(7): e99221, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24992679

RESUMO

BACKGROUND: A complex community of microorganisms is responsible for efficient plant cell wall digestion by many herbivores, notably the ruminants. Understanding the different fibrolytic mechanisms utilized by these bacteria has been of great interest in agricultural and technological fields, reinforced more recently by current efforts to convert cellulosic biomass to biofuels. METHODOLOGY/PRINCIPAL FINDINGS: Here, we have used a bioinformatics-based approach to explore the cellulosome-related components of six genomes from two of the primary fiber-degrading bacteria in the rumen: Ruminococcus flavefaciens (strains FD-1, 007c and 17) and Ruminococcus albus (strains 7, 8 and SY3). The genomes of two of these strains are reported for the first time herein. The data reveal that the three R. flavefaciens strains encode for an elaborate reservoir of cohesin- and dockerin-containing proteins, whereas the three R. albus strains are cohesin-deficient and encode mainly dockerins and a unique family of cell-anchoring carbohydrate-binding modules (family 37). CONCLUSIONS/SIGNIFICANCE: Our comparative genome-wide analysis pinpoints rare and novel strain-specific protein architectures and provides an exhaustive profile of their numerous lignocellulose-degrading enzymes. This work provides blueprints of the divergent cellulolytic systems in these two prominent fibrolytic rumen bacterial species, each of which reflects a distinct mechanistic model for efficient degradation of cellulosic biomass.


Assuntos
Proteínas de Bactérias/genética , Genoma Bacteriano/fisiologia , Estudo de Associação Genômica Ampla , Ruminococcus/genética , Proteínas de Bactérias/metabolismo , Celulose/metabolismo , Ruminococcus/classificação , Ruminococcus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA