Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Strahlenther Onkol ; 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39105745

RESUMO

The rapid development of artificial intelligence (AI) has gained importance, with many tools already entering our daily lives. The medical field of radiation oncology is also subject to this development, with AI entering all steps of the patient journey. In this review article, we summarize contemporary AI techniques and explore the clinical applications of AI-based automated segmentation models in radiotherapy planning, focusing on delineation of organs at risk (OARs), the gross tumor volume (GTV), and the clinical target volume (CTV). Emphasizing the need for precise and individualized plans, we review various commercial and freeware segmentation tools and also state-of-the-art approaches. Through our own findings and based on the literature, we demonstrate improved efficiency and consistency as well as time savings in different clinical scenarios. Despite challenges in clinical implementation such as domain shifts, the potential benefits for personalized treatment planning are substantial. The integration of mathematical tumor growth models and AI-based tumor detection further enhances the possibilities for refining target volumes. As advancements continue, the prospect of one-stop-shop segmentation and radiotherapy planning represents an exciting frontier in radiotherapy, potentially enabling fast treatment with enhanced precision and individualization.

2.
Diagn Pathol ; 16(1): 71, 2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34362386

RESUMO

BACKGROUND: Histological images show strong variance (e.g. illumination, color, staining quality) due to differences in image acquisition, tissue processing, staining, etc. This can impede downstream image analysis such as staining intensity evaluation or classification. Methods to reduce these variances are called image normalization techniques. METHODS: In this paper, we investigate the potential of CycleGAN (cycle consistent Generative Adversarial Network) for color normalization in hematoxylin-eosin stained histological images using daily clinical data with consideration of the variability of internal staining protocol variations. The network consists of a generator network GB that learns to map an image X from a source domain A to a target domain B, i.e. GB:XA→XB. In addition, a discriminator network DB is trained to distinguish whether an image from domain B is real or generated. The same process is applied to another generator-discriminator pair (GA,DA), for the inverse mapping GA:XB→XA. Cycle consistency ensures that a generated image is close to its original when being mapped backwards (GA(GB(XA))≈XA and vice versa). We validate the CycleGAN approach on a breast cancer challenge and a follicular thyroid carcinoma data set for various stain variations. We evaluate the quality of the generated images compared to the original images using similarity measures. In addition, we apply stain normalization on pathological lymph node data from our institute and test the gain from normalization on a ResNet classifier pre-trained on the Camelyon16 data set. RESULTS: Qualitative results of the images generated by our network are compared to original color distributions. Our evaluation indicates that by mapping images to a target domain, the similarity training images from that domain improves up to 96%. We also achieve a high cycle consistency for the generator networks by obtaining similarity indices greater than 0.9. When applying the CycleGAN normalization to HE-stain images from our institute the kappa-value of the ResNet-model that is only trained on Camelyon16 data is increased more than 50%. CONCLUSIONS: CycleGANs have proven to efficiently normalize HE-stained images. The approach compensates for deviations resulting from image acquisition (e.g. different scanning devices) as well as from tissue staining (e.g. different staining protocols), and thus overcomes the staining variations in images from various institutions.The code is publicly available at https://github.com/m4ln/stainTransfer_CycleGAN_pytorch . The data set supporting the solutions is available at https://doi.org/10.11588/data/8LKEZF .


Assuntos
Corantes , Amarelo de Eosina-(YS) , Hematoxilina , Processamento de Imagem Assistida por Computador/métodos , Coloração e Rotulagem/métodos , Adenocarcinoma Folicular/patologia , Neoplasias da Mama/patologia , Cor , Feminino , Humanos , Modelos Estatísticos , Reprodutibilidade dos Testes , Coloração e Rotulagem/normas , Neoplasias da Glândula Tireoide/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA