Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 20(9): e1012534, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39259722

RESUMO

Legionella longbeachae and Legionella pneumophila are the most common causative agents of Legionnaires' disease. While the clinical manifestations caused by both species are similar, species-specific differences exist in environmental niches, disease epidemiology, and genomic content. One such difference is the presence of a genomic locus predicted to encode a capsule. Here, we show that L. longbeachae indeed expresses a capsule in post-exponential growth phase as evidenced by electron microscopy analyses, and that capsule expression is abrogated when deleting a capsule transporter gene. Capsule purification and its analysis via HLPC revealed the presence of a highly anionic polysaccharide that is absent in the capsule mutant. The capsule is important for replication and virulence in vivo in a mouse model of infection and in the natural host Acanthamoeba castellanii. It has anti-phagocytic function when encountering innate immune cells such as human macrophages and it is involved in the low cytokine responses in mice and in human monocyte derived macrophages, thus dampening the innate immune response. Thus, the here characterized L. longbeachae capsule is a novel virulence factor, unique among the known Legionella species, which may aid L. longbeachae to survive in its specific niches and which partly confers L. longbeachae its unique infection characteristics.


Assuntos
Cápsulas Bacterianas , Evasão da Resposta Imune , Legionella longbeachae , Animais , Camundongos , Cápsulas Bacterianas/imunologia , Cápsulas Bacterianas/metabolismo , Legionella longbeachae/imunologia , Humanos , Doença dos Legionários/imunologia , Doença dos Legionários/microbiologia , Macrófagos/microbiologia , Macrófagos/imunologia , Fatores de Virulência/metabolismo , Acanthamoeba castellanii/microbiologia , Virulência
2.
Proc Natl Acad Sci U S A ; 116(6): 2265-2273, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30659146

RESUMO

The genus Legionella comprises 65 species, among which Legionella pneumophila is a human pathogen causing severe pneumonia. To understand the evolution of an environmental to an accidental human pathogen, we have functionally analyzed 80 Legionella genomes spanning 58 species. Uniquely, an immense repository of 18,000 secreted proteins encoding 137 different eukaryotic-like domains and over 200 eukaryotic-like proteins is paired with a highly conserved type IV secretion system (T4SS). Specifically, we show that eukaryotic Rho- and Rab-GTPase domains are found nearly exclusively in eukaryotes and Legionella Translocation assays for selected Rab-GTPase proteins revealed that they are indeed T4SS secreted substrates. Furthermore, F-box, U-box, and SET domains were present in >70% of all species, suggesting that manipulation of host signal transduction, protein turnover, and chromatin modification pathways are fundamental intracellular replication strategies for legionellae. In contrast, the Sec-7 domain was restricted to L. pneumophila and seven other species, indicating effector repertoire tailoring within different amoebae. Functional screening of 47 species revealed 60% were competent for intracellular replication in THP-1 cells, but interestingly, this phenotype was associated with diverse effector assemblages. These data, combined with evolutionary analysis, indicate that the capacity to infect eukaryotic cells has been acquired independently many times within the genus and that a highly conserved yet versatile T4SS secretes an exceptional number of different proteins shaped by interdomain gene transfer. Furthermore, we revealed the surprising extent to which legionellae have coopted genes and thus cellular functions from their eukaryotic hosts, providing an understanding of how dynamic reshuffling and gene acquisition have led to the emergence of major human pathogens.


Assuntos
Genoma Bacteriano , Legionella/fisiologia , Legionelose/microbiologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sistemas de Secreção Bacterianos/genética , Biologia Computacional/métodos , Evolução Molecular , Genômica/métodos , Humanos , Espaço Intracelular/microbiologia , Legionella/classificação , Filogenia , Domínios Proteicos
3.
PLoS Genet ; 13(2): e1006629, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28212376

RESUMO

The carbon storage regulator protein CsrA regulates cellular processes post-transcriptionally by binding to target-RNAs altering translation efficiency and/or their stability. Here we identified and analyzed the direct targets of CsrA in the human pathogen Legionella pneumophila. Genome wide transcriptome, proteome and RNA co-immunoprecipitation followed by deep sequencing of a wild type and a csrA mutant strain identified 479 RNAs with potential CsrA interaction sites located in the untranslated and/or coding regions of mRNAs or of known non-coding sRNAs. Further analyses revealed that CsrA exhibits a dual regulatory role in virulence as it affects the expression of the regulators FleQ, LqsR, LetE and RpoS but it also directly regulates the timely expression of over 40 Dot/Icm substrates. CsrA controls its own expression and the stringent response through a regulatory feedback loop as evidenced by its binding to RelA-mRNA and links it to quorum sensing and motility. CsrA is a central player in the carbon, amino acid, fatty acid metabolism and energy transfer and directly affects the biosynthesis of cofactors, vitamins and secondary metabolites. We describe the first L. pneumophila riboswitch, a thiamine pyrophosphate riboswitch whose regulatory impact is fine-tuned by CsrA, and identified a unique regulatory mode of CsrA, the active stabilization of RNA anti-terminator conformations inside a coding sequence preventing Rho-dependent termination of the gap operon through transcriptional polarity effects. This allows L. pneumophila to regulate the pentose phosphate pathway and the glycolysis combined or individually although they share genes in a single operon. Thus the L. pneumophila genome has evolved to acclimate at least five different modes of regulation by CsrA giving it a truly unique position in its life cycle.


Assuntos
Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano/genética , Legionella pneumophila/genética , Proteínas Repressoras/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Northern Blotting , Evolução Molecular , Retroalimentação Fisiológica , Perfilação da Expressão Gênica/métodos , Glicólise/genética , Interações Hospedeiro-Patógeno , Humanos , Legionella pneumophila/metabolismo , Legionella pneumophila/patogenicidade , Doença dos Legionários/microbiologia , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Óperon/genética , Via de Pentose Fosfato/genética , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Repressoras/metabolismo , Riboswitch/genética , Espectrometria de Massas em Tandem , Virulência/genética
4.
PLoS Genet ; 13(6): e1006855, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28650958

RESUMO

Legionella pneumophila is an environmental bacterium and the causative agent of Legionnaires' disease. Previous genomic studies have shown that recombination accounts for a high proportion (>96%) of diversity within several major disease-associated sequence types (STs) of L. pneumophila. This suggests that recombination represents a potentially important force shaping adaptation and virulence. Despite this, little is known about the biological effects of recombination in L. pneumophila, particularly with regards to homologous recombination (whereby genes are replaced with alternative allelic variants). Using newly available population genomic data, we have disentangled events arising from homologous and non-homologous recombination in six major disease-associated STs of L. pneumophila (subsp. pneumophila), and subsequently performed a detailed characterisation of the dynamics and impact of homologous recombination. We identified genomic "hotspots" of homologous recombination that include regions containing outer membrane proteins, the lipopolysaccharide (LPS) region and Dot/Icm effectors, which provide interesting clues to the selection pressures faced by L. pneumophila. Inference of the origin of the recombined regions showed that isolates have most frequently imported DNA from isolates belonging to their own clade, but also occasionally from other major clades of the same subspecies. This supports the hypothesis that the possibility for horizontal exchange of new adaptations between major clades of the subspecies may have been a critical factor in the recent emergence of several clinically important STs from diverse genomic backgrounds. However, acquisition of recombined regions from another subspecies, L. pneumophila subsp. fraseri, was rarely observed, suggesting the existence of a recombination barrier and/or the possibility of ongoing speciation between the two subspecies. Finally, we suggest that multi-fragment recombination may occur in L. pneumophila, whereby multiple non-contiguous segments that originate from the same molecule of donor DNA are imported into a recipient genome during a single episode of recombination.


Assuntos
Evolução Molecular , Recombinação Homóloga/genética , Legionella pneumophila/genética , Doença dos Legionários/genética , Proteínas da Membrana Bacteriana Externa/genética , Genoma Bacteriano , Doença dos Legionários/microbiologia , Lipopolissacarídeos/biossíntese , Lipopolissacarídeos/genética , Filogenia , Proteínas Recombinantes/genética
6.
Genome Res ; 26(11): 1555-1564, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27662900

RESUMO

Legionella pneumophila is an environmental bacterium and the leading cause of Legionnaires' disease. Just five sequence types (ST), from more than 2000 currently described, cause nearly half of disease cases in northwest Europe. Here, we report the sequence and analyses of 364 L. pneumophila genomes, including 337 from the five disease-associated STs and 27 representative of the species diversity. Phylogenetic analyses revealed that the five STs have independent origins within a highly diverse species. The number of de novo mutations is extremely low with maximum pairwise single-nucleotide polymorphisms (SNPs) ranging from 19 (ST47) to 127 (ST1), which suggests emergences within the last century. Isolates sampled geographically far apart differ by only a few SNPs, demonstrating rapid dissemination. These five STs have been recombining recently, leading to a shared pool of allelic variants potentially contributing to their increased disease propensity. The oldest clone, ST1, has spread globally; between 1940 and 2000, four new clones have emerged in Europe, which show long-distance, rapid dispersal. That a large proportion of clinical cases is caused by recently emerged and internationally dispersed clones, linked by convergent evolution, is surprising for an environmental bacterium traditionally considered to be an opportunistic pathogen. To simultaneously explain recent emergence, rapid spread and increased disease association, we hypothesize that these STs have adapted to new man-made environmental niches, which may be linked by human infection and transmission.


Assuntos
Evolução Molecular , Legionella pneumophila/genética , Doença dos Legionários/microbiologia , Humanos , Legionella pneumophila/classificação , Legionella pneumophila/isolamento & purificação , Legionella pneumophila/patogenicidade , Mutação , Filogenia , Polimorfismo de Nucleotídeo Único , Seleção Genética , Virulência/genética
7.
BMC Genomics ; 14: 252, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23586779

RESUMO

BACKGROUND: During host specialization, inactivation of genes whose function is no more required is favored by changes in selective constraints and evolutionary bottlenecks. The Gram positive bacteria Streptococcus agalactiae (also called GBS), responsible for septicemia and meningitis in neonates also emerged during the seventies as a cause of severe epidemics in fish farms. To decipher the genetic basis for the emergence of these highly virulent GBS strains and of their adaptation to fish, we have analyzed the genomic sequence of seven strains isolated from fish and other poikilotherms. RESULTS: Comparative analysis shows that the two groups of GBS strains responsible for fish epidemic diseases are only distantly related. While strains belonging to the clonal complex 7 cannot be distinguished from their human CC7 counterparts according to their gene content, strains belonging to the ST260-261 types probably diverged a long time ago. In this lineage, specialization to the fish host was correlated with a massive gene inactivation and broad changes in gene expression. We took advantage of the low level of sequence divergence between GBS strains and of the emergence of sublineages to reconstruct the different steps involved in this process. Non-homologous recombination was found to have played a major role in the genome erosion. CONCLUSIONS: Our results show that the early phase of genome reduction during host specialization mostly involves accumulation of small and likely reversible indels, followed by a second evolutionary step marked by a higher frequency of large deletions.


Assuntos
Adaptação Fisiológica , Evolução Molecular , Filogenia , Streptococcus agalactiae/genética , Streptococcus agalactiae/fisiologia , Animais , Redes Reguladoras de Genes/genética , Genômica , Interações Hospedeiro-Patógeno , Humanos , Mutação INDEL/genética , Deleção de Sequência/genética , Especificidade da Espécie , Fatores de Virulência/genética
8.
PLoS Genet ; 6(2): e1000851, 2010 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-20174605

RESUMO

Legionella pneumophila and L. longbeachae are two species of a large genus of bacteria that are ubiquitous in nature. L. pneumophila is mainly found in natural and artificial water circuits while L. longbeachae is mainly present in soil. Under the appropriate conditions both species are human pathogens, capable of causing a severe form of pneumonia termed Legionnaires' disease. Here we report the sequencing and analysis of four L. longbeachae genomes, one complete genome sequence of L. longbeachae strain NSW150 serogroup (Sg) 1, and three draft genome sequences another belonging to Sg1 and two to Sg2. The genome organization and gene content of the four L. longbeachae genomes are highly conserved, indicating strong pressure for niche adaptation. Analysis and comparison of L. longbeachae strain NSW150 with L. pneumophila revealed common but also unexpected features specific to this pathogen. The interaction with host cells shows distinct features from L. pneumophila, as L. longbeachae possesses a unique repertoire of putative Dot/Icm type IV secretion system substrates, eukaryotic-like and eukaryotic domain proteins, and encodes additional secretion systems. However, analysis of the ability of a dotA mutant of L. longbeachae NSW150 to replicate in the Acanthamoeba castellanii and in a mouse lung infection model showed that the Dot/Icm type IV secretion system is also essential for the virulence of L. longbeachae. In contrast to L. pneumophila, L. longbeachae does not encode flagella, thereby providing a possible explanation for differences in mouse susceptibility to infection between the two pathogens. Furthermore, transcriptome analysis revealed that L. longbeachae has a less pronounced biphasic life cycle as compared to L. pneumophila, and genome analysis and electron microscopy suggested that L. longbeachae is encapsulated. These species-specific differences may account for the different environmental niches and disease epidemiology of these two Legionella species.


Assuntos
Perfilação da Expressão Gênica , Genoma Bacteriano/genética , Legionella longbeachae/genética , Legionella longbeachae/patogenicidade , Doença dos Legionários/microbiologia , Acanthamoeba castellanii/microbiologia , Adaptação Fisiológica/genética , Animais , Cápsulas Bacterianas/ultraestrutura , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/genética , Pareamento de Bases/genética , Sequência Conservada , Ecossistema , Feminino , Flagelos/metabolismo , Regulação Bacteriana da Expressão Gênica , Legionella longbeachae/crescimento & desenvolvimento , Legionella longbeachae/ultraestrutura , Legionella pneumophila/genética , Legionella pneumophila/crescimento & desenvolvimento , Legionella pneumophila/patogenicidade , Camundongos , Microbiologia do Solo , Especificidade por Substrato/genética , Virulência/genética
9.
Nat Genet ; 36(11): 1165-73, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15467720

RESUMO

Legionella pneumophila, the causative agent of Legionnaires' disease, replicates as an intracellular parasite of amoebae and persists in the environment as a free-living microbe. Here we have analyzed the complete genome sequences of L. pneumophila Paris (3,503,610 bp, 3,077 genes), an endemic strain that is predominant in France, and Lens (3,345,687 bp, 2,932 genes), an epidemic strain responsible for a major outbreak of disease in France. The L. pneumophila genomes show marked plasticity, with three different plasmids and with about 13% of the sequence differing between the two strains. Only strain Paris contains a type V secretion system, and its Lvh type IV secretion system is encoded by a 36-kb region that is either carried on a multicopy plasmid or integrated into the chromosome. Genetic mobility may enhance the versatility of L. pneumophila. Numerous genes encode eukaryotic-like proteins or motifs that are predicted to modulate host cell functions to the pathogen's advantage. The genome thus reflects the history and lifestyle of L. pneumophila, a human pathogen of macrophages that coevolved with fresh-water amoebae.


Assuntos
Fenômenos Fisiológicos Celulares , Genoma Bacteriano , Interações Hospedeiro-Parasita , Legionella pneumophila/genética , Adaptação Biológica , Sequência de Aminoácidos , Amoeba/microbiologia , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sequência de Bases , Regulação Bacteriana da Expressão Gênica , Humanos , Macrófagos Alveolares/microbiologia , Dados de Sequência Molecular , Filogenia
10.
Cell Rep Med ; 4(9): 101167, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37633274

RESUMO

Bacterial pneumonia is a considerable problem worldwide. Here, we follow the inter-kingdom respiratory tract microbiome (RTM) of a unique cohort of 38 hospitalized patients (n = 97 samples) with pneumonia caused by Legionella pneumophila. The RTM composition is characterized by diversity drops early in hospitalization and ecological species replacement. RTMs with the highest bacterial and fungal loads show low diversity and pathogen enrichment, suggesting high biomass as a biomarker for secondary and/or co-infections. The RTM structure is defined by a "commensal" cluster associated with a healthy RTM and a "pathogen" enriched one, suggesting that the cluster equilibrium drives the microbiome to recovery or dysbiosis. Legionella biomass correlates with disease severity and co-morbidities, while clinical interventions influence the RTM dynamics. Fungi, archaea, and protozoa seem to contribute to progress of pneumonia. Thus, the interplay of the RTM equilibrium, the pathogen load dynamics, and clinical interventions play a critical role in patient recovery.


Assuntos
Coinfecção , Microbiota , Pneumonia Bacteriana , Humanos , Pneumonia Bacteriana/diagnóstico , Sistema Respiratório , Disbiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA