RESUMO
A core component of human language is its combinatorial sound system: meaningful signals are built from different combinations of meaningless sounds. Investigating whether nonhuman communication systems are also combinatorial is hampered by difficulties in identifying the extent to which vocalizations are constructed from shared, meaningless building blocks. Here we present an approach to circumvent this difficulty and show that a pair of functionally distinct chestnut-crowned babbler (Pomatostomus ruficeps) vocalizations can be decomposed into perceptibly distinct, meaningless entities that are shared across the 2 calls. Specifically, by focusing on the acoustic distinctiveness of sound elements using a habituation-discrimination paradigm on wild-caught babblers under standardized aviary conditions, we show that 2 multielement calls are composed of perceptibly distinct sounds that are reused in different arrangements across the 2 calls. Furthermore, and critically, we show that none of the 5 constituent elements elicits functionally relevant responses in receivers, indicating that the constituent sounds do not carry the meaning of the call and so are contextually meaningless. Our work, which allows combinatorial systems in animals to be more easily identified, suggests that animals can produce functionally distinct calls that are built in a way superficially reminiscent of the way that humans produce morphemes and words. The results reported lend credence to the recent idea that language's combinatorial system may have been preceded by a superficial stage where signalers neither needed to be cognitively aware of the combinatorial strategy in place, nor of its building blocks.
Assuntos
Passeriformes/fisiologia , Vocalização Animal/fisiologia , Acústica , Comunicação Animal , Animais , Idioma , SomRESUMO
Phenotypic plasticity is hypothesized to facilitate adaptive responses to challenging conditions, such as those resulting from climate change. However, tests of the key predictions of this 'rescue hypothesis', that variation in plasticity exists and can evolve to buffer unfavourable conditions, remain rare. Here, we investigate among-female variation in temperature-mediated plasticity of incubation schedules and consequences for egg temperatures using the chestnut-crowned babbler (Pomatostomus ruficeps) from temperate regions of inland south-eastern Australia. Given recent phenological advances in this seasonal breeder and thermal requirements of developing embryos (>~25°C, optimally ~38°C), support for evolutionary rescue-perhaps paradoxically-requires that plasticity serves to buffer embryos more from sub-optimally low temperatures. We found significant variation in the duration of incubation bouts (mean ± SD = 27 ± 22 min) and foraging bouts (mean ± SD = 17 ± 11 min) in this maternal-only incubator. However, variation in each arose because of variation in the extent to which mothers increased on- and off-bout durations when temperatures (0-36°C) were more favourable rather than unfavourable as required under rescue. In addition, there was a strong positive intercept-slope correlation in on-bout durations, indicating that those with stronger plastic responses incubated more at average temperatures (~19°C). Combined, these effects reduced the functional significance of plastic responses: an individual's plasticity was neither associated with daily contributions to incubation (i.e. attentiveness) nor average egg temperatures. Our results highlight that despite significant among-individual variation in environmental-sensitivity, plasticity in parental care traits need not evolve to facilitate buffering against unfavourable conditions.
Assuntos
Adaptação Fisiológica , Evolução Biológica , Mudança Climática , Comportamento de Nidação , Aves Canoras/genética , Animais , Desenvolvimento Embrionário , Feminino , Aves Canoras/embriologiaRESUMO
Models on the evolution of bi-parental care typically assume that maternal investment in offspring production is fixed and predict subsequent contributions to offspring care by the pair are stabilized by partial compensation. While experimental tests of this prediction are supportive, exceptions are commonplace. Using wild blue tits ( Cyanistes caeruleus), we provide, to our knowledge, the first investigation into the effects of increasing maternal investment in offspring production for subsequent contributions to nestling provisioning by mothers and male partners. Females that were induced to lay two extra eggs provisioned nestlings 43% more frequently than controls, despite clutch size being made comparable between treatment groups at the onset of incubation. Further, experimental males did not significantly reduce provisioning rates as expected by partial compensation, and if anything contributed slightly (9%) more than controls. Finally, nestlings were significantly heavier in experimental nests compared with controls, suggesting that the 22% average increase in provisioning rates by experimental pairs was beneficial. Our results have potential implications for our understanding of provisioning rules, the maintenance of bi-parental care and the timescale over which current-future life-history trade-offs operate. We recommend greater consideration of female investment at the egg stage to more fully understand the evolutionary dynamics of bi-parental care.
Assuntos
Fertilidade , Passeriformes/fisiologia , Animais , Tamanho da Ninhada , Feminino , MasculinoRESUMO
The microbiota has a broad range of impacts on host physiology and behaviour, pointing out the need to improve our comprehension of the drivers of host-microbiota composition. Of particular interest is whether the microbiota is acquired passively, or whether and to what extent hosts themselves shape the acquisition and maintenance of their microbiota. In birds, the uropygial gland produces oily secretions used to coat feathers that have been suggested to act as an antimicrobial defence mechanism regulating body feather microbiota. However, our comprehension of this process is still limited. In this study, we for the first time coupled high-throughput sequencing of the microbiota of both body feathers and the direct environment (i.e., the nest) in great tits with chemical analyses of the composition of uropygial gland secretions to examine whether host chemicals have either specific effects on some bacteria or nonspecific broad-spectrum effects on the body feather microbiota. Using a network approach investigating the patterns of co-occurrence or co-exclusions between chemicals and bacteria within the body feather microbiota, we found no evidence for specific promicrobial or antimicrobial effects of uropygial gland chemicals. However, we found that one group of chemicals was negatively correlated to bacterial richness on body feathers, and a higher production of these chemicals was associated with a poorer body feather bacterial richness compared to the nest microbiota. Our study provides evidence that chemicals produced by the host might function as a nonspecific broad-spectrum antimicrobial defence mechanism limiting colonization and/or maintenance of bacteria on body feathers, providing new insight about the drivers of the host's microbiota composition in wild organisms.
Assuntos
Animais Selvagens/microbiologia , Plumas/química , Plumas/microbiologia , Microbiota , Passeriformes/microbiologia , Animais , Animais Selvagens/anatomia & histologia , Biodiversidade , Meio Ambiente , Feminino , Masculino , Comportamento de Nidação , Passeriformes/anatomia & histologiaRESUMO
The ability to generate new meaning by rearranging combinations of meaningless sounds is a fundamental component of language. Although animal vocalizations often comprise combinations of meaningless acoustic elements, evidence that rearranging such combinations generates functionally distinct meaning is lacking. Here, we provide evidence for this basic ability in calls of the chestnut-crowned babbler (Pomatostomus ruficeps), a highly cooperative bird of the Australian arid zone. Using acoustic analyses, natural observations, and a series of controlled playback experiments, we demonstrate that this species uses the same acoustic elements (A and B) in different arrangements (AB or BAB) to create two functionally distinct vocalizations. Specifically, the addition or omission of a contextually meaningless acoustic element at a single position generates a phoneme-like contrast that is sufficient to distinguish the meaning between the two calls. Our results indicate that the capacity to rearrange meaningless sounds in order to create new signals occurs outside of humans. We suggest that phonemic contrasts represent a rudimentary form of phoneme structure and a potential early step towards the generative phonemic system of human language.
Assuntos
Aves Canoras , Vocalização Animal , Animais , Acústica da FalaRESUMO
For many endotherms, communal roosting saves energy in cold conditions, but how this might affect social dynamics or breeding phenology is not well understood. Using chestnut-crowned babblers (Pomatostomus ruficeps), we studied the effects of nest use and group size on roosting energy costs. These 50â g cooperatively breeding passerine birds of outback Australia breed from late winter to early summer and roost in huddles of up to 20 in single-chambered nests. We measured babbler metabolism at three ecologically relevant temperatures: 5°C (similar to minimum nighttime temperatures during early breeding), 15°C (similar to nighttime temperatures during late breeding) and 28°C (thermal neutrality). Nest use alone had modest effects: even for solitary babblers at 5°C, it reduced nighttime energy expenditures by <15%. However, group-size effects were substantial, with savings of up to 60% in large groups at low temperatures. Babblers roosting in groups of seven or more at 5°C, and five or more at 15°C, did not need to elevate metabolic rates above basal levels. Furthermore, even at 28°C (thermoneutral for solitary babblers), individuals in groups of four or more had 15% lower basal metabolic rate than single birds, hinting that roosting in small groups is stressful. We suggest that the substantial energy savings of communal roosting at low temperatures help explain why early breeding is initiated in large groups and why breeding females, which roost alone and consequently expend 120% more energy overnight than other group members, suffer relatively higher mortality than communally roosting group mates.
Assuntos
Cruzamento , Comportamento Cooperativo , Metabolismo Energético/fisiologia , Comportamento de Nidação/fisiologia , Passeriformes/fisiologia , Animais , Metabolismo Basal/fisiologia , Escuridão , New South Wales , Consumo de Oxigênio/fisiologia , TemperaturaRESUMO
Because human mothers routinely rely on others to help raise their young, humans have been characterized as cooperative breeders.(1-9) Several large-scale phylogenetic analyses have presented compelling evidence that monogamy preceded the evolution of cooperative breeding in a wide variety of nonhuman animals.(10-14) These studies have suggested that monogamy provides a general rule (the monogamy hypothesis) for explaining evolutionary transitions to cooperative breeding.(15) Given the prevalence of cooperative breeding in contemporary human societies, we evaluate whether this suggests a monogamous hominin past.
Assuntos
Evolução Biológica , Hominidae/fisiologia , Comportamento Sexual Animal/fisiologia , Animais , Antropologia Física , Cruzamento , Feminino , MasculinoRESUMO
Wild organisms are under increasing pressure to adapt rapidly to environmental changes. Predicting the impact of these changes on natural populations requires an understanding of the speed with which adaptive phenotypes can arise and spread, as well as of the underlying mechanisms. However, our understanding of these parameters is poor in natural populations. Here we use experimental and molecular approaches to investigate the recent emergence of resistance in eastern populations of North American house finches (Carpodacus mexicanus) to Mycoplasma galliseptum (MG), a severe conjunctivitis-causing bacterium. Two weeks following an experimental infection that took place in 2007, finches from eastern US populations with a 12-y history of exposure to MG harbored 33% lower MG loads in their conjunctivae than finches from western US populations with no prior exposure to MG. Using a cDNA microarray, we show that this phenotypic difference in resistance was associated with differences in splenic gene expression, with finches from the exposed populations up-regulating immune genes postinfection and those from the unexposed populations generally down-regulating them. The expression response of western US birds to experimental infection in 2007 was more similar to that of the eastern US birds studied in 2000, 7 y earlier in the epizootic, than to that of eastern birds in 2007. These results support the hypothesis that resistance has evolved by natural selection in the exposed populations over the 12 y of the epizootic. We hypothesize that host resistance arose and spread from standing genetic variation in the eastern US and highlight that natural selection can lead to rapid phenotypic evolution in populations when acting on such variation.
Assuntos
Evolução Biológica , Aves/genética , Aves/imunologia , Mycobacterium/patogenicidade , Alabama , Animais , Arizona , Doenças das Aves/genética , Doenças das Aves/imunologia , Doenças das Aves/microbiologia , Aves/microbiologia , Expressão Gênica , Perfilação da Expressão Gênica , Masculino , Dados de Sequência Molecular , Mycobacterium/imunologia , Infecções por Mycobacterium/genética , Infecções por Mycobacterium/imunologia , Infecções por Mycobacterium/microbiologia , Infecções por Mycobacterium/veterinária , Análise de Sequência com Séries de Oligonucleotídeos , Baço/imunologia , Baço/metabolismoRESUMO
Understanding how animals maximize reproductive success in variable environments is important in determining how populations will respond to increasingly extreme weather events predicted in the face of changing climates. Although temperature is generally considered a key factor in reproductive decisions, rainfall is also an important predictor of prey availability in arid environments. Here, we test the impact of weather (i.e., rainfall and temperature) on female reproductive investment in an arid-dwelling bird (i.e., clutch size and egg volume) and tradeoffs between the two. We predicted that female chestnut-crowned babblers (Pomatostomus ruficeps), endemic to the arid region of Australia, would increase clutch size at the expense of egg volume in response to variation in rainfall and temperature. We found that over 14 breeding seasons, clutch size decreased with increasing temperature, but increased following more rain. Egg volume, on the other hand, became larger as temperatures increased and, although not related to the amount of rain, was related to the number of days since the last rainfall. Finally, egg size decreased as clutch size increased, indicating a tradeoff between the two reproductive parameters. Our results suggest that chestnut-crowned babblers breed reactively in response to variable environments. We expect that clutch size variation in response to rain may reflect the impact of rain on arthropod abundance, whereas the effect of temperature may represent an established decline in clutch size observed in other seasonal breeders. As the tradeoff between clutch size and egg volume was modest, and clutch sizes were modified to a greater extent than egg volumes in response to rainfall, we suggest selection is more likely to increase offspring number than quality, at least in favorable years. Our results support the idea that reproductive investment is variable in fluctuating environments, which has implications for species living in habitats experiencing more extreme and less predictable weather as the global climate changes.
RESUMO
[This corrects the article DOI: 10.1098/rsos.181269.][This corrects the article DOI: 10.1098/rsos.181269.].
RESUMO
The combination of meaning-bearing units (e.g., words) into higher-order structures (e.g., compound words and phrases) is integral to human language. Despite this central role of syntax in language, little is known about its evolutionary progression. Comparative data using animal communication systems offer potential insights, but only a handful of species have been identified to combine meaningful calls together into larger signals. We investigated a candidate for syntax-like structure in the highly social chestnut-crowned babbler (Pomatostomus ruficeps). Using a combination of behavioral observations, acoustic analyses, and playback experiments, we test whether the form and function of maternal contact calls is modified by combining the core "piping" elements of such calls with at least one other call element or call. Results from the acoustic analyses (236 analysed calls from 10 individuals) suggested that piping call elements can be flexibly initiated with either "peow" elements from middle-distance contact calls or adult "begging" calls to form "peow-pipe" and "beg-pipe" calls. Behavioral responses to playbacks (20 trials to 7 groups) of natural peow-pipe and beg-pipe calls were comparable to those of artificially generated versions of each call using peow elements and begging calls from other contexts. Furthermore, responses to playbacks (34 trials to 7 groups) of the three forms of maternal contact calls (piping alone, peow-pipe, beg-pipe) differed. Together these data suggest that meaning encoded in piping calls is modified by combining such calls with begging calls or peow elements used in other contexts and so provide rare empirical evidence for syntactic-like structuring in a nonhuman animal.
RESUMO
BACKGROUND: Batrachochytrium dendrobatidis (Bd), the causative agent of chytridiomycosis, is decimating amphibians worldwide. Unsurprisingly, the majority of studies have therefore concentrated on documenting morbidity and mortality of susceptible species and projecting population consequences as a consequence of this emerging infectious disease. Currently, there is a paucity of studies investigating the sub-lethal costs of Bd in apparently asymptomatic species, particularly in controlled experimental conditions. Here we report the consequences of a single dose of B. dendrobatidis zoospores on captive adult palmate newts (Lissotriton helveticus) for morphological and behavioural traits that associate with reproductive success. RESULTS: A single exposure to ~2000 zoospores induced a subclinical Bd infection. One week after inoculation 84% of newts tested positive for Bd, and of those, 98% had apparently lost the infection by the day 30. However, exposed newts suffered significant mass loss compared with control newts, and those experimental newts removing higher levels of Bd lost most mass. We found no evidence to suggest that three secondary sexual characteristics (areas of dorsal crest and rear foot webbing, and length of tail filament) were reduced between experimental versus control newts; in fact, rear foot webbing was 26% more expansive at the end of the experiment in exposed newts. Finally, compared with unexposed controls, exposure to Bd was associated with a 50% earlier initiation of the non-reproductive terrestrial phase. CONCLUSIONS: Our results suggest that Bd has measureable, but sub-lethal effects, on adult palmate newts, at least under the laboratory conditions presented. We conclude that the effects reported are most likely to be mediated through the initiation of costly immune responses and/or tissue repair mechanisms. Although we found no evidence of hastened secondary sexual trait regression, through reducing individual body condition and potentially, breeding season duration, we predict that Bd exposure might have negative impacts on populations of palmate newts through reducing individual reproductive success and adult recruitment.
Assuntos
Quitridiomicetos/fisiologia , Micoses/veterinária , Salamandridae/microbiologia , Animais , Cruzamento , Quitridiomicetos/imunologia , Quitridiomicetos/patogenicidade , Feminino , Masculino , Micoses/imunologia , Micoses/microbiologia , Micoses/fisiopatologia , Reprodução , Salamandridae/imunologia , Salamandridae/fisiologia , VirulênciaRESUMO
Studies of parasites in wild animal populations often rely on molecular methods to both detect and quantify infections. However, method accuracy is likely to be influenced by the sampling approach taken prior to nucleic acid extraction. Avian Haemosporidia are studied primarily through the screening of host blood, and a range of storage mediums are available for the short- to long-term preservation of samples. Previous research has suggested that storage medium choice may impact the accuracy of PCR-based parasite detection, however, this relationship has never been explicitly tested and may be exacerbated by the duration of sample storage. These considerations could also be especially critical for sensitive molecular methods used to quantify infection (qPCR). To test the effect of storage medium and duration on Plasmodium detection and quantification, we split blood samples collected from wild birds across three medium types (filter paper, Queen's lysis buffer, and 96% ethanol) and carried out DNA extractions at five time points (1, 6, 12, 24, and 36 months post-sampling). First, we found variation in DNA yield obtained from blood samples dependent on their storage medium which had subsequent negative impacts on both detection and estimates of Plasmodium copy number. Second, we found that detection accuracy (incidence of true positives) was highest for filter-paper-stored samples (97%), while accuracy for ethanol and Queen's lysis buffer-stored samples was influenced by either storage duration or extraction yield, respectively. Lastly, longer storage durations were associated with decreased copy number estimates across all storage mediums; equating to a 58% reduction between the first- and third-year post-sampling for lysis-stored samples. These results raise questions regarding the utility of standardizing samples by dilution, while also illustrating the critical importance of considering storage approaches in studies of Haemosporidia comparing samples subjected to different storage regimes and/or stored for varying lengths of time.
RESUMO
A critical component of language is the ability to recombine sounds into larger structures. Although animals also reuse sound elements across call combinations to generate meaning, examples are generally limited to pairs of distinct elements, even when repertoires contain sufficient sounds to generate hundreds of combinations. This combinatoriality might be constrained by the perceptual-cognitive demands of disambiguating between complex sound sequences that share elements. We test this hypothesis by probing the capacity of chestnut-crowned babblers to process combinations of two versus three distinct acoustic elements. We found babblers responded quicker and for longer toward playbacks of recombined versus familiar bi-element sequences, but no evidence of differential responses toward playbacks of recombined versus familiar tri-element sequences, suggesting a cognitively prohibitive jump in processing demands. We propose that overcoming constraints in the ability to process increasingly complex combinatorial signals was necessary for the productive combinatoriality that is characteristic of language to emerge.
RESUMO
Human menopause is ubiquitous among women and is uninfluenced by modernity. In addition, it remains an evolutionary puzzle: studies have largely failed to account for diminishing selection on reproduction beyond 50 years. Using a 200-year dataset on pre-industrial Finns, we show that an important component is between-generation reproductive conflict among unrelated women. Simultaneous reproduction by successive generations of in-laws was associated with declines in offspring survivorship of up to 66%. An inclusive fitness model revealed that incorporation of the fitness consequences of simultaneous intergenerational reproduction between in-laws, with those of grandmothering and risks of dying in childbirth, were sufficient to generate selection against continued reproduction beyond 51 years. Decomposition of model estimates suggested that the former two were most influential in generating selection against continued reproduction. We propose that menopause evolved, in part, because of age-specific increases in opportunities for intergenerational cooperation and reproductive competition under ecological scarcity.
Assuntos
Evolução Biológica , Relação entre Gerações , Menopausa/fisiologia , Reprodução , Adolescente , Adulto , Morte , Feminino , Finlândia , Aptidão Genética , Humanos , Pessoa de Meia-Idade , Modelos Teóricos , Parto , Risco , Seleção Genética , Sobrevida , Adulto JovemRESUMO
Protective immunity is expected to evolve when the costs of mounting an immune response are less than those of harbouring pathogens. Estimating the costs of immunity vs. pathogenesis in natural systems is challenging, however, because they are typically closely linked. Here we attempt to disentangle the relative cost of each using experimental infections in a natural host-parasite system in which hosts (house finches, Carpodacus mexicanus) differ in resistance to a bacterium (Mycoplasma gallisepticum, MG), depending on whether they originate from co-evolved or unexposed populations. Experimental infection with a 2007-strain of MG caused finches from co-evolved populations to lose significantly more mass relative to controls, than those from unexposed populations. In addition, infected co-evolved finches that lost the most mass harboured the least amounts of MG, whereas the reverse was true in finches from unexposed populations. Finally, within co-evolved populations, individuals that displayed transcriptional evidence of higher protective immune activity, as indicated by changes in the expression of candidate immune and immune-related genes in a direction consistent with increased resistance to MG, showed greater mass loss and lower MG load. Thus, mass loss appeared to reflect the costs of immunity vs. pathogenesis in co-evolved and unexposed populations, respectively. Our results suggest that resistance can evolve even when the short-term energetic costs of protective immunity exceed those of pathogenesis, providing the longer-term fitness costs of infection are sufficiently high.
Assuntos
Doenças das Aves/imunologia , Tentilhões/imunologia , Infecções por Mycoplasma/veterinária , Mycoplasma gallisepticum/patogenicidade , Alabama , Animais , Arizona , Carga Bacteriana , Evolução Biológica , Doenças das Aves/genética , Doenças das Aves/microbiologia , Peso Corporal , Resistência à Doença/genética , Tentilhões/genética , Tentilhões/microbiologia , Aptidão Genética , Masculino , Dados de Sequência Molecular , Infecções por Mycoplasma/genética , Infecções por Mycoplasma/imunologiaRESUMO
Natal dispersal is an important life history trait driving variation in individual fitness, and therefore, a proper understanding of the factors underlying dispersal behaviour is critical to many fields including population dynamics, behavioural ecology and conservation biology. However, individual dispersal patterns remain difficult to quantify despite many years of research using direct and indirect methods. Here, we quantify dispersal in a single intensively studied population of the cooperatively breeding chestnut-crowned babbler (Pomatostomus ruficeps) using genetic networks created from the combination of pairwise relatedness data and social networking methods and compare this to dispersal estimates from re-sighting data. This novel approach not only identifies movements between social groups within our study sites but also provides an estimation of immigration rates of individuals originating outside the study site. Both genetic and re-sighting data indicated that dispersal was strongly female biased, but the magnitude of dispersal estimates was much greater using genetic data. This suggests that many previous studies relying on mark-recapture data may have significantly underestimated dispersal. An analysis of spatial genetic structure within the sampled population also supports the idea that females are more dispersive, with females having no structure beyond the bounds of their own social group, while male genetic structure expands for 750 m from their social group. Although the genetic network approach we have used is an excellent tool for visualizing the social and genetic microstructure of social animals and identifying dispersers, our results also indicate the importance of applying them in parallel with behavioural and life history data.
Assuntos
Genética Populacional/métodos , Passeriformes/genética , Animais , Feminino , Masculino , Repetições de Microssatélites , Modelos Genéticos , New South Wales , Dinâmica Populacional , Análise de Sequência de DNA , Comportamento SocialRESUMO
Glucocorticoid hormones (GCs) have been studied intensively to understand the associations between physiological stress and reproductive skew in animal societies. However, we have little appreciation of the range of either natural levels within and among individuals, or the associations among dominance status, reproductive rate and GCs levels during breeding. To address these shortcomings, we examined variation in fecal glucocorticoid metabolites (fGC) during breeding periods in free-ranging female meerkats (Suricata suricatta) over 11 years. The vast majority of variation in fGC levels was found within breeding events by the same female (~87%), with the remaining variation arising among breeding events and among females. Concentrations of fGC generally tripled as pregnancy progressed. However, females with a high reproductive rate, defined as those conceiving within a month following parturition (mean = 9 days postpartum), showed significant reductions in fGC in the final 2 weeks before parturition. Despite these reductions, females with a high reproductive rate had higher fGC levels at conception of the following litter than those breeding at a low rate. After controlling for the higher reproductive rate of dominants, we found no association between levels of fGC and either age or dominance status. Our results suggest that one should be cautious about interpreting associations between dominance status, reproductive skew and GCs levels, without knowledge of the natural variation in GCs levels within and among females.
Assuntos
Fezes/química , Glucocorticoides/metabolismo , Herpestidae/fisiologia , Reprodução/fisiologia , Predomínio Social , Envelhecimento/fisiologia , Animais , Coeficiente de Natalidade , Peso Corporal/fisiologia , Feminino , Glucocorticoides/química , Masculino , Parto , Gravidez , Comportamento Sexual Animal/fisiologiaRESUMO
Endemic island species face unprecedented threats, with many populations in decline or at risk of extinction. One important threat is the introduction of novel and potentially devastating diseases, made more pressing due to accelerating global connectivity, urban development, and climatic changes. In the Galápagos archipelago two important wildlife diseases: avian pox (Avipoxvirus spp.) and avian malaria (Plasmodium spp. and related Haemosporidia) challenge endemic species. San Cristóbal island has seen a paucity of disease surveillance in avian populations, despite the island's connectedness to the continent and the wider archipelago. To survey prevalence and better understand the dynamics of these two diseases on San Cristóbal, we captured 1205 birds of 11 species on the island between 2016 and 2020. Study sites included urban and rural lowland localities as well as rural highland sites in 2019. Of 995 blood samples screened for avian haemosporidia, none tested positive for infection. In contrast, evidence of past and active pox infection was observed in 97 birds and identified as strains Gal1 and Gal2. Active pox prevalence differed significantly with contemporary climatic conditions, being highest during El Niño events (~11% in 2016 and in 2019 versus <1% in the La Niña year of 2018). Pox prevalence was also higher at urban sites than rural (11% to 4%, in 2019) and prevalence varied between host species, ranging from 12% in medium ground finches (Geospiza fortis) to 4% in Yellow Warblers (Setophaga petechial aureola). In the most common infected species (Small Ground Finch: Geospiza fuliginosa), birds recovered from pox had significantly longer wings, which may suggest a selective cost to infection. These results illustrate the threat future climate changes and urbanization may present in influencing disease dynamics in the Galápagos, while also highlighting unknowns regarding species-specific susceptibilities to avian pox and the transmission dynamics facilitating outbreaks within these iconic species.
RESUMO
Individuals may delay dispersing from their natal habitat, even after maturation to adulthood. Such delays can have broad consequences from determining population structure to allowing an individual to gain indirect fitness by helping parents rear future offspring. Dispersal in species that use delayed dispersal is largely thought to be opportunistic; however, how individuals, particularly inexperienced juveniles, assess their environments to determine the appropriate time to disperse is unknown. One relatively unexplored possibility is that dispersal decisions are the result of epigenetic mechanisms interacting between a genome and environment during development to generate variable dispersive phenotypes. Here, we tested this using epiRADseq to compare genome-wide levels of DNA methylation of blood in cooperatively breeding chestnut-crowned babblers (Pomatostomus ruficeps). We measured dispersive and philopatric individuals at hatching, before fledging, and at 1 year (following when first year dispersal decisions would be made). We found that individuals that dispersed in their first year had a reduced proportion of methylated loci than philopatric individuals before fledging, but not at hatching or as adults. Further, individuals that dispersed in the first year had a greater number of loci change methylation state (i.e. gain or lose) between hatching and fledging. The existence and timing of these changes indicate some influence of development on epigenetic changes that may influence dispersal behavior. However, further work needs to be done to address exactly how developmental environments may be associated with dispersal decisions and which loci in particular are manipulated to generate such changes.