Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Heredity (Edinb) ; 122(4): 441-457, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30171190

RESUMO

In wide-ranging taxa with historically dynamic ranges, past allopatric isolation and range expansion can both influence the current structure of genetic diversity. Considering alternate historical scenarios involving expansion from either a single refugium or from multiple refugia can be useful in differentiating the effects of isolation and expansion. Here, we examined patterns of genetic variability in the trans-continentally distributed painted turtle (Chrysemys picta). We utilized an existing phylogeographic dataset for the mitochondrial control region and generated additional data from nine populations for the mitochondrial control region (n = 302) and for eleven nuclear microsatellite loci (n = 247). We created a present-day ecological niche model (ENM) for C. picta and hindcast this model to three reconstructions of historical climate to define three potential scenarios with one, two, or three refugia. Finally, we employed spatially-explicit coalescent simulations and an approximate Bayesian computation (ABC) framework to test which scenario best fit the observed genetic data. Simulations indicated that phylogeographic and multilocus population-level sampling both could differentiate among refugial scenarios, although inferences made using mitochondrial data were less accurate when a longer coalescence time was assumed. Furthermore, all empirical genetic datasets were most consistent with expansion from a single refugium based on ABC. Our results indicate a stronger role for post-glacial range expansion, rather than isolation in allopatric refugia followed by range expansion, in structuring diversity in this species. To distinguish among complex historical scenarios, we recommend explicitly modeling the effects of range expansion and evaluating alternate refugial scenarios for wide-ranging taxa.


Assuntos
Especiação Genética , Variação Genética , Tartarugas/genética , Animais , Teorema de Bayes , Mudança Climática , DNA Mitocondrial/genética , Demografia , Ecossistema , Genética Populacional , Repetições de Microssatélites/genética , Modelos Biológicos , Filogeografia , Refúgio de Vida Selvagem , Tartarugas/classificação
2.
Heredity (Edinb) ; 114(3): 272-80, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25335559

RESUMO

Inter-specific hybridization may be especially detrimental when one species is extremely rare and the other is abundant owing to the potential for genetic swamping. The Cuban crocodile (Crocodylus rhombifer) is a critically endangered island endemic largely restricted to Zapata Swamp, where it is sympatric with the widespread American crocodile (C. acutus). An on-island, C. rhombifer captive breeding program is underway with the goals of maintaining taxonomic integrity and providing a source of individuals for reintroduction, but its conservation value is limited by lack of genetic information. Here we collected mtDNA haplotypic and nuclear genotypic data from wild and captive C. rhombifer and C. acutus in Cuba to: (1) investigate the degree of inter-specific hybridization in natural (in situ) and captive (ex situ) populations; (2) quantify the extent, distribution and in situ representation of genetic variation ex situ; and (3) reconstruct founder relatedness to inform management. We found high levels of hybridization in the wild (49.1%) and captivity (16.1%), and additional evidence for a cryptic lineage of C. acutus in the Antilles. We detected marginally higher observed heterozygosity and allelic diversity ex situ relative to the wild population, with captive C. rhombifer exhibiting over twice the frequency of private alleles. Although mean relatedness was high in captivity, we identified 37 genetically important individuals that possessed individual mean kinship (MK) values lower than the population MK. Overall, these results will guide long-term conservation management of Cuban crocodiles for maintaining the genetic integrity and viability of this species of high global conservation value.


Assuntos
Jacarés e Crocodilos/genética , Conservação dos Recursos Naturais , Espécies em Perigo de Extinção , Hibridização Genética , Alelos , Animais , Núcleo Celular/genética , Cuba , DNA Mitocondrial/genética , Feminino , Genótipo , Haplótipos , Heterozigoto , Masculino , Repetições de Microssatélites , Dados de Sequência Molecular , Análise de Sequência de DNA , Estados Unidos
3.
J Evol Biol ; 26(12): 2606-21, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24118176

RESUMO

Recent progress in methods for detecting adaptive population divergence in situ shows promise for elucidating the conditions under which selection acts to generate intraspecific diversity. Rapid ecological diversification is common in fishes; however, the role of phenotypic plasticity and adaptation to local environments is poorly understood. It is now possible to investigate genetic patterns to make inferences regarding phenotypic traits under selection and possible mechanisms underlying ecotype divergence, particularly where similar novel phenotypes have arisen in multiple independent populations. Here, we employed a bottom-up approach to test for signatures of directional selection associated with divergence of beach- and stream-spawning kokanee, the obligate freshwater form of sockeye salmon (Oncorhynchus nerka). Beach- and stream-spawners co-exist in many post-glacial lakes and exhibit distinct reproductive behaviours, life-history traits and spawning habitat preferences. Replicate ecotype pairs across five lakes in British Columbia, Canada were genotyped at 57 expressed sequence tag-linked and anonymous microsatellite loci identified in a previous genome scan. Fifteen loci exhibited signatures of directional selection (high FST outliers), four of which were identified in multiple lakes. However, the lack of parallel genetic patterns across all lakes may be a result of: 1) an inability to detect loci truly under selection; 2) alternative genetic pathways underlying ecotype divergence in this system; and/or 3) phenotypic plasticity playing a formative role in driving kokanee spawning habitat differences. Gene annotations for detected outliers suggest pathogen resistance and energy metabolism as potential mechanisms contributing to the divergence of beach- and stream-spawning kokanee, but further study is required.


Assuntos
Ecologia , Reprodução , Salmão/fisiologia , Animais , Colúmbia Britânica , Geografia , Filogenia , Salmão/classificação , Salmão/genética
4.
Mol Ecol ; 18(15): 3173-84, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19555412

RESUMO

The Amur tiger (Panthera tigris altaica) is a critically endangered felid that suffered a severe demographic contraction in the 1940s. In this study, we sampled 95 individuals collected throughout their native range to investigate questions relative to population genetic structure and demographic history. Additionally, we sampled targeted individuals from the North American ex situ population to assess the genetic representation found in captivity. Population genetic and Bayesian structure analyses clearly identified two populations separated by a development corridor in Russia. Despite their well-documented 20th century decline, we failed to find evidence of a recent population bottleneck, although genetic signatures of a historical contraction were detected. This disparity in signal may be due to several reasons, including historical paucity in population genetic variation associated with postglacial colonization and potential gene flow from a now extirpated Chinese population. Despite conflicting signatures of a bottleneck, our estimates of effective population size (N(e) = 27-35) and N(e)/N ratio (0.07-0.054) were substantially lower than the only other values reported for a wild tiger population. Lastly, the extent and distribution of genetic variation in captive and wild populations were similar, yet gene variants persisted ex situ that were lost in situ. Overall, our results indicate the need to secure ecological connectivity between the two Russian populations to minimize loss of genetic diversity and overall susceptibility to stochastic events, and support a previous study suggesting that the captive population may be a reservoir of gene variants lost in situ.


Assuntos
Conservação dos Recursos Naturais , Genética Populacional , Tigres/genética , Animais , Animais de Zoológico/genética , Fluxo Gênico , Variação Genética , Genótipo , Dinâmica Populacional
5.
Ecol Evol ; 3(11): 3906-17, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24198948

RESUMO

In the face of predicted climate change, a broader understanding of biotic responses to varying environments has become increasingly important within the context of biodiversity conservation. Local adaptation is one potential option, yet remarkably few studies have harnessed genomic tools to evaluate the efficacy of this response within natural populations. Here, we show evidence of selection driving divergence of a climate-change-sensitive mammal, the American pika (Ochotona princeps), distributed along elevation gradients at its northern range margin in the Coast Mountains of British Columbia (BC), Canada. We employed amplified-fragment-length-polymorphism-based genomic scans to conduct genomewide searches for candidate loci among populations inhabiting varying environments from sea level to 1500 m. Using several independent approaches to outlier locus detection, we identified 68 candidate loci putatively under selection (out of a total 1509 screened), 15 of which displayed significant associations with environmental variables including annual precipitation and maximum summer temperature. These candidate loci may represent important targets for predicting pika responses to climate change and informing novel approaches to wildlife conservation in a changing world.

6.
Mol Ecol ; 13(9): 2829-40, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15315693

RESUMO

For captive breeding to play a significant role in conservation, ex situ populations must be scientifically managed to meet objective goals for retaining representative genetic variation. Imperfect genealogical information requires fundamental assumptions to be made that may bias downstream measures of genetic importance, upon which management decisions are based. The impacts of such assumptions are most pronounced within breeding programmes characterized by a high proportion of individuals of unknown ancestry, as exemplified by the large captive population of the St Vincent parrot (Amazona guildingii). The degree to which microsatellite-based estimates of relatedness may improve upon the assumptions of conventional pedigree-based management was investigated using genotypic data collected at eight microsatellite loci and two marker-based relatedness estimators. The measure, rxyLR, was found to explain the highest amount of variation in true relatedness. Integration of pairwise estimates of founder relatedness with studbook data transformed current understanding of the relatedness structure of the A. guildingii population from two subgroups characterized by a high and low degree of relatedness, respectively, to a situation where all 72 individuals are prioritized for breeding according to their estimated mean kinships. Furthermore, the discovery of opposing, directional bias exhibited by rxyLR and rxyQG in assigning dyads to a given relationship category suggests that an approach that utilizes a combination of pairwise relatedness estimators may provide the most genetic information for balancing the dual considerations of maximizing gene diversity and minimizing inbreeding in developing breeding recommendations.


Assuntos
Animais de Zoológico/genética , Cruzamento/métodos , Conservação dos Recursos Naturais/métodos , Variação Genética , Papagaios/genética , Animais , Feminino , Frequência do Gene , Genótipo , Funções Verossimilhança , Masculino , Repetições de Microssatélites/genética , São Vicente e Granadinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA