Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Phylogenet Evol ; 193: 108030, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38341008

RESUMO

Quaternary climate oscillations have profoundly influenced current species distributions. For many montane species, these fluctuations were a prominent driver in species range shifts, often resulting in intraspecific diversification, as has been the case for American pikas (Ochotona princeps). Range shifts and population declines in this thermally-sensitive lagomorph have been linked to historical and contemporary environmental changes across its western North American range, with previous research reconstructing five mitochondrial DNA lineages. Here, we paired genome-wide data (25,244 SNPs) with range-wide sampling to re-examine the number and distribution of intra-specific lineages, and investigate patterns of within- and among-lineage divergence and diversity. Our results provide genomic evidence of O. princeps monophyly, reconstructing six distinct lineages that underwent multiple rounds of divergence (0.809-2.81 mya), including a new Central Rocky Mountain lineage. We further found evidence for population differentiation across multiple spatial scales, and reconstructed levels of standing variation comparable to those found in other small mammals. Overall, our findings demonstrate the influence of past glacial cycles on O. princeps lineage diversification, suggest that current subspecific taxonomy may need to be revisited, and provide an important framework for investigations of American pika adaptive potential in the face of anthropogenic climate change.


Assuntos
Lagomorpha , Animais , Filogenia , Lagomorpha/genética , Mamíferos/genética , Genômica/métodos , DNA Mitocondrial/genética
2.
Mol Ecol ; 31(24): 6588-6604, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36208020

RESUMO

Recent ecotypic differentiation provides unique opportunities to investigate the genomic basis and architecture of local adaptation, while offering insights into how species form and persist. Sockeye salmon (Oncorhynchus nerka) exhibit migratory and resident ("kokanee") ecotypes, which are further distinguished into shore-spawning and stream-spawning reproductive ecotypes. Here, we analysed 36 sockeye (stream-spawning) and kokanee (stream- and shore-spawning) genomes from a system where they co-occur and have recent common ancestry (Okanagan Lake/River in British Columbia, Canada) to investigate the genomic basis of reproductive and migratory behaviour. Examination of the genomic landscape of differentiation, differences in allele frequencies and genotype-phenotype associations revealed three main blocks of sequence differentiation on chromosomes 7, 12 and 20, associated with migratory behaviour, spawning location and spawning timing. Structural variants identified in these same areas suggest they could contribute to ecotypic differentiation directly as causal variants or via maintenance of their genomic architecture through recombination suppression mechanisms. Genes in these regions were related to spatial memory and swimming endurance (SYNGAP, TPM3), as well as eye and brain development (including SIX6), potentially associated with differences in migratory behaviour and visual habitats across spawning locations, respectively. Additional genes (GREB1L, ROCK1) identified here have been associated with timing of migration in other salmonids and could explain variation in timing of O. nerka spawning. Together, these results based on the joint analysis of sequence and structural variation represent a significant advance in our understanding of the genomic landscape of ecotypic differentiation at different stages in the speciation continuum.


Assuntos
Salmonidae , Animais , Salmonidae/genética , Migração Animal , Salmão/genética , Genômica , Colúmbia Britânica
3.
Heredity (Edinb) ; 128(4): 261-270, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35217806

RESUMO

The Galapagos Archipelago is recognized as a natural laboratory for studying evolutionary processes. San Cristóbal was one of the first islands colonized by tortoises, which radiated from there across the archipelago to inhabit 10 islands. Here, we sequenced the mitochondrial control region from six historical giant tortoises from San Cristóbal (five long deceased individuals found in a cave and one found alive during an expedition in 1906) and discovered that the five from the cave are from a clade that is distinct among known Galapagos giant tortoises but closely related to the species from Española and Pinta Islands. The haplotype of the individual collected alive in 1906 is in the same clade as the haplotype in the contemporary population. To search for traces of a second lineage in the contemporary population on San Cristóbal, we closely examined the population by sequencing the mitochondrial control region for 129 individuals and genotyping 70 of these for both 21 microsatellite loci and >12,000 genome-wide single nucleotide polymorphisms [SNPs]. Only a single mitochondrial haplotype was found, with no evidence to suggest substructure based on the nuclear markers. Given the geographic and temporal proximity of the two deeply divergent mitochondrial lineages in the historical samples, they were likely sympatric, raising the possibility that the lineages coexisted. Without the museum samples, this important discovery of an additional lineage of Galapagos giant tortoise would not have been possible, underscoring the value of such collections and providing insights into the early evolution of this iconic radiation.


Assuntos
Tartarugas , Animais , DNA Mitocondrial/genética , Equador , Genoma , Haplótipos , Humanos , Repetições de Microssatélites , Museus , Filogenia , Tartarugas/genética
4.
Mol Ecol ; 30(23): 6325-6339, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34510620

RESUMO

Whole genome sequencing provides deep insights into the evolutionary history of a species, including patterns of diversity, signals of selection, and historical demography. When applied to closely related taxa with a wealth of background knowledge, population genomics provides a comparative context for interpreting population genetic summary statistics and comparing empirical results with the expectations of population genetic theory. The Galapagos giant tortoises (Chelonoidis spp.), an iconic rapid and recent radiation, offer such an opportunity. Here, we sequenced whole genomes from three individuals of the 12 extant lineages of Galapagos giant tortoise and estimate diversity measures and reconstruct changes in coalescent rate over time. We also compare the number of derived alleles in each lineage to infer how synonymous and nonsynonymous mutation accumulation rates correlate with population size and life history traits. Remarkably, we find that patterns of molecular evolution are similar within individuals of the same lineage, but can differ significantly among lineages, reinforcing the evolutionary distinctiveness of the Galapagos giant tortoise species. Notably, differences in mutation accumulation among lineages do not align with simple population genetic predictions, suggesting that the drivers of purifying selection are more complex than is currently appreciated. By integrating results from earlier population genetic and phylogeographic studies with new findings from the analysis of whole genomes, we provide the most in-depth insights to date on the evolution of Galapagos giant tortoises, and identify discrepancies between expectation from population genetic theory and empirical data that warrant further scrutiny.


Assuntos
Tartarugas , Animais , Evolução Molecular , Genética Populacional , Humanos , Densidade Demográfica , Tartarugas/genética , Sequenciamento Completo do Genoma
5.
Heredity (Edinb) ; 127(5): 443-454, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34537819

RESUMO

Understanding the role of adaptation in species' responses to climate change is important for evaluating the evolutionary potential of populations and informing conservation efforts. Population genomics provides a useful approach for identifying putative signatures of selection and the underlying environmental factors or biological processes that may be involved. Here, we employed a population genomic approach within a space-for-time study design to investigate the genetic basis of local adaptation and reconstruct patterns of movement across rapidly changing environments in a thermally sensitive mammal, the American pika (Ochotona princeps). Using genotypic data at 49,074 single-nucleotide polymorphisms (SNPs), we analyzed patterns of genome-wide diversity, structure, and migration along three independent elevational transects located at the northern extent (Tweedsmuir South Provincial Park, British Columbia, Canada) and core (North Cascades National Park, Washington, USA) of the Cascades lineage. We identified 899 robust outlier SNPs within- and among-transects. Of those annotated to genes with known function, many were linked with cellular processes related to climate stress including ATP-binding, ATP citrate synthase activity, ATPase activity, hormone activity, metal ion-binding, and protein-binding. Moreover, we detected evidence for contrasting patterns of directional migration along transects across geographic regions that suggest an increased propensity for American pikas to disperse among lower elevation populations at higher latitudes where environments are generally cooler. Ultimately, our data indicate that fine-scale demographic patterns and adaptive processes may vary among populations of American pikas, providing an important context for evaluating biotic responses to climate change in this species and other alpine-adapted mammals.


Assuntos
Lagomorpha , Animais , Colúmbia Britânica , Mudança Climática , Genoma , Lagomorpha/genética , Mamíferos , Polimorfismo de Nucleotídeo Único
6.
J Hered ; 112(7): 602-613, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34618898

RESUMO

Salmonids have emerged as important study systems for investigating molecular processes underlying parallel evolution given their tremendous life history variation. Kokanee, the resident form of anadromous sockeye salmon (Oncorhynchus nerka), have evolved multiple times across the species' pan-Pacific distribution, exhibiting multiple reproductive ecotypes including those that spawn in streams, on lake-shores, and at lake depths >50 m. The latter has only been detected in 5 locations in Japan and British Columbia, Canada. Here, we investigated the multiple origins hypothesis for deep-spawning kokanee, using 9721 single nucleotide polymorphisms distributed across the genome analyzed for the vast majority of known populations in Japan (Saiko Lake) and Canada (Anderson, Seton, East Barrière Lakes) relative to stream-spawning populations in both regions. We detected 397 outlier loci, none of which were robustly identified in paired-ecotype comparisons in Japan and Canada independently. Bayesian clustering and principal components analyses based on neutral loci revealed 6 distinct clusters, largely associated with geography or translocation history, rather than ecotype. Moreover, a high level of divergence between Canadian and Japanese populations, and between deep- and stream-spawning populations regionally, suggests the deep-spawning ecotype independently evolved on the 2 continents. On a finer level, Japanese kokanee populations exhibited low estimates of heterozygosity, significant levels of inbreeding, and reduced effective population sizes relative to Canadian populations, likely associated with transplantation history. Along with preliminary evidence for hybridization between deep- and stream-spawning ecotypes in Saiko Lake, these findings should be considered within the context of on-going kokanee fisheries management in Japan.


Assuntos
Ecótipo , Salmão , Animais , Teorema de Bayes , Colúmbia Britânica , Geografia , Salmão/genética
7.
J Hered ; 112(6): 549-557, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34036348

RESUMO

The American pika (Ochotona princeps) is an alpine lagomorph found throughout western North America. Primarily inhabiting talus slopes at higher elevations (>2000 m), American pikas are well adapted to cold, montane environments. Warming climates on both historical and contemporary scales have contributed to population declines in American pikas, positioning them as a focal mammalian species for investigating the ecological effects of climate change. To support and expand ongoing research efforts, here, we present a highly contiguous and annotated reference genome assembly for the American pika (OchPri4.0). This assembly was produced using Dovetail de novo proximity ligation methods and annotated through the NCBI Eukaryotic Genome Annotation pipeline. The resulting assembly was chromosome- scale, with a total length of 2.23 Gb across 9350 scaffolds and a scaffold N50 of 75.8 Mb. The vast majority (>97%) of the total assembly length was found within 36 large scaffolds; 33 of these scaffolds correlated to whole autosomes, while the X chromosome was covered by 3 large scaffolds. Additionally, we identified 17 enriched gene ontology terms among American pika-specific genes putatively related to adaptation to high-elevation environments. This high-quality genome assembly will serve as a springboard for exploring the evolutionary underpinnings of behavioral, ecological, and taxonomic diversification in pikas as well as broader-scale eco-evolutionary questions pertaining to cold-adapted species in general.


Assuntos
Lagomorpha , Aclimatação , Animais , Cromossomos , Mudança Climática , Genoma , Lagomorpha/genética
8.
Zoo Biol ; 39(4): 257-262, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32196733

RESUMO

Using molecular genetic information to guide population management can improve the sustainability of species in captivity. However, empirical population genetics has not been commonly applied to species management programs in zoos. One limitation may be the availability of genetic resources (e.g., markers, primers, etc.) for species held in zoos. To assess the extent to which species held in zoos have been studied using population genetics in the wild, we conducted a systematic literature review of close to 8,000 papers. We synthesized information on the availability and scale of population genetics studies across amphibian, bird, mammal, and reptile species held in zoos, and discussed their potential for informing ex situ management. We found that more than half of the species in zoos (52%) already have some genetic markers described in the literature specific for them, or a congeneric species, that could be further developed to aid the management of zoo populations, and the accumulation of these resources has been steady over the past decades. Furthermore, the proportion of species with genetic resources is even higher (62%) for species that are being managed through a formal breeding program in zoos. Our study provides encouraging results for captive program managers interested in integrating population genetics into ex situ management strategies.


Assuntos
Anfíbios/genética , Aves/genética , Mamíferos/genética , Répteis/genética , Animais , Animais de Zoológico , Conservação dos Recursos Naturais/métodos
9.
Conserv Biol ; 33(6): 1404-1414, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-30901116

RESUMO

Hybridization poses a major challenge for species conservation because it threatens both genetic integrity and adaptive potential. Yet, hybridization can occasionally offer unprecedented opportunity for species recovery if the genome of an extinct taxon is present among living hybrids such that selective breeding could recapture it. We explored the design elements for establishing a captive-breeding program for Galapagos tortoises (Chelonoidis spp.) built around individuals with admixed ancestry involving an extinct species. The target individuals were hybrids between the extinct species from Floreana Island, C. niger, and an extant species, C. becki, which were recently found in the endemic range of C. becki, from Wolf Volcano on Isabela Island. We combined genotypic data from 35 tortoises with high ancestry from C. niger with forward-in-time simulations to explore captive breeding strategies that maximized overall genetic diversity and ancestry from C. niger while accommodating resource constraints, species biology, and the urgency to return tortoises to Floreana Island for facilitating ecosystem restoration. Overall genetic diversity was maximized when in the simulation tortoises were organized in relatively small breeding groups. Substantial amounts of the C. niger genome were captured despite limited resources available for selectively breeding tortoises in captivity. Genetic diversity was maximized when captive-bred offspring were released to the wild rather than being used as additional breeders. Our results provide genetic-based and practical guidance on the inclusion of hybrids with genomic representation from extinct taxa into species restoration programs and informs the ongoing debate on the value of hybrids in biodiversity conservation.


Reproducción en Cautiverio Informada Genéticamente de Híbridos de una Especie Extinta de Tortuga de las Galápagos Resumen La hibridación representa un obstáculo importante para la conservación de especies ya que amenaza tanto a la integridad genética como al potencial adaptativo. Aun así, la hibridación ocasionalmente puede ofrecer una oportunidad sin precedentes para la recuperación de una especie si el genoma de un taxón extinto está presente entre los híbridos vivientes de tal manera que la reproducción selectiva pudiera recuperarlo. Exploramos los elementos de diseño para el establecimiento de un programa de reproducción en cautiverio de la tortuga de las Galápagos (Chelonoidis spp.) construido en torno a los individuos con linajes mixtos que incluyeran una especie extinta. Los individuos fueron los híbridos de la especie extinta en la Isla Floreana, C. niger, y la especie viviente C. becki, encontrados recientemente en la distribución geográfica endémica de la segunda especie en el Volcán Wolf (Isla Isabela). Combinamos los datos genotípicos de 35 tortugas con un linaje cargado de C. niger usando simulaciones futuras de la descendencia generada por el programa para explorar las estrategias de reproducción en cautiverio que maximizaran en general la diversidad genética y el linaje de C. niger a la vez que se ajustaba a las restricciones de recursos, la biología de la especie y la urgencia por regresar las tortugas a la Isla Floreana para facilitar la restauración del ecosistema. En general, la diversidad genética se maximizó cuando en la simulación las tortugas estuvieron organizadas en grupos de reproducción relativamente pequeños y cuando cantidades sustanciales del genoma de C. niger fueron capturados con base en los recursos disponibles para reproducir selectivamente a las tortugas en cautiverio. La diversidad genética se vio especialmente maximizada cuando las crías reproducidas en cautiverio fueron liberadas en lugar de ser utilizadas como reproductoras adicionales. Nuestros resultados proporcionan una guía práctica y basada en la genética para la inclusión de híbridos con representación genómica de un taxón extinto en los programas de restauración de especies. Cuando incorporamos a los híbridos con diversidad genética que previamente se creía perdida en los programas con el propósito de la reintroducción de especies, nuestro estudio informa al debate continuo sobre el valor de los híbridos para la conservación de la biodiversidad.


Assuntos
Tartarugas , Animais , Cruzamento , Conservação dos Recursos Naturais , Ecossistema , Ilhas
10.
Mol Ecol ; 27(11): 2512-2528, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29693300

RESUMO

The ecological effects of climate change have been shown in most major taxonomic groups; however, the evolutionary consequences are less well-documented. Adaptation to new climatic conditions offers a potential long-term mechanism for species to maintain viability in rapidly changing environments, but mammalian examples remain scarce. The American pika (Ochotona princeps) has been impacted by recent climate-associated extirpations and range-wide reductions in population sizes, establishing it as a sentinel mammalian species for climate change. To investigate evidence for local adaptation and reconstruct patterns of genomic diversity and gene flow across rapidly changing environments, we used a space-for-time design and restriction site-associated DNA sequencing to genotype American pikas along two steep elevational gradients at 30,966 SNPs and employed independent outlier detection methods that scanned for genotype-environment associations. We identified 338 outlier SNPs detected by two separate analyses and/or replicated in both transects, several of which were annotated to genes involved in metabolic function and oxygen transport. Additionally, we found evidence of directional gene flow primarily downslope from high-elevation populations, along with reduced gene flow at outlier loci. If this trend continues, elevational range contractions in American pikas will likely be from local extirpation rather than upward movement of low-elevation individuals; this, in turn, could limit the potential for adaptation within this landscape. These findings are of particular relevance for future conservation and management of American pikas and other elevationally restricted, thermally sensitive species.


Assuntos
Adaptação Fisiológica/genética , Fluxo Gênico/genética , Mamíferos/genética , Animais , Mudança Climática , Ecossistema , Genômica/métodos , Lagomorpha/genética , Polimorfismo de Nucleotídeo Único/genética , Análise de Sequência de DNA/métodos
11.
J Hered ; 109(6): 631-640, 2018 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-29659893

RESUMO

Empirical population genetic studies generally rely on sampling subsets of the population(s) of interest and of the nuclear or organellar genome targeted, assuming each is representative of the whole. Violations of these assumptions may impact population-level parameter estimation and lead to spurious inferences. Here, we used targeted capture to sequence the full mitochondrial genome from 123 individuals of the Galapagos giant tortoise endemic to Pinzón Island (Chelonoidis duncanensis) sampled at 2 time points pre- and postbottleneck (circa 1906 and 2014) to explicitly assess differences in diversity estimates and demographic reconstructions based on subsets of the mitochondrial genome versus the full sequences and to evaluate potential biases associated with diversity estimates and demographic reconstructions from postbottlenecked samples alone. Haplotypic diversities were equal between the temporal samples based on the full mitochondrial genome, but single gene estimates suggested either decreases or increases in diversity depending upon the region. Demographic reconstructions based on the full sequence were more similar between the temporal samples than those based on the control region alone, or a subset of 3 regions, where the trends in population size changes shifted in magnitude and direction between the temporal samples. In all cases, the estimated coalescent point was more distant for the historical than contemporary sample. In summary, our results empirically demonstrate the influence of sampling bias when interpreting population genetic patterns and punctuate the need for careful consideration of potentially conflicting evolutionary signal across the mitochondrial genome.


Assuntos
Variação Genética , Genoma Mitocondrial , Tartarugas/genética , Animais , DNA Mitocondrial , Equador , Genética Populacional , Viés de Seleção , Análise de Sequência de DNA
12.
J Hered ; 109(6): 611-619, 2018 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-29986032

RESUMO

Genome-wide assessments allow for fuller characterization of genetic diversity, finer-scale population delineation, and better detection of demographically significant units to guide conservation compared with those based on "traditional" markers. Galapagos giant tortoises (Chelonoidis spp.) have long provided a case study for how evolutionary genetics may be applied to advance species conservation. Ongoing efforts to bolster tortoise populations, which have declined by 90%, have been informed by analyses of mitochondrial DNA sequence and microsatellite genotypic data, but could benefit from genome-wide markers. Taking this next step, we used double-digest restriction-site associated DNA sequencing to collect genotypic data at >26000 single nucleotide polymorphisms (SNPs) for 117 individuals representing all recognized extant Galapagos giant tortoise species. We then quantified genetic diversity, population structure, and compared results to estimates from mitochondrial DNA and microsatellite loci. Our analyses detected 12 genetic lineages concordant with the 11 named species as well as previously described structure within one species, C. becki. Furthermore, the SNPs provided increased resolution, detecting admixture in 4 individuals. SNP-based estimates of diversity and differentiation were significantly correlated with those derived from nuclear microsatellite loci and mitochondrial DNA sequences. The SNP toolkit presented here will serve as a resource for advancing efforts to understand tortoise evolution, species radiations, and aid conservation of the Galapagos tortoise species complex.


Assuntos
Especiação Genética , Variação Genética , Tartarugas/genética , Animais , DNA Mitocondrial , Genoma , Repetições de Microssatélites , Polimorfismo de Nucleotídeo Único , Tartarugas/classificação
13.
Mol Ecol ; 24(4): 798-811, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25580953

RESUMO

The evolution of locally adapted phenotypes among populations that experience divergent selective pressures is a central mechanism for generating and maintaining biodiversity. Recently, the advent of high-throughput DNA sequencing technology has provided tools for investigating the genetic basis of this process in natural populations of nonmodel organisms. Kokanee, the freshwater form of sockeye salmon (Oncorhynchus nerka), occurs as two reproductive ecotypes, which differ in spawning habitat (tributaries vs. shorelines); however, outside of the spawning season the two ecotypes co-occur in many lakes and lack diagnostic morphological characteristics. We used restriction site-associated DNA (RAD) sequencing to identify 6145 SNPs and genotype kokanee from multiple spawning sites in Okanagan Lake (British Columbia, Canada). Outlier tests revealed 18 loci putatively under divergent selection between ecotypes, all of which exhibited temporally stable allele frequencies within ecotypes. Six outliers were annotated to sequences in the NCBI database, two of which matched genes associated with early development. There was no evidence for neutral genetic differentiation; however, outlier loci demonstrated significant structure with respect to ecotype and had high assignment accuracy in mixed composition simulations. The absence of neutral structure combined with a small number of highly divergent outlier loci is consistent with theoretical predictions for the early stages of ecological divergence. These outlier loci were then applied to a realistic fisheries scenario in which additional RAD sequencing was used to genotype kokanee collected by trawl in Okanagan Lake, providing preliminary evidence that this approach may be an effective tool for conservation and management.


Assuntos
Evolução Biológica , Variação Genética , Genética Populacional , Salmão/genética , Seleção Genética , Animais , Teorema de Bayes , Colúmbia Britânica , Ecótipo , Sequenciamento de Nucleotídeos em Larga Escala , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
14.
Mol Ecol ; 24(9): 2164-76, 2015 05.
Artigo em Inglês | MEDLINE | ID: mdl-25873354

RESUMO

While genetic diversity is hypothesized to be an important factor explaining invasion success, there is no consensus yet on how variation in source populations or demographic processes affects invasiveness. We used mitochondrial DNA haplotypic and microsatellite genotypic data to investigate levels of genetic variation and reconstruct the history of replicate invasions on three continents in a globally invasive bird, the monk parakeet (Myiopsitta monachus). We evaluated whether genetic diversity at invasive sites could be explained by (i) the native source populations from which they were derived and (ii) demographic bottlenecks during introduction. Genetic data indicated a localized source area for most sampled invasive populations, with limited evidence for admixing of native source populations. This pattern largely coincides with historical data on pet trade exports. However, the invasive populations are genetically more similar than predicted from the export data alone. The extent of bottleneck effects varied among invasive populations. The observed low genetic diversity, evidence of demographic contraction and restricted source area do not support the hypothesis that invasion is favoured by the mixing and recombining of genetic variation from multiple source populations. Instead, they suggest that reduced genetic variation through random processes may not inhibit successful establishment and invasion in this species. However, convergent selection across invasive sites could also explain the observed patterns of reduction and similarity in genetic variation and/or the restricted source area. In general, the alternative explanation of intraspecific variation in invasive potential among genotypes or geographic areas is neglected, but warrants more attention as it could inform comparative studies and management of biological invaders.


Assuntos
Variação Genética , Genética Populacional , Espécies Introduzidas , Periquitos/genética , Animais , DNA Mitocondrial/genética , Geografia , Haplótipos , Repetições de Microssatélites , Dados de Sequência Molecular , Seleção Genética , Análise de Sequência de DNA
15.
J Hered ; 106 Suppl 1: 573-9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26245792

RESUMO

Captive breeding is a widespread conservation strategy, yet such programs rarely include empirical genetic data for assessing management assumptions and meeting conservation goals. Cuban Amazon parrots (Amazona leucocephala) are considered vulnerable, and multiple on-island captive populations have been established from wild-caught and confiscated individuals of unknown ancestry. Here, we used mitochondrial haplotypic and nuclear genotypic data at 9 microsatellite loci to quantify the extent and distribution of genetic variation within and among captive populations in Zapata Swamp and Managua, Cuba, and to estimate kinship among breeders (n = 88). Using Bayesian clustering analysis, we detected 2 distinct clusters within the Zapata population, one of which was shared with Managua. Individuals from the cluster unique to Zapata possessed mitochondrial haplotypes with affinities to Cuban subspecies (A. l. leucocephala, A. l. palmarum); the shared cluster was similar, but also included haplotypes closely related to the subspecies restricted to Cayman Brac (A. l. hesterna). Overall mean kinship was low within each captive population (-0.026 to -0.012), with 19 and 11 recommended breeding pairs in Zapata and Managua, respectively, ranked according to mean kinship and informed by molecular sexing. Our results highlight the importance of understanding population history within ex situ management programs, while providing genetic information to directly inform Cuban parrot conservation.


Assuntos
Amazona/genética , Cruzamento , Conservação dos Recursos Naturais/métodos , Variação Genética , Genética Populacional , Animais , Teorema de Bayes , Cuba , DNA Mitocondrial/genética , Haplótipos , Repetições de Microssatélites , Análise de Sequência de DNA
16.
Mol Ecol ; 23(21): 5276-90, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25223395

RESUMO

Although many classic radiations on islands are thought to be the result of repeated lineage splitting, the role of past fusion is rarely known because during these events, purebreds are rapidly replaced by a swarm of admixed individuals. Here, we capture lineage fusion in action in a Galápagos giant tortoise species, Chelonoidis becki, from Wolf Volcano (Isabela Island). The long generation time of Galápagos tortoises and dense sampling (841 individuals) of genetic and demographic data were integral in detecting and characterizing this phenomenon. In C. becki, we identified two genetically distinct, morphologically cryptic lineages. Historical reconstructions show that they colonized Wolf Volcano from Santiago Island in two temporally separated events, the first estimated to have occurred ~199 000 years ago. Following arrival of the second wave of colonists, both lineages coexisted for approximately ~53 000 years. Within that time, they began fusing back together, as microsatellite data reveal widespread introgressive hybridization. Interestingly, greater mate selectivity seems to be exhibited by purebred females of one of the lineages. Forward-in-time simulations predict rapid extinction of the early arriving lineage. This study provides a rare example of reticulate evolution in action and underscores the power of population genetics for understanding the past, present and future consequences of evolutionary phenomena associated with lineage fusion.


Assuntos
Evolução Molecular , Pool Gênico , Genética Populacional , Tartarugas/genética , Animais , DNA Mitocondrial/genética , Equador , Feminino , Variação Genética , Hibridização Genética , Ilhas , Repetições de Microssatélites , Modelos Genéticos , Análise de Sequência de DNA , Tartarugas/classificação
17.
Sci Rep ; 14(1): 8568, 2024 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-38609461

RESUMO

Improved understanding of the genetic basis of adaptation to climate change is necessary for maintaining global biodiversity moving forward. Studies to date have largely focused on sequence variation, yet there is growing evidence that suggests that changes in genome structure may be an even more significant source of adaptive potential. The American pika (Ochotona princeps) is an alpine specialist that shows some evidence of adaptation to climate along elevational gradients, but previous work has been limited to single nucleotide polymorphism based analyses within a fraction of the species range. Here, we investigated the role of copy number variation underlying patterns of local adaptation in the American pika using genome-wide data previously collected across the entire species range. We identified 37-193 putative copy number variants (CNVs) associated with environmental variation (temperature, precipitation, solar radiation) within each of the six major American pika lineages, with patterns of divergence largely following elevational and latitudinal gradients. Genes associated (n = 158) with independent annotations across lineages, variables, and/or CNVs had functions related to mitochondrial structure/function, immune response, hypoxia, olfaction, and DNA repair. Some of these genes have been previously linked to putative high elevation and/or climate adaptation in other species, suggesting they may serve as important targets in future studies.


Assuntos
Variações do Número de Cópias de DNA , Lagomorpha , Estados Unidos , Animais , Biodiversidade , Mudança Climática , Reparo do DNA , Lagomorpha/genética
18.
BMC Genom Data ; 25(1): 53, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844844

RESUMO

OBJECTIVES: The new data provide an important genomic resource for the Critically Endangered Cuban crocodile (Crocodylus rhombifer). Cuban crocodiles are restricted to the Zapata Swamp in southern Matanzas Province, Cuba, and readily hybridize with the widespread American crocodile (Crocodylus acutus) in areas of sympatry. The reported de novo assembly will contribute to studies of crocodylian evolutionary history and provide a resource for informing Cuban crocodile conservation. DATA DESCRIPTION: The final 2.2 Gb draft genome for C. rhombifer consists of 41,387 scaffolds (contigs: N50 = 104.67 Kb; scaffold: N50-518.55 Kb). Benchmarking Universal Single-Copy Orthologs (BUSCO) identified 92.3% of the 3,354 genes in the vertebrata_odb10 database. Approximately 42% of the genome (960Mbp) comprises repeat elements. We predicted 30,138 unique protein-coding sequences (17,737 unique genes) in the genome assembly. Functional annotation found the top Gene Ontology annotations for Biological Processes, Molecular Function, and Cellular Component were regulation, protein, and intracellular, respectively. This assembly will support future macroevolutionary, conservation, and molecular studies of the Cuban crocodile.


Assuntos
Jacarés e Crocodilos , Genoma , Anotação de Sequência Molecular , Jacarés e Crocodilos/genética , Animais , Genoma/genética , Cuba , Genômica/métodos
19.
Ecol Evol ; 14(2): e10934, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38333095

RESUMO

Genetic tools for wildlife monitoring can provide valuable information on spatiotemporal population trends and connectivity, particularly in systems experiencing rapid environmental change. Multiplexed targeted amplicon sequencing techniques, such as genotyping-in-thousands by sequencing (GT-seq), can provide cost-effective approaches for collecting genetic data from low-quality and quantity DNA samples, making them potentially useful for long-term wildlife monitoring using non-invasive and archival samples. Here, we developed a GT-seq panel as a potential monitoring tool for the American pika (Ochotona princeps) and evaluated its performance when applied to traditional, non-invasive, and archival samples, respectively. Specifically, we optimized a GT-seq panel (307 single nucleotide polymorphisms (SNPs)) that included neutral, sex-associated, and putatively adaptive SNPs using contemporary tissue samples (n = 77) from the Northern Rocky Mountains lineage of American pikas. The panel demonstrated high genotyping success (94.7%), low genotyping error (0.001%), and excellent performance identifying individuals, sex, relatedness, and population structure. We subsequently applied the GT-seq panel to archival tissue (n = 17) and contemporary fecal pellet samples (n = 129) collected within the Canadian Rocky Mountains to evaluate its effectiveness. Although the panel demonstrated high efficacy with archival tissue samples (90.5% genotyping success, 0.0% genotyping error), this was not the case for the fecal pellet samples (79.7% genotyping success, 28.4% genotyping error) likely due to the exceptionally low quality/quantity of recovered DNA using the approaches implemented. Overall, our study reinforced GT-seq as an effective tool using contemporary and archival tissue samples, providing future opportunities for temporal applications using historical specimens. Our results further highlight the need for additional optimization of sample and genetic data collection techniques prior to broader-scale implementation of a non-invasive genetic monitoring tool for American pikas.

20.
Evol Appl ; 17(2): e13602, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38343776

RESUMO

Understanding the adaptive potential of populations and species is pivotal for minimizing the loss of biodiversity in this era of rapid climate change. Adaptive potential has been estimated in various ways, including based on levels of standing genetic variation, presence of potentially beneficial alleles, and/or the severity of environmental change. Kokanee salmon, the non-migratory ecotype of sockeye salmon (Oncorhynchus nerka), is culturally and economically important and has already been impacted by the effects of climate change. To assess its climate vulnerability moving forward, we integrated analyses of standing genetic variation, genotype-environment associations, and climate modeling based on sequence and structural genomic variation from 224 whole genomes sampled from 22 lakes in British Columbia and Yukon (Canada). We found that variables for extreme temperatures, particularly warmer temperatures, had the most pervasive signature of selection in the genome and were the strongest predictors of levels of standing variation and of putatively adaptive genomic variation, both sequence and structural. Genomic offset estimates, a measure of climate vulnerability, were significantly correlated with higher increases in extreme warm temperatures, further highlighting the risk of summer heat waves that are predicted to increase in frequency in the future. Levels of standing genetic variation, an important metric for population viability and resilience, were not correlated with genomic offset. Nonetheless, our combined approach highlights the importance of integrating different sources of information and genomic data to formulate more comprehensive and accurate predictions on the vulnerability of populations and species to future climate change.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA