Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Immunol ; 2024 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-39451041

RESUMO

Staphylococcus aureus is the major cause of healthcare-associated infections, including life-threatening conditions as bacteremia, endocarditis, and implant-associated infections. Despite adequate antibiotic treatment, the mortality of S. aureus bacteremia remains high. This calls for different strategies to treat this infection. In past years, sequencing of Ab repertoires from individuals previously exposed to a pathogen emerged as a successful method to discover novel therapeutic monoclonal Abs and understand circulating B cell diversity during infection. In this paper, we collected peripheral blood from 17 S. aureus bacteremia patients to study circulating plasmablast responses. Using single-cell transcriptome gene expression combined with sequencing of variable heavy and light Ig genes, we retrieved sequences from >400 plasmablasts revealing a high diversity with >300 unique variable heavy and light sequences. More than 200 variable sequences were synthesized to produce recombinant IgGs that were analyzed for binding to S. aureus whole bacterial cells. This revealed four novel monoclonal Abs that could specifically bind to the surface of S. aureus in the absence of Ig-binding surface SpA. Interestingly, three of four mAbs showed cross-reactivity with Staphylococcus epidermidis. Target identification revealed that the S. aureus-specific mAb BC153 targets wall teichoic acid, whereas cross-reactive mAbs BC019, BC020, and BC021 target lipoteichoic acid. All mAbs could induce Fc-dependent phagocytosis of staphylococci by human neutrophils. Altogether, we characterize the active B cell responses to S. aureus in infected patients and identify four functional mAbs against the S. aureus surface, of which three cross-react with S. epidermidis.

2.
J Biol Chem ; 299(8): 104956, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37356719

RESUMO

The human complement system plays a crucial role in immune defense. However, its erroneous activation contributes to many serious inflammatory diseases. Since most unwanted complement effector functions result from C5 cleavage into C5a and C5b, development of C5 inhibitors, such as clinically approved monoclonal antibody eculizumab, are of great interest. Here, we developed and characterized two anti-C5 nanobodies, UNbC5-1 and UNbC5-2. Using surface plasmon resonance, we determined a binding affinity of 119.9 pM for UNbC5-1 and 7.7 pM for UNbC5-2. Competition experiments determined that the two nanobodies recognize distinct epitopes on C5. Both nanobodies efficiently interfered with C5 cleavage in a human serum environment, as they prevented red blood cell lysis via membrane attack complexes (C5b-9) and the formation of chemoattractant C5a. The cryo-EM structure of UNbC5-1 and UNbC5-2 in complex with C5 (3.6 Å resolution) revealed that the binding interfaces of UNbC5-1 and UNbC5-2 overlap with known complement inhibitors eculizumab and RaCI3, respectively. UNbC5-1 binds to the MG7 domain of C5, facilitated by a hydrophobic core and polar interactions, and UNbC5-2 interacts with the C5d domain mostly by salt bridges and hydrogen bonds. Interestingly, UNbC5-1 potently binds and inhibits C5 R885H, a genetic variant of C5 that is not recognized by eculizumab. Altogether, we identified and characterized two different, high affinity nanobodies against human C5. Both nanobodies could serve as diagnostic and/or research tools to detect C5 or inhibit C5 cleavage. Furthermore, the residues targeted by UNbC5-1 hold important information for therapeutic inhibition of different polymorphic variants of C5.


Assuntos
Anticorpos Monoclonais , Complemento C5 , Anticorpos de Domínio Único , Humanos , Ativação do Complemento , Complemento C5/antagonistas & inibidores , Complemento C5/genética , Complexo de Ataque à Membrana do Sistema Complemento , Proteínas do Sistema Complemento/metabolismo
4.
J Immunol ; 208(9): 2207-2219, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35428691

RESUMO

Cleavage of the mammalian plasma protein C4 into C4b initiates opsonization, lysis, and clearance of microbes and damaged host cells by the classical and lectin pathways of the complement system. Dysregulated activation of C4 and other initial components of the classical pathway may cause or aggravate pathologies, such as systemic lupus erythematosus, Alzheimer disease, and schizophrenia. Modulating the activity of C4b by small-molecule or protein-based inhibitors may represent a promising therapeutic approach for preventing excessive inflammation and damage to host cells and tissue. Here, we present seven nanobodies, derived from llama (Lama glama) immunization, that bind to human C4b (Homo sapiens) with high affinities ranging from 3.2 nM to 14 pM. The activity of the nanobodies varies from no to complete inhibition of the classical pathway. The inhibiting nanobodies affect different steps in complement activation, in line with blocking sites for proconvertase formation, C3 substrate binding to the convertase, and regulator-mediated inactivation of C4b. For four nanobodies, we determined single-particle cryo-electron microscopy structures in complex with C4b at 3.4-4 Å resolution. The structures rationalize the observed functional effects of the nanobodies and define their mode of action during complement activation. Thus, we characterized seven anti-C4b nanobodies with diverse effects on the classical pathway of complement activation that may be explored for imaging, diagnostic, or therapeutic applications.


Assuntos
Complemento C4b , Anticorpos de Domínio Único , Animais , Ativação do Complemento , Convertases de Complemento C3-C5/metabolismo , Microscopia Crioeletrônica , Humanos , Mamíferos
5.
Proc Natl Acad Sci U S A ; 118(26)2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34155115

RESUMO

Complement is an important effector mechanism for antibody-mediated clearance of infections and tumor cells. Upon binding to target cells, the antibody's constant (Fc) domain recruits complement component C1 to initiate a proteolytic cascade that generates lytic pores and stimulates phagocytosis. The C1 complex (C1qr2s2) consists of the large recognition protein C1q and a heterotetramer of proteases C1r and C1s (C1r2s2). While interactions between C1 and IgG-Fc are believed to be mediated by the globular heads of C1q, we here find that C1r2s2 proteases affect the capacity of C1q to form an avid complex with surface-bound IgG molecules (on various 2,4-dinitrophenol [DNP]-coated surfaces and pathogenic Staphylococcus aureus). The extent to which C1r2s2 contributes to C1q-IgG stability strongly differs between human IgG subclasses. Using antibody engineering of monoclonal IgG, we reveal that hexamer-enhancing mutations improve C1q-IgG stability, both in the absence and presence of C1r2s2 In addition, hexamer-enhanced IgGs targeting S. aureus mediate improved complement-dependent phagocytosis by human neutrophils. Altogether, these molecular insights into complement binding to surface-bound IgGs could be important for optimal design of antibody therapies.


Assuntos
Membrana Celular/metabolismo , Complemento C1q/metabolismo , Complemento C1r/metabolismo , Complemento C1s/metabolismo , Imunoglobulina G/metabolismo , Ativação do Complemento , Humanos , Microscopia de Força Atômica , Mutação/genética , Fagocitose , Ligação Proteica , Multimerização Proteica , Estabilidade Proteica , Staphylococcus aureus/imunologia
6.
EMBO J ; 38(4)2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30643019

RESUMO

The immune system kills bacteria by the formation of lytic membrane attack complexes (MACs), triggered when complement enzymes cleave C5. At present, it is not understood how the MAC perturbs the composite cell envelope of Gram-negative bacteria. Here, we show that the role of C5 convertase enzymes in MAC assembly extends beyond the cleavage of C5 into the MAC precursor C5b. Although purified MAC complexes generated from preassembled C5b6 perforate artificial lipid membranes and mammalian cells, these components lack bactericidal activity. In order to permeabilize both the bacterial outer and inner membrane and thus kill a bacterium, MACs need to be assembled locally by the C5 convertase enzymes. Our data indicate that C5b6 rapidly loses the capacity to form bactericidal pores; therefore, bacterial killing requires both in situ conversion of C5 and immediate insertion of C5b67 into the membrane. Using flow cytometry and atomic force microscopy, we show that local assembly of C5b6 at the bacterial surface is required for the efficient insertion of MAC pores into bacterial membranes. These studies provide basic molecular insights into MAC assembly and bacterial killing by the immune system.


Assuntos
Atividade Bactericida do Sangue , Membrana Celular/metabolismo , Convertases de Complemento C3-C5/metabolismo , Complexo de Ataque à Membrana do Sistema Complemento/metabolismo , Bactérias Gram-Negativas/crescimento & desenvolvimento , Hemólise , Permeabilidade da Membrana Celular , Ativação do Complemento , Bactérias Gram-Negativas/metabolismo , Humanos
7.
PLoS Pathog ; 17(11): e1010051, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34752492

RESUMO

Complement proteins can form membrane attack complex (MAC) pores that directly kill Gram-negative bacteria. MAC pores assemble by stepwise binding of C5b, C6, C7, C8 and finally C9, which can polymerize into a transmembrane ring of up to 18 C9 monomers. It is still unclear if the assembly of a polymeric-C9 ring is necessary to sufficiently damage the bacterial cell envelope to kill bacteria. In this paper, polymerization of C9 was prevented without affecting binding of C9 to C5b-8, by locking the first transmembrane helix domain of C9. Using this system, we show that polymerization of C9 strongly enhanced damage to both the bacterial outer and inner membrane, resulting in more rapid killing of several Escherichia coli and Klebsiella strains in serum. By comparing binding of wildtype and 'locked' C9 by flow cytometry, we also show that polymerization of C9 is impaired when the amount of available C9 per C5b-8 is limited. This suggests that an excess of C9 is required to efficiently form polymeric-C9. Finally, we show that polymerization of C9 was impaired on complement-resistant E. coli strains that survive killing by MAC pores. This suggests that these bacteria can specifically block polymerization of C9. All tested complement-resistant E. coli expressed LPS O-antigen (O-Ag), compared to only one out of four complement-sensitive E. coli. By restoring O-Ag expression in an O-Ag negative strain, we show that the O-Ag impairs polymerization of C9 and results in complement-resistance. Altogether, these insights are important to understand how MAC pores kill bacteria and how bacterial pathogens can resist MAC-dependent killing.


Assuntos
Atividade Bactericida do Sangue , Parede Celular/patologia , Complemento C9/química , Complexo de Ataque à Membrana do Sistema Complemento/farmacologia , Escherichia coli/crescimento & desenvolvimento , Klebsiella/crescimento & desenvolvimento , Polimerização , Parede Celular/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/microbiologia , Humanos , Klebsiella/efeitos dos fármacos , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/microbiologia
8.
PLoS Pathog ; 16(6): e1008606, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32569291

RESUMO

An important effector function of the human complement system is to directly kill Gram-negative bacteria via Membrane Attack Complex (MAC) pores. MAC pores are assembled when surface-bound convertase enzymes convert C5 into C5b, which together with C6, C7, C8 and multiple copies of C9 forms a transmembrane pore that damages the bacterial cell envelope. Recently, we found that bacterial killing by MAC pores requires local conversion of C5 by surface-bound convertases. In this study we aimed to understand why local assembly of MAC pores is essential for bacterial killing. Here, we show that rapid interaction of C7 with C5b6 is required to form bactericidal MAC pores on Escherichia coli. Binding experiments with fluorescently labelled C6 show that C7 prevents release of C5b6 from the bacterial surface. Moreover, trypsin shaving experiments and atomic force microscopy revealed that this rapid interaction between C7 and C5b6 is crucial to efficiently anchor C5b-7 to the bacterial cell envelope and form complete MAC pores. Using complement-resistant clinical E. coli strains, we show that bacterial pathogens can prevent complement-dependent killing by interfering with the anchoring of C5b-7. While C5 convertase assembly was unaffected, these resistant strains blocked efficient anchoring of C5b-7 and thus prevented stable insertion of MAC pores into the bacterial cell envelope. Altogether, these findings provide basic molecular insights into how bactericidal MAC pores are assembled and how bacteria evade MAC-dependent killing.


Assuntos
Atividade Bactericida do Sangue , Membrana Celular/metabolismo , Parede Celular/metabolismo , Complemento C5/metabolismo , Complexo de Ataque à Membrana do Sistema Complemento/metabolismo , Escherichia coli/metabolismo , Proteínas do Sistema Complemento/metabolismo , Células HEK293 , Humanos
9.
Nat Immunol ; 10(7): 721-7, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19503103

RESUMO

Activation of the complement system generates potent chemoattractants and leads to the opsonization of cells for immune clearance. Short-lived protease complexes cleave complement component C3 into anaphylatoxin C3a and opsonin C3b. Here we report the crystal structure of the C3 convertase formed by C3b and the protease fragment Bb, which was stabilized by the bacterial immune-evasion protein SCIN. The data suggest that the proteolytic specificity and activity depend on the formation of dimers of C3 with C3b of the convertase. SCIN blocked the formation of a productive enzyme-substrate complex. Irreversible dissociation of the complex of C3b and Bb is crucial to complement regulation and was determined by slow binding kinetics of the Mg(2+)-adhesion site in Bb. Understanding the mechanistic basis of the central complement-activation step and microbial immune evasion strategies targeting this step will aid in the development of complement therapeutics.


Assuntos
Proteínas de Bactérias/química , C3 Convertase da Via Alternativa do Complemento/química , Proteínas Inativadoras do Complemento/química , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Catálise , Domínio Catalítico , Complemento C3/química , Complemento C3/metabolismo , C3 Convertase da Via Alternativa do Complemento/metabolismo , Convertases de Complemento C3-C5/química , Convertases de Complemento C3-C5/metabolismo , Complemento C3b/química , Complemento C3b/metabolismo , Proteínas Inativadoras do Complemento/imunologia , Proteínas Inativadoras do Complemento/metabolismo , Via Alternativa do Complemento/imunologia , Cristalografia por Raios X , Humanos , Cinética , Modelos Moleculares , Ligação Proteica , Multimerização Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Staphylococcus aureus/química , Staphylococcus aureus/imunologia , Staphylococcus aureus/metabolismo , Especificidade por Substrato , Ressonância de Plasmônio de Superfície
10.
J Biol Chem ; 293(12): 4468-4477, 2018 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-29414776

RESUMO

Staphylococcus aureus is a versatile pathogen capable of causing a broad range of diseases in many different hosts. S. aureus can adapt to its host through modification of its genome (e.g. by acquisition and exchange of mobile genetic elements that encode host-specific virulence factors). Recently, the prophage φSaeq1 was discovered in S. aureus strains from six different clonal lineages almost exclusively isolated from equids. Within this phage, we discovered a novel variant of staphylococcal complement inhibitor (SCIN), a secreted protein that interferes with activation of the human complement system, an important line of host defense. We here show that this equine variant of SCIN, eqSCIN, is a potent blocker of equine complement system activation and subsequent phagocytosis of bacteria by phagocytes. Mechanistic studies indicate that eqSCIN blocks equine complement activation by specific inhibition of the C3 convertase enzyme (C3bBb). Whereas SCIN-A from human S. aureus isolates exclusively inhibits human complement, eqSCIN represents the first animal-adapted SCIN variant that functions in a broader range of hosts (horses, humans, and pigs). Binding analyses suggest that the human-specific activity of SCIN-A is related to amino acid differences on both sides of the SCIN-C3b interface. These data suggest that modification of this phage-encoded complement inhibitor plays a role in the host adaptation of S. aureus and are important to understand how this pathogen transfers between different hosts.


Assuntos
Convertases de Complemento C3-C5/metabolismo , Complemento C3b/antagonistas & inibidores , Proteínas Inativadoras do Complemento/metabolismo , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/metabolismo , Fatores de Virulência/metabolismo , Animais , Complemento C3b/metabolismo , Proteínas Inativadoras do Complemento/química , Hemólise , Cavalos , Especificidade de Hospedeiro , Humanos , Fagocitose , Ligação Proteica , Infecções Estafilocócicas/metabolismo , Staphylococcus aureus/isolamento & purificação , Suínos , Fatores de Virulência/química
11.
Proc Natl Acad Sci U S A ; 111(36): 13187-92, 2014 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-25161283

RESUMO

Neutrophils are indispensable for clearing infections with the prominent human pathogen Staphylococcus aureus. Here, we report that S. aureus secretes a family of proteins that potently inhibits the activity of neutrophil serine proteases (NSPs): neutrophil elastase (NE), proteinase 3, and cathepsin G. The NSPs, but not related serine proteases, are specifically blocked by the extracellular adherence protein (Eap) and the functionally orphan Eap homologs EapH1 and EapH2, with inhibitory-constant values in the low-nanomolar range. Eap proteins are together essential for NSP inhibition by S. aureus in vitro and promote staphylococcal infection in vivo. The crystal structure of the EapH1/NE complex showed that Eap molecules constitute a unique class of noncovalent protease inhibitors that occlude the catalytic cleft of NSPs. These findings increase our insights into the complex pathogenesis of S. aureus infections and create opportunities to design novel treatment strategies for inflammatory conditions related to excessive NSP activity.


Assuntos
Neutrófilos/metabolismo , Inibidores de Serina Proteinase/metabolismo , Staphylococcus aureus/metabolismo , Animais , Aderência Bacteriana , Proteínas de Bactérias/metabolismo , Biocatálise , Espaço Extracelular/metabolismo , Feminino , Humanos , Elastase de Leucócito/antagonistas & inibidores , Elastase de Leucócito/metabolismo , Camundongos Endogâmicos C57BL , Modelos Moleculares , Infecções Estafilocócicas/patologia
12.
EMBO J ; 31(17): 3607-19, 2012 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-22850671

RESUMO

The CXC chemokine receptor 2 (CXCR2) on neutrophils, which recognizes chemokines produced at the site of infection, plays an important role in antimicrobial host defenses such as neutrophil activation and chemotaxis. Staphylococcus aureus is a successful human pathogen secreting a number of proteolytic enzymes, but their influence on the host immune system is not well understood. Here, we identify the cysteine protease Staphopain A as a chemokine receptor blocker. Neutrophils treated with Staphopain A are unresponsive to activation by all unique CXCR2 chemokines due to cleavage of the N-terminal domain, which can be neutralized by specific protease inhibitors. Moreover, Staphopain A inhibits neutrophil migration towards CXCR2 chemokines. By comparing a methicillin-resistant S. aureus (MRSA) strain with an isogenic Staphopain A mutant, we demonstrate that Staphopain A is the only secreted protease with activity towards CXCR2. Although the inability to cleave murine CXCR2 limits in-vivo studies, our data indicate that Staphopain A is an important immunomodulatory protein that blocks neutrophil recruitment by specific cleavage of the N-terminal domain of human CXCR2.


Assuntos
Proteínas de Bactérias/imunologia , Cisteína Endopeptidases/imunologia , Neutrófilos/imunologia , Receptores de Interleucina-8B/imunologia , Animais , Células Cultivadas , Quimiotaxia de Leucócito/imunologia , Feminino , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Ativação de Neutrófilo/imunologia , Infiltração de Neutrófilos/imunologia , Receptores de Interleucina-8B/antagonistas & inibidores , Células U937
13.
Microbiology (Reading) ; 162(7): 1185-1194, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27112346

RESUMO

Staphylococcus aureus has developed many mechanisms to escape from human immune responses. To resist phagocytic clearance, S. aureus expresses a polysaccharide capsule, which effectively masks the bacterial surface and surface-associated proteins, such as opsonins, from recognition by phagocytic cells. Additionally, secretion of the extracellular fibrinogen binding protein (Efb) potently blocks phagocytic uptake of the pathogen. Efb creates a fibrinogen shield surrounding the bacteria by simultaneously binding complement C3b and fibrinogen at the bacterial surface. By means of neutrophil phagocytosis assays with fluorescently labelled encapsulated serotype 5 (CP5) and serotype 8 (CP8) strains we compare the immune-modulating function of these shielding mechanisms. The data indicate that, in highly encapsulated S. aureus strains, the polysaccharide capsule is able to prevent phagocytic uptake at plasma concentrations <10 %, but loses its protective ability at higher concentrations of plasma. Interestingly, Efb shows a strong inhibitory effect on both capsule-negative and encapsulated strains at all tested plasma concentrations. Furthermore, the results suggest that both shielding mechanisms can exist simultaneously and collaborate to provide optimal protection against phagocytosis at a broad range of plasma concentrations. As opsonizing antibodies will be shielded from recognition by either mechanism, incorporating both capsular polysaccharides and Efb in future vaccines could be of great importance.


Assuntos
Cápsulas Bacterianas/metabolismo , Proteínas de Bactérias/metabolismo , Fibrinogênio/metabolismo , Neutrófilos/imunologia , Fagocitose/imunologia , Polissacarídeos Bacterianos/metabolismo , Staphylococcus aureus/imunologia , Anticorpos Antibacterianos/imunologia , Complemento C3b/metabolismo , Corantes Fluorescentes , Humanos , Imunomodulação/imunologia , Microscopia Confocal , Proteínas Opsonizantes/metabolismo , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/patologia , Staphylococcus aureus/metabolismo
14.
J Immunol ; 193(12): 6161-6171, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25381436

RESUMO

The pathogenic bacterium Staphylococcus aureus actively evades many aspects of human innate immunity by expressing a series of small inhibitory proteins. A number of these proteins inhibit the complement system, which labels bacteria for phagocytosis and generates inflammatory chemoattractants. Although the majority of staphylococcal complement inhibitors act on the alternative pathway to block the amplification loop, only a few proteins act on the initial recognition cascades that constitute the classical pathway (CP) and lectin pathway (LP). We screened a collection of recombinant, secreted staphylococcal proteins to determine whether S. aureus produces other molecules that inhibit the CP and/or LP. Using this approach, we identified the extracellular adherence protein (Eap) as a potent, specific inhibitor of both the CP and LP. We found that Eap blocked CP/LP-dependent activation of C3, but not C4, and that Eap likewise inhibited deposition of C3b on the surface of S. aureus cells. In turn, this significantly diminished the extent of S. aureus opsonophagocytosis and killing by neutrophils. This combination of functional properties suggested that Eap acts specifically at the level of the CP/LP C3 convertase (C4b2a). Indeed, we demonstrated a direct, nanomolar-affinity interaction of Eap with C4b. Eap binding to C4b inhibited binding of both full-length C2 and its C2b fragment, which indicated that Eap disrupts formation of the CP/LP C3 proconvertase (C4b2). As a whole, our results demonstrate that S. aureus inhibits two initiation routes of complement by expression of the Eap protein, and thereby define a novel mechanism of immune evasion.


Assuntos
Proteínas de Bactérias/imunologia , Proteínas de Bactérias/metabolismo , C3 Convertase da Via Alternativa do Complemento/antagonistas & inibidores , Via Clássica do Complemento/imunologia , Lectina de Ligação a Manose da Via do Complemento/imunologia , Proteínas de Ligação a RNA/imunologia , Proteínas de Ligação a RNA/metabolismo , Staphylococcus aureus/imunologia , Staphylococcus aureus/metabolismo , Proteínas de Bactérias/química , Sítios de Ligação , Complemento C2/imunologia , Complemento C2/metabolismo , Complemento C3b/imunologia , Complemento C3b/metabolismo , Complemento C4b/imunologia , Complemento C4b/metabolismo , Citotoxicidade Imunológica , Humanos , Modelos Imunológicos , Neutrófilos/imunologia , Fagocitose/imunologia , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas de Ligação a RNA/química , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/metabolismo
15.
BMC Biol ; 13: 93, 2015 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-26552476

RESUMO

BACKGROUND: Complement is a large protein network in plasma that is crucial for human immune defenses and a major cause of aberrant inflammatory reactions. The C5 convertase is a multi-molecular protease complex that catalyses the cleavage of native C5 into its biologically important products. So far, it has been difficult to study the exact molecular arrangement of C5 convertases, because their non-catalytic subunits (C3b) are covalently linked to biological surfaces through a reactive thioester. Through development of a highly purified model system for C5 convertases, we here aim to provide insights into the surface-specific nature of these important protease complexes. RESULTS: Alternative pathway (AP) C5 convertases were generated on small streptavidin beads that were coated with purified C3b molecules. Site-specific biotinylation of C3b via the thioester allowed binding of C3b in the natural orientation on the surface. In the presence of factor B and factor D, these C3b beads could effectively convert C5. Conversion rates of surface-bound C3b were more than 100-fold higher than fluid-phase C3b, confirming the requirement of a surface. We determine that high surface densities of C3b, and its attachment via the thioester, are essential for C5 convertase formation. Combining our results with molecular modeling explains how high C3b densities may facilitate intermolecular interactions that only occur on target surfaces. Finally, we define two interfaces on C5 important for its recognition by surface-bound C5 convertases. CONCLUSIONS: We establish a highly purified model that mimics the natural arrangement of C5 convertases on a surface. The developed model and molecular insights are essential to understand the molecular basis of deregulated complement activity in human disease and will facilitate future design of therapeutic interventions against these critical enzymes in inflammation.


Assuntos
Complemento C3b/metabolismo , C5 Convertase da Via Alternativa do Complemento/química , Catálise , C5 Convertase da Via Alternativa do Complemento/metabolismo , Humanos , Cinética , Microesferas , Modelos Químicos , Estreptavidina/química
16.
J Immunol ; 188(1): 386-93, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-22131330

RESUMO

The complement system rapidly detects and kills Gram-negative bacteria and supports bacterial killing by phagocytes. However, bacterial pathogens exploit several strategies to evade detection by the complement system. The alkaline protease (AprA) of Pseudomonas aeruginosa has been associated with bacterial virulence and is known to interfere with complement-mediated lysis of erythrocytes, but its exact role in bacterial complement escape is unknown. In this study, we analyzed how AprA interferes with complement activation and whether it could block complement-dependent neutrophil functions. We found that AprA potently blocked phagocytosis and killing of Pseudomonas by human neutrophils. Furthermore, AprA inhibited opsonization of bacteria with C3b and the formation of the chemotactic agent C5a. AprA specifically blocked C3b deposition via the classical and lectin pathways, whereas the alternative pathway was not affected. Serum degradation assays revealed that AprA degrades both human C1s and C2. However, repletion assays demonstrated that the mechanism of action for complement inhibition is cleavage of C2. In summary, we showed that P. aeruginosa AprA interferes with classical and lectin pathway-mediated complement activation via cleavage of C2.


Assuntos
Proteínas de Bactérias/imunologia , Exopeptidases/imunologia , Neutrófilos/imunologia , Infecções por Pseudomonas/imunologia , Pseudomonas aeruginosa/imunologia , Pseudomonas aeruginosa/patogenicidade , Fatores de Virulência/imunologia , Proteínas de Bactérias/metabolismo , Complemento C2/imunologia , Complemento C2/metabolismo , Complemento C3b/imunologia , Complemento C3b/metabolismo , Complemento C5a/imunologia , Complemento C5a/metabolismo , Lectina de Ligação a Manose da Via do Complemento , Exopeptidases/metabolismo , Humanos , Evasão da Resposta Imune , Neutrófilos/metabolismo , Fagocitose/imunologia , Infecções por Pseudomonas/enzimologia , Pseudomonas aeruginosa/enzimologia , Fatores de Virulência/metabolismo
17.
Nat Commun ; 15(1): 8100, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39285158

RESUMO

Antibody-dependent complement activation plays a key role in the natural human immune response to infections. Currently, the understanding of which antibody-antigen combinations drive a potent complement response on bacteria is limited. Here, we develop an antigen-agnostic approach to stain and single-cell sort human IgG memory B cells recognizing intact bacterial cells, keeping surface antigens in their natural context. With this method we successfully identified 29 antibodies against K. pneumoniae, a dominant cause of hospital-acquired infections with increasing antibiotic resistance. Combining genetic tools and functional analyses, we reveal that the capacity of antibodies to activate complement on K. pneumoniae critically depends on their antigenic target. Furthermore, we find that antibody combinations can synergistically activate complement on K. pneumoniae by strengthening each other's binding in an Fc-independent manner. Understanding the molecular basis of effective complement activation by antibody combinations to mimic a polyclonal response could accelerate the development of antibody-based therapies against problematic infections.


Assuntos
Anticorpos Antibacterianos , Ativação do Complemento , Imunoglobulina G , Klebsiella pneumoniae , Humanos , Ativação do Complemento/imunologia , Anticorpos Antibacterianos/imunologia , Klebsiella pneumoniae/imunologia , Imunoglobulina G/imunologia , Linfócitos B/imunologia , Células B de Memória/imunologia
18.
J Exp Med ; 204(10): 2461-71, 2007 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-17893203

RESUMO

To combat the human immune response, bacteria should be able to divert the effectiveness of the complement system. We identify four potent complement inhibitors in Staphylococcus aureus that are part of a new immune evasion cluster. Two are homologues of the C3 convertase modulator staphylococcal complement inhibitor (SCIN) and function in a similar way as SCIN. Extracellular fibrinogen-binding protein (Efb) and its homologue extracellular complement-binding protein (Ecb) are identified as potent complement evasion molecules, and their inhibitory mechanism was pinpointed to blocking C3b-containing convertases: the alternative pathway C3 convertase C3bBb and the C5 convertases C4b2aC3b and C3b2Bb. The potency of Efb and Ecb to block C5 convertase activity was demonstrated by their ability to block C5a generation and C5a-mediated neutrophil activation in vitro. Further, Ecb blocks C5a-dependent neutrophil recruitment into the peritoneal cavity in a mouse model of immune complex peritonitis. The strong antiinflammatory properties of these novel S. aureus-derived convertase inhibitors make these compounds interesting drug candidates for complement-mediated diseases.


Assuntos
Proteínas de Bactérias/metabolismo , Convertases de Complemento C3-C5/antagonistas & inibidores , Proteínas do Sistema Complemento/metabolismo , Staphylococcus aureus/metabolismo , Fatores de Virulência/metabolismo , Animais , Proteínas de Bactérias/genética , Movimento Celular , Convertases de Complemento C3-C5/metabolismo , Proteínas do Sistema Complemento/genética , Enteropeptidase/metabolismo , Humanos , Imunidade Inata/imunologia , Inflamação/genética , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/patologia , Camundongos , Neutrófilos/citologia , Staphylococcus aureus/genética , Staphylococcus aureus/imunologia , Fatores de Virulência/genética
19.
J Immunol ; 186(11): 6445-53, 2011 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21502375

RESUMO

Complement is one of the first host defense barriers against bacteria. Activated complement attracts neutrophils to the site of infection and opsonizes bacteria to facilitate phagocytosis. The human pathogen Staphylococcus aureus has successfully developed ways to evade the complement system, for example by secretion of specific complement inhibitors. However, the influence of S. aureus proteases on the host complement system is still poorly understood. In this study, we identify the metalloprotease aureolysin as a potent complement inhibitor. Aureolysin effectively inhibits phagocytosis and killing of bacteria by neutrophils. Furthermore, we show that aureolysin inhibits the deposition of C3b on bacterial surfaces and the release of the chemoattractant C5a. Cleavage analyses show that aureolysin cleaves the central complement protein C3. Strikingly, there was a clear difference between the cleavages of C3 in serum versus purified conditions. Aureolysin cleaves purified C3 specifically in the α-chain, close to the C3 convertase cleavage site, yielding active C3a and C3b. However, in serum we observe that the aureolysin-generated C3b is further degraded by host factors. We pinpointed these factors to be factor H and factor I. Using an aureolysin mutant in S. aureus USA300, we show that aureolysin is essential and sufficient for C3 cleavage by bacterial supernatant. In short, aureolysin acts in synergy with host regulators to inactivate C3 thereby effectively dampening the host immune response.


Assuntos
Proteínas de Bactérias/imunologia , Complemento C3/imunologia , Evasão da Resposta Imune/imunologia , Metaloendopeptidases/imunologia , Infecções Estafilocócicas/imunologia , Staphylococcus aureus/imunologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Western Blotting , Ativação do Complemento/imunologia , Complemento C3/metabolismo , Convertases de Complemento C3-C5/imunologia , Convertases de Complemento C3-C5/metabolismo , Complemento C3a/imunologia , Complemento C3a/metabolismo , Complemento C3b/imunologia , Complemento C3b/metabolismo , Citotoxicidade Imunológica/imunologia , Interações Hospedeiro-Patógeno/imunologia , Humanos , Metaloendopeptidases/genética , Metaloendopeptidases/metabolismo , Mutação , Neutrófilos/imunologia , Fagocitose/imunologia , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/enzimologia , Staphylococcus aureus/fisiologia , Células U937
20.
Sci Rep ; 13(1): 274, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36609665

RESUMO

The complement system provides vital immune protection against infectious agents by labeling them with complement fragments that enhance phagocytosis by immune cells. Many details of complement-mediated phagocytosis remain elusive, partly because it is difficult to study the role of individual complement proteins on target surfaces. Here, we employ serum-free methods to couple purified complement C3b onto E. coli bacteria and beads and then expose human neutrophils to these C3b-coated targets. We examine the neutrophil response using a combination of flow cytometry, confocal microscopy, luminometry, single-live-cell/single-target manipulation, and dynamic analysis of neutrophil spreading on opsonin-coated surfaces. We show that purified C3b can potently trigger phagocytosis and killing of bacterial cells via Complement receptor 1. Comparison of neutrophil phagocytosis of C3b- versus antibody-coated beads with single-bead/single-target analysis exposes a similar cell morphology during engulfment. However, bulk phagocytosis assays of C3b-beads combined with DNA-based quenching reveal that these are poorly internalized compared to their IgG1 counterparts. Similarly, neutrophils spread slower on C3b-coated compared to IgG-coated surfaces. These observations support the requirement of multiple stimulations for efficient C3b-mediated uptake. Together, our results establish the existence of a direct pathway of phagocytic uptake of C3b-coated targets and present methodologies to study this process.


Assuntos
Complemento C3b , Neutrófilos , Humanos , Neutrófilos/metabolismo , Complemento C3b/metabolismo , Escherichia coli/metabolismo , Fagocitose , Receptores de Complemento 3b/metabolismo , Proteínas do Sistema Complemento/metabolismo , Imunoglobulina G , Receptores de Complemento/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA