Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 185(9): 1521-1538.e18, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35447071

RESUMO

Interest in harnessing natural killer (NK) cells for cancer immunotherapy is rapidly growing. However, efficacy of NK cell-based immunotherapy remains limited in most trials. Strategies to augment the killing efficacy of NK cells are thus much needed. In the current study, we found that mitochondrial apoptosis (mtApoptosis) pathway is essential for efficient NK killing, especially at physiologically relevant effector-to-target ratios. Furthermore, NK cells can prime cancer cells for mtApoptosis and mitochondrial priming status affects cancer-cell susceptibility to NK-mediated killing. Interestingly, pre-activating NK cells confers on them resistance to BH3 mimetics. Combining BH3 mimetics with NK cells synergistically kills cancer cells in vitro and suppresses tumor growth in vivo. The ideal BH3 mimetic to use in such an approach can be predicted by BH3 profiling. We herein report a rational and precision strategy to augment NK-based immunotherapy, which may be adaptable to T cell-based immunotherapies as well.


Assuntos
Imunoterapia , Células Matadoras Naturais , Neoplasias/terapia , Apoptose , Neoplasias/patologia
2.
Cell ; 160(5): 977-989, 2015 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-25723171

RESUMO

There is a lack of effective predictive biomarkers to precisely assign optimal therapy to cancer patients. While most efforts are directed at inferring drug response phenotype based on genotype, there is very focused and useful phenotypic information to be gained from directly perturbing the patient's living cancer cell with the drug(s) in question. To satisfy this unmet need, we developed the Dynamic BH3 Profiling technique to measure early changes in net pro-apoptotic signaling at the mitochondrion ("priming") induced by chemotherapeutic agents in cancer cells, not requiring prolonged ex vivo culture. We find in cell line and clinical experiments that early drug-induced death signaling measured by Dynamic BH3 Profiling predicts chemotherapy response across many cancer types and many agents, including combinations of chemotherapies. We propose that Dynamic BH3 Profiling can be used as a broadly applicable predictive biomarker to predict cytotoxic response of cancers to chemotherapeutics in vivo.


Assuntos
Morte Celular , Neoplasias/tratamento farmacológico , Transdução de Sinais , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular , Feminino , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Mitocôndrias/metabolismo , Neoplasias/patologia , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Medicina de Precisão
3.
Cell ; 151(2): 344-55, 2012 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-23063124

RESUMO

Despite decades of successful use of cytotoxic chemotherapy in acute myelogenous leukemia (AML), the biological basis for its differential success among individuals and for the existence of a therapeutic index has remained obscure. Rather than taking a genetic approach favored by many, we took a functional approach to ask how differential mitochondrial readiness for apoptosis ("priming") might explain individual variation in clinical behavior. We found that mitochondrial priming measured by BH3 profiling was a determinant of initial response to induction chemotherapy, relapse after remission, and requirement for allogeneic bone marrow transplantation. Differential priming between malignant myeloblasts and normal hematopoietic stem cells supports a mitochondrial basis to the therapeutic index for chemotherapy. BH3 profiling identified BCL-2 inhibition as a targeted strategy likely to have a useful therapeutic index. BH3 profiling refines predictive information provided by conventional biomarkers currently in use and thus may itself have utility as a clinical predictive biomarker. PAPERCLIP:


Assuntos
Apoptose , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/patologia , Mitocôndrias/fisiologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Células Precursoras de Granulócitos/metabolismo , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/patologia , Humanos , Leucemia Mieloide Aguda/terapia , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Inibidores da Topoisomerase II/uso terapêutico , Células Tumorais Cultivadas
4.
Haematologica ; 2024 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-38511268

RESUMO

Multiple Myeloma (MM) is an incurable plasma cell malignancy, that despite an unprecedented increase in overall survival, lacks truly risk-adapted or targeted treatments. A proportion of patients with MM depend on BCL-2 for survival and recently the BCL-2 antagonist venetoclax has shown clinical efficacy and safety in t(11;14) and BCL-2 overexpressing MM. However, only a small proportion of MM patients rely on BCL-2 (~20%), there is a need to broaden the patient population outside of t(11;14) that can be treated with venetoclax. Therefore, we took an unbiased screening approach and screened epigenetic modifiers to enhance venetoclax sensitivity in two non-BCL-2 dependent MM cell lines. The demethylase inhibitor 5-azacytidine was one of the lead hits from the screen, and the enhanced cell killing of the combination was confirmed in additional MM cell lines. Using dynamic BH3 profiling and immunoprecipitations we identified the potential mechanism of synergy is due to increased NOXA expression, through the integrated stress response. Knockdown of PMAIP1 or PKR partially rescues cell death of the venetoclax and 5-azacytidine combination treatment. The addition of a steroid to the combination treatment did not enhance the cell death and interestingly we found enhanced death of the immune cells with steroid addition, suggesting that a steroid-sparing regimen may be more beneficial in MM. Lastly, we show for the first time in primary MM patient samples, that 5-azacytidine enhances the response to venetoclax ex-vivo, across diverse anti-apoptotic dependencies (BCL-2 or MCL-1) and diverse cytogenetic backgrounds. Overall, our data identifies 5-azacytidine and venetoclax as an effective treatment combination and this could be a tolerable steroid-sparing regimen, particularly for elderly MM patients.

5.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34074758

RESUMO

Reactivation of p53 in established tumors typically results in one of two cell fates, cell cycle arrest or apoptosis, but it remains unclear how this cell fate is determined. We hypothesized that high mitochondrial priming prior to p53 reactivation would lead to apoptosis, while low priming would lead to survival and cell cycle arrest. Using a panel of Kras-driven, p53 restorable cell lines derived from genetically engineered mouse models of lung adenocarcinoma and sarcoma (both of which undergo cell cycle arrest upon p53 restoration), as well as lymphoma (which instead undergo apoptosis), we show that the level of mitochondrial apoptotic priming is a critical determinant of p53 reactivation outcome. Cells with high initial priming (e.g., lymphomas) lacked sufficient reserve antiapoptotic capacity and underwent apoptosis after p53 restoration. Forced BCL-2 or BCL-XL expression reduced priming and resulted in survival and cell cycle arrest. Cells with low initial priming (e.g., lung adenocarcinoma and sarcoma) survived and proceeded to arrest in the cell cycle. When primed by inhibition of their antiapoptotic proteins using genetic (BCL-2 or BCL-XL deletion or BAD overexpression) or pharmacologic (navitoclax) means, apoptosis resulted upon p53 restoration in vitro and in vivo. These data demonstrate that mitochondrial apoptotic priming is a key determining factor of cell fate upon p53 activation. Moreover, it is possible to enforce apoptotic cell fate following p53 activation in less primed cells using p53-independent drugs that increase apoptotic priming, including BH3 mimetic drugs.


Assuntos
Adenocarcinoma de Pulmão/metabolismo , Apoptose , Pontos de Checagem do Ciclo Celular , Neoplasias Pulmonares/metabolismo , Mitocôndrias/metabolismo , Sarcoma/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Animais , Linhagem Celular Tumoral , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Mitocôndrias/genética , Mitocôndrias/patologia , Sarcoma/genética , Sarcoma/patologia , Proteína Supressora de Tumor p53/genética
6.
Proc Natl Acad Sci U S A ; 117(48): 30566-30576, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33203674

RESUMO

Aneuploidy, defined as whole chromosome gains and losses, is associated with poor patient prognosis in many cancer types. However, the condition causes cellular stress and cell cycle delays, foremost in G1 and S phase. Here, we investigate how aneuploidy causes both slow proliferation and poor disease outcome. We test the hypothesis that aneuploidy brings about resistance to chemotherapies because of a general feature of the aneuploid condition-G1 delays. We show that single chromosome gains lead to increased resistance to the frontline chemotherapeutics cisplatin and paclitaxel. Furthermore, G1 cell cycle delays are sufficient to increase chemotherapeutic resistance in euploid cells. Mechanistically, G1 delays increase drug resistance to cisplatin and paclitaxel by reducing their ability to damage DNA and microtubules, respectively. Finally, we show that our findings are clinically relevant. Aneuploidy correlates with slowed proliferation and drug resistance in the Cancer Cell Line Encyclopedia (CCLE) dataset. We conclude that a general and seemingly detrimental effect of aneuploidy, slowed proliferation, provides a selective benefit to cancer cells during chemotherapy treatment.


Assuntos
Aneuploidia , Antineoplásicos/farmacologia , Divisão Celular/efeitos dos fármacos , Divisão Celular/genética , Resistencia a Medicamentos Antineoplásicos/genética , Apoptose/efeitos dos fármacos , Apoptose/genética , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Cisplatino/farmacologia , Dano ao DNA/efeitos dos fármacos , Genes p53 , Humanos , Paclitaxel/farmacologia , Trissomia/genética
7.
Nature ; 529(7586): 413-417, 2016 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-26735014

RESUMO

Triple-negative breast cancer (TNBC) is a heterogeneous and clinically aggressive disease for which there is no targeted therapy. BET bromodomain inhibitors, which have shown efficacy in several models of cancer, have not been evaluated in TNBC. These inhibitors displace BET bromodomain proteins such as BRD4 from chromatin by competing with their acetyl-lysine recognition modules, leading to inhibition of oncogenic transcriptional programs. Here we report the preferential sensitivity of TNBCs to BET bromodomain inhibition in vitro and in vivo, establishing a rationale for clinical investigation and further motivation to understand mechanisms of resistance. In paired cell lines selected for acquired resistance to BET inhibition from previously sensitive TNBCs, we failed to identify gatekeeper mutations, new driver events or drug pump activation. BET-resistant TNBC cells remain dependent on wild-type BRD4, which supports transcription and cell proliferation in a bromodomain-independent manner. Proteomic studies of resistant TNBC identify strong association with MED1 and hyper-phosphorylation of BRD4 attributable to decreased activity of PP2A, identified here as a principal BRD4 serine phosphatase. Together, these studies provide a rationale for BET inhibition in TNBC and present mechanism-based combination strategies to anticipate clinical drug resistance.


Assuntos
Azepinas/farmacologia , Azepinas/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proteínas Nucleares/antagonistas & inibidores , Estrutura Terciária de Proteína/efeitos dos fármacos , Fatores de Transcrição/antagonistas & inibidores , Triazóis/farmacologia , Triazóis/uso terapêutico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Animais , Ligação Competitiva/efeitos dos fármacos , Caseína Quinase II/metabolismo , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Cromatina/genética , Cromatina/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Epigênese Genética/efeitos dos fármacos , Epigênese Genética/genética , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Genoma Humano/efeitos dos fármacos , Genoma Humano/genética , Humanos , Subunidade 1 do Complexo Mediador/metabolismo , Camundongos , Proteínas Nucleares/deficiência , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosforilação/efeitos dos fármacos , Fosfosserina/metabolismo , Ligação Proteica/efeitos dos fármacos , Proteína Fosfatase 2/metabolismo , Proteômica , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Blood ; 133(1): 70-80, 2019 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-30322870

RESUMO

Inhibition of the B-cell receptor (BCR) signaling pathway is a promising treatment strategy in multiple B-cell malignancies. However, the role of BCR blockade in diffuse large B-cell lymphoma (DLBCL) remains undefined. We recently characterized primary DLBCL subsets with distinct genetic bases for perturbed BCR/phosphoinositide 3-kinase (PI3K) signaling and dysregulated B-cell lymphoma 2 (BCL-2) expression. Herein, we explore the activity of PI3K inhibitors and BCL-2 blockade in a panel of functionally and genetically characterized DLBCL cell line models. A PI3K inhibitor with predominant α/δ activity, copanlisib, exhibited the highest cytotoxicity in all BCR-dependent DLBCLs. The proapoptotic effect of copanlisib was associated with DLBCL subtype-specific dysregulated expression of BCL-2 family members including harakiri (HRK) and its antiapoptotic partner BCL extra large (BCL-xL), BCL2 related protein A1, myeloid cell leukemia 1 (MCL-1), and BCL2 interacting mediator of cell death. Using functional BH3 profiling, we found that the cytotoxic activity of copanlisib was primarily mediated through BCL-xL and MCL-1-dependent mechanisms that might complement BCL-2 blockade. For these reasons, we evaluated single-agent activity of venetoclax in the DLBCLs and identified a subset with limited sensitivity to BCL-2 blockade despite having genetic bases of BCL-2 dysregulation. As these were largely BCR-dependent DLBCLs, we hypothesized that combined inhibition of PI3Kα/δ and BCL-2 would perturb BCR-dependent and BCL-2-mediated survival pathways. Indeed, we observed synergistic activity of copanlisib/venetoclax in BCR-dependent DLBCLs with genetic bases for BCL-2 dysregulation in vitro and confirmed these findings in a xenograft model. These results provide preclinical evidence for the rational combination of PI3Kα/δ and BCL-2 blockade in genetically defined DLBCLs.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Classe I de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Sinergismo Farmacológico , Linfoma Difuso de Grandes Células B/patologia , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Pirimidinas/farmacologia , Quinazolinas/farmacologia , Sulfonamidas/farmacologia , Animais , Antineoplásicos/farmacologia , Apoptose , Proliferação de Células , Feminino , Humanos , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/genética , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Proc Natl Acad Sci U S A ; 115(5): E886-E895, 2018 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-29339518

RESUMO

Bcl-2 family proteins regulate apoptosis, and aberrant interactions of overexpressed antiapoptotic family members such as Mcl-1 promote cell transformation, cancer survival, and resistance to chemotherapy. Discovering potent and selective Mcl-1 inhibitors that can relieve apoptotic blockades is thus a high priority for cancer research. An attractive strategy for disabling Mcl-1 involves using designer peptides to competitively engage its binding groove, mimicking the structural mechanism of action of native sensitizer BH3-only proteins. We transformed Mcl-1-binding peptides into α-helical, cell-penetrating constructs that are selectively cytotoxic to Mcl-1-dependent cancer cells. Critical to the design of effective inhibitors was our introduction of an all-hydrocarbon cross-link or "staple" that stabilizes α-helical structure, increases target binding affinity, and independently confers binding specificity for Mcl-1 over related Bcl-2 family paralogs. Two crystal structures of complexes at 1.4 Å and 1.9 Å resolution demonstrate how the hydrophobic staple induces an unanticipated structural rearrangement in Mcl-1 upon binding. Systematic sampling of staple location and iterative optimization of peptide sequence in accordance with established design principles provided peptides that target intracellular Mcl-1. This work provides proof of concept for the development of potent, selective, and cell-permeable stapled peptides for therapeutic targeting of Mcl-1 in cancer, applying a design and validation workflow applicable to a host of challenging biomedical targets.


Assuntos
Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Neoplasias/metabolismo , Peptídeos/química , Animais , Sítios de Ligação , Linhagem Celular , Sobrevivência Celular , Dicroísmo Circular , Cristalografia por Raios X , Citoplasma/metabolismo , Desenho de Fármacos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Concentração Inibidora 50 , Camundongos , Mutação , Ligação Proteica , Mapeamento de Interação de Proteínas , Espectrometria de Fluorescência
10.
J Biol Chem ; 294(29): 11286-11296, 2019 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-31171724

RESUMO

FUS and EWSR1 are RNA-binding proteins with prion-like domains (PrLDs) that aggregate in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The FUS and EWSR1 genes are also prone to chromosomal translocation events, which result in aberrant fusions between portions of the PrLDs of FUS and EWSR1 and the transcription factors CHOP and FLI. The resulting fusion proteins, FUS-CHOP and EWS-FLI, drive aberrant transcriptional programs that underpin liposarcoma and Ewing's sarcoma, respectively. The translocated PrLDs alter the expression profiles of these proteins and promote their phase separation and aggregation. Here, we report the development of yeast models of FUS-CHOP and EWS-FLI toxicity and aggregation. These models recapitulated several salient features of sarcoma patient cells harboring the FUS-CHOP and EWS-FLI translocations. To reverse FUS and EWSR1 aggregation, we have explored Hsp104, a hexameric AAA+ protein disaggregase from yeast. Previously, we engineered potentiated Hsp104 variants to suppress the proteotoxicity, aggregation, and mislocalization of FUS and other proteins that aggregate in ALS/FTD and Parkinson's disease. Potentiated Hsp104 variants that robustly suppressed FUS toxicity and aggregation also suppressed the toxicity and aggregation of FUS-CHOP and EWS-FLI. We suggest that these new yeast models are powerful platforms for screening for modulators of FUS-CHOP and EWS-FLI phase separation. Moreover, Hsp104 variants might be employed to combat the toxicity and phase separation of aberrant fusion proteins involved in sarcoma.


Assuntos
Proteínas Priônicas/metabolismo , Engenharia de Proteínas , Sarcoma/metabolismo , Neoplasias de Tecidos Moles/metabolismo , Núcleo Celular/metabolismo , Proteínas de Choque Térmico/metabolismo , Humanos , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Proteína Proto-Oncogênica c-fli-1/genética , Proteína EWS de Ligação a RNA/genética , Proteína FUS de Ligação a RNA/genética , Fator de Transcrição CHOP/metabolismo
12.
BMC Gastroenterol ; 18(1): 94, 2018 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-29933761

RESUMO

BACKGROUND: Esophageal cancers accounted for nearly 16,000 deaths in 2016. The number of patients with esophageal cancers increases every year. Neoadjuvant chemoradiotherapy (nCRT) prior to esophagectomy is a standard treatment for esophageal cancers. The patients who have no residual tumor (pathological complete response (pCR)) at surgery are the most likely to experience long term survival. Accurately determining which patients will have a pCR will improve prognostic information for patients and families, confirm lack of response to nCRT, or avoid surgery if no residual tumor is present. Imaging, endoscopy, and liquid biomarkers have all failed to detect pCR without performing an esophagectomy. METHODS: In this study, we are enrolling patients with esophageal adenocarcinoma and squamous cell carcinoma. Patients will undergo standard evaluation including CT scans, laboratory tests, endoscopy with biopsies, and evaluation by a thoracic surgeon. Tissue biopsy is required for enrollment that will be sent for BH3 profiling and metabolomics. Patients will be treated with standard nCRT followed by surgery. Patients with metastatic disease are not eligible. Surgery at the National Cancer Institute will be minimally-invasive robotic surgery. Patients will remain on study indefinitely with regular clinic visits and imaging tests. DISCUSSION: The mitochondria are critically involved in the intrinsic pathway apoptosis. Bcl-2 homology domain 3 (BH3) profiling is a technique to measure a cell's susceptibility to apoptosis. BH3 profiling measures the relative interactions of proteins that induce or block apoptosis. The collective balance of these proteins determines whether a cell is near the threshold to undergo apoptosis. If the cell is near this threshold, then the tumor may be more likely to die when treated with nCRT. The mitochondria secrete metabolites that may be detectable as biomarkers. Metabolomics is a global assessment of all metabolite changes that has been performed for detection, monitoring, prognosis, and treatment response in cancers. Stratification of patients based on whether pCR occurs or not may elucidate metabolomic signatures that may be associated with response. We are asking whether BH3 profiling or a metabolomic signature will correlate with tumor death after nCRT for esophageal cancer. TRIAL REGISTRATION: NCT03223662 ; Clinicaltrials.gov. July 21, 2017.


Assuntos
Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Impressões Digitais de DNA , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Genes bcl-2 , Metabolômica , Medicina de Precisão , Adenocarcinoma/patologia , Adenocarcinoma/terapia , Apoptose , Biópsia , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/terapia , Quimiorradioterapia , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/terapia , Genes p53 , Humanos , Mutação , Terapia Neoadjuvante , Estudos Prospectivos , Análise de Sobrevida
13.
Biol Chem ; 397(7): 671-8, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-26910743

RESUMO

Dysregulation of the mitochondrial pathway of apoptosis, controlled by the BCL-2 family of proteins, leads to disease states including cancer. Rapid analysis of a cell's dependency on the BCL-2 family of proteins is hindered by the complex interactions of more than a dozen proteins. Transcript or even protein levels are therefore generally insufficient to predict a cell's response to perturbations like chemotherapy. Previously, we developed the JC-1 BH3 method to provide a same day functional assay to assess a cell's propensity to undergo apoptosis and demonstrated its utility in predicting response to chemotherapy. We have now improved upon these methods to create a robust assay amenable to high throughput platforms using cytochrome c retention in formaldehyde fixed cells to remove the time sensitivity of JC-1 potential measurements. BH3 profiling by intracellular staining (iBH3) is suitable for 96- and 384-well formats, and can be used to directly screen candidate BH3-mimetic compounds for activity. When used as the final component of dynamic BH3 profiling (DBP), which uses a drug pretreatment prior to iBH3 to assess the change in profile due to treatment, it can predict the response of cells to chemotherapy days before they show signs of death.


Assuntos
Apoptose , Citometria de Fluxo/métodos , Citocromos c/metabolismo , Humanos , Mitocôndrias/metabolismo , Domínios Proteicos , Proteínas Proto-Oncogênicas c-bcl-2/química , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Coloração e Rotulagem , Fixação de Tecidos
15.
Haematologica ; 99(9): 1499-508, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24859877

RESUMO

CD4 regulatory T cells play a critical role in establishment of immune tolerance and prevention of graft-versus-host disease after allogeneic hematopoietic stem cell transplantation. The recovery and maintenance of regulatory T cells is dependent on homeostatic factors including the generation of naïve regulatory T cells from hematopoietic precursor cells, the proliferation and expansion of mature regulatory T cells, and the survival of regulatory T cells in vivo. In this study, quantitation of mitochondrial apoptotic priming was used to compare susceptibility of regulatory T cells, conventional CD4 T cells and CD8 T cells to intrinsic pathway apoptosis in 57 patients after allogeneic hematopoietic stem cell transplantation and 25 healthy donors. In healthy donors, regulatory T cells are more susceptible to mitochondrial priming than conventional T cells. Mitochondrial priming is increased after hematopoietic stem cell transplantation in all T-cell subsets and particularly in patients with chronic graft-versus-host disease. Regulatory T cells express high levels of CD95 and are also more susceptible than conventional T cells to apoptosis through the extrinsic pathway. However, CD95 expression and extrinsic pathway apoptosis is not increased after hematopoietic stem cell transplantation. Decreased expression of BCL2 and increased expression of BIM, a mitochondrial cell death activator protein, in regulatory T cells contributes to increased mitochondrial priming in this T-cell subset but additional factors likely contribute to increased mitochondrial priming following hematopoietic stem cell transplantation.


Assuntos
Doença Enxerto-Hospedeiro/imunologia , Transplante de Células-Tronco Hematopoéticas , Mitocôndrias/efeitos dos fármacos , Transtornos Mieloproliferativos/imunologia , Fragmentos de Peptídeos/farmacologia , Proteínas Proto-Oncogênicas/farmacologia , Linfócitos T Reguladores/efeitos dos fármacos , Adulto , Idoso , Apoptose , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Estudos de Casos e Controles , Doença Crônica , Feminino , Expressão Gênica , Doença Enxerto-Hospedeiro/patologia , Doença Enxerto-Hospedeiro/terapia , Humanos , Masculino , Pessoa de Meia-Idade , Mitocôndrias/imunologia , Mitocôndrias/patologia , Transtornos Mieloproliferativos/patologia , Transtornos Mieloproliferativos/terapia , Cultura Primária de Células , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/imunologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/patologia , Doadores de Tecidos , Transplante Homólogo , Receptor fas/genética , Receptor fas/imunologia
16.
Methods ; 61(2): 156-64, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23607990

RESUMO

Rapid analysis of a cell's propensity to undergo apoptosis through the mitochondrial pathway is hindered by the complex network of interactions between more than fifteen known members of the BCL2 family that govern the decision to undergo mitochondrial apoptosis, and measurement of protein levels alone fails to account for critical interactions between the proteins. To address this issue, we have developed two functional assays for same-day analysis of cell lines or primary tissue samples. Using defined inputs in the form of peptides derived primarily from the BH3 domains of pro-apoptotic members of the BCL2 family, we invoke a response in the mitochondria in the form of mitochondrial outer membrane permeabilization measured indirectly using potential sensitive dyes. BH3 profiling can be applied to any viable single cell suspension and provides a response from the sum total of all known and unknown interactions within the BCL2 family for each stimulus, and the pattern of response can provide both a cell's propensity towards mitochondrial apoptosis, or 'priming', as well as indicate dependencies on specific anti-apoptotic proteins. Described here are optimized conditions for both plate-based and FACS-based BH3 profiling for homogeneous and heterogeneous samples.


Assuntos
Apoptose , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Fragmentos de Peptídeos/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas/farmacologia , Linhagem Celular Tumoral , Digitonina/farmacologia , Citometria de Fluxo , Corantes Fluorescentes , Fluorometria , Regulação da Expressão Gênica , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Membranas Mitocondriais/efeitos dos fármacos , Membranas Mitocondriais/patologia , Fragmentos de Peptídeos/química , Permeabilidade , Proteínas Proto-Oncogênicas/química , Proteínas Proto-Oncogênicas c-bcl-2/genética
17.
Nat Commun ; 15(1): 2436, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38499535

RESUMO

Parkinson's disease (PD) is closely linked to α-synuclein (α-syn) misfolding and accumulation in Lewy bodies. The PDZ serine protease HTRA1 degrades fibrillar tau, which is associated with Alzheimer's disease, and inactivating mutations to mitochondrial HTRA2 are implicated in PD. Here, we report that HTRA1 inhibits aggregation of α-syn as well as FUS and TDP-43, which are implicated in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia. The protease domain of HTRA1 is necessary and sufficient for inhibiting aggregation, yet this activity is proteolytically-independent. Further, HTRA1 disaggregates preformed α-syn fibrils, rendering them incapable of seeding aggregation of endogenous α-syn, while reducing HTRA1 expression promotes α-syn seeding. HTRA1 remodels α-syn fibrils by targeting the NAC domain, the key domain catalyzing α-syn amyloidogenesis. Finally, HTRA1 detoxifies α-syn fibrils and prevents formation of hyperphosphorylated α-syn accumulations in primary neurons. Our findings suggest that HTRA1 may be a therapeutic target for a range of neurodegenerative disorders.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Humanos , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Amiloide/metabolismo , Serina Peptidase 1 de Requerimento de Alta Temperatura A/genética , Serina Peptidase 1 de Requerimento de Alta Temperatura A/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Corpos de Lewy/metabolismo
18.
Blood Adv ; 8(4): 978-990, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38197938

RESUMO

ABSTRACT: We conducted a phase 1 trial assessing safety and efficacy of prophylactic maintenance therapy with venetoclax and azacitidine (Ven/Aza) for patients with high-risk myelodysplastic syndromes (MDS)/acute myeloid leukemia (AML) undergoing reduced intensity allogeneic stem cell transplantation (allo-SCT) after Ven and fludarabine/busulfan conditioning (Ven/FluBu2 allo-SCT) with tacrolimus and methotrexate as graft-versus-host disease (GVHD) prophylaxis. Among 27 patients who underwent Ven/FluBu2 allo-SCT (55.6% with prior Ven exposure, and 96% with positive molecular measurable residual disease), 22 received maintenance therapy with Aza 36 mg/m2 intravenously on days 1 to 5, and Ven 400 mg by mouth on days 1 to 14 per assigned dose schedule/level (42-day cycles × 8, or 28-day cycles × 12). During maintenance, the most common grade 3-4 adverse events were leukopenia, neutropenia, and thrombocytopenia, which were transient and manageable. Infections were uncommon (n = 4, all grade 1-2). The 1-year and 2-year moderate/severe chronic GVHD rates were 4% (95% confidence interval [CI], 0.3%-18%) and 22% (95% CI, 9%-40%), respectively. After a median follow-up of 25 months among survivors, the median overall survival (OS) was not reached. Among the 22 patients who received Ven/Aza maintenance, the 2-year OS, progression-free survival, nonrelapse mortality, and cumulative incidence of relapse rates were 67% (95% CI, 43%-83%), 59% (95% CI, 36%-76%), 0%, and 41% (95% CI, 20%-61%), respectively. Immune monitoring demonstrated no significant impact on T-cell expansion but identified reduced B-cell expansion compared with controls. This study demonstrates prophylactic Ven/Aza maintenance can be safely administered for patients with high-risk MDS/AML, but a randomized study is required to properly assess any potential benefit. This trial was registered at www.clinicaltrials.gov as #NCT03613532.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes , Doença Enxerto-Hospedeiro , Leucemia Mieloide Aguda , Sulfonamidas , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Doença Enxerto-Hospedeiro/etiologia , Doença Enxerto-Hospedeiro/prevenção & controle , Condicionamento Pré-Transplante , Transplante Homólogo , Azacitidina/uso terapêutico
19.
Blood Cancer Discov ; 5(3): 180-201, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38442309

RESUMO

In many cancers, mortality is associated with the emergence of relapse with multidrug resistance (MDR). Thus far, the investigation of cancer relapse mechanisms has largely focused on acquired genetic mutations. Using acute myeloid leukemia (AML) patient-derived xenografts (PDX), we systematically elucidated a basis of MDR and identified drug sensitivity in relapsed AML. We derived pharmacologic sensitivity for 22 AML PDX models using dynamic BH3 profiling (DBP), together with genomics and transcriptomics. Using in vivo acquired resistant PDXs, we found that resistance to unrelated, narrowly targeted agents in distinct PDXs was accompanied by broad resistance to drugs with disparate mechanisms. Moreover, baseline mitochondrial apoptotic priming was consistently reduced regardless of the class of drug-inducing selection. By applying DBP, we identified drugs showing effective in vivo activity in resistant models. This study implies evasion of apoptosis drives drug resistance and demonstrates the feasibility of the DBP approach to identify active drugs for patients with relapsed AML. SIGNIFICANCE: Acquired resistance to targeted therapy remains challenging in AML. We found that reduction in mitochondrial priming and common transcriptomic signatures was a conserved mechanism of acquired resistance across different drug classes in vivo. Drugs active in vivo can be identified even in the multidrug resistant state by DBP.


Assuntos
Apoptose , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Leucemia Mieloide Aguda , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/genética , Humanos , Apoptose/efeitos dos fármacos , Animais , Camundongos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Resistência a Múltiplos Medicamentos/genética , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Células Precursoras de Granulócitos/efeitos dos fármacos , Células Precursoras de Granulócitos/patologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
20.
Proc Natl Acad Sci U S A ; 107(29): 12895-900, 2010 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-20615979

RESUMO

It is well established that CD4(+) CD8(+) thymocytes are more sensitive to myriad death stimuli than CD4(+) or CD8(+) single positive (SP) thymocytes. The mechanism behind this hypersensitivity to apoptosis of CD4(+) CD8(+) thymocytes is not understood. To test whether the difference lay in the apoptotic preset of mitochondria, established by the BCL-2 family of proteins, we developed a method, FACS-based BH3 profiling. Using this tool, we could discriminate thymocyte subpopulations and demonstrate that mitochondria in double positive (DP) thymocytes are more primed for death than those in single positive counterparts. Loss of proapoptotic BIM, known to cause autoimmunity, also causes loss of "priming." Priming is a phenotype with physiologic consequences, which can be measured at the single-cell level in complex samples using FACS-based BH3 profiling.


Assuntos
Apoptose/imunologia , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Mitocôndrias/imunologia , Timo/citologia , Animais , Linhagem Celular , Permeabilidade da Membrana Celular , Apresentação Cruzada/imunologia , Citometria de Fluxo , Humanos , Potencial da Membrana Mitocondrial , Camundongos , Membranas Mitocondriais/metabolismo , Fragmentos de Peptídeos/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Timo/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA