Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Cell ; 171(2): 331-345.e22, 2017 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-28942921

RESUMO

Clearance of apoptotic cells (ACs) by phagocytes (efferocytosis) prevents post-apoptotic necrosis and dampens inflammation. Defective efferocytosis drives important diseases, including atherosclerosis. For efficient efferocytosis, phagocytes must be able to internalize multiple ACs. We show here that uptake of multiple ACs by macrophages requires dynamin-related protein 1 (Drp1)-mediated mitochondrial fission, which is triggered by AC uptake. When mitochondrial fission is disabled, AC-induced increase in cytosolic calcium is blunted owing to mitochondrial calcium sequestration, and calcium-dependent phagosome formation around secondarily encountered ACs is impaired. These defects can be corrected by silencing the mitochondrial calcium uniporter (MCU). Mice lacking myeloid Drp1 showed defective efferocytosis and its pathologic consequences in the thymus after dexamethasone treatment and in advanced atherosclerotic lesions in fat-fed Ldlr-/- mice. Thus, mitochondrial fission in response to AC uptake is a critical process that enables macrophages to clear multiple ACs and to avoid the pathologic consequences of defective efferocytosis in vivo.


Assuntos
Macrófagos/citologia , Dinâmica Mitocondrial , Animais , Apoptose , Humanos , Macrófagos/metabolismo , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/metabolismo , Células Mieloides/metabolismo , Fagócitos/metabolismo , Fagossomos/metabolismo
2.
Cell ; 156(4): 825-35, 2014 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-24529383

RESUMO

Cognitive function is tightly related to metabolic state, but the locus of this control is not well understood. Synapses are thought to present large ATP demands; however, it is unclear how fuel availability and electrical activity impact synaptic ATP levels and how ATP availability controls synaptic function. We developed a quantitative genetically encoded optical reporter of presynaptic ATP, Syn-ATP, and find that electrical activity imposes large metabolic demands that are met via activity-driven control of both glycolysis and mitochondrial function. We discovered that the primary source of activity-driven metabolic demand is the synaptic vesicle cycle. In metabolically intact synapses, activity-driven ATP synthesis is well matched to the energetic needs of synaptic function, which, at steady state, results in ∼10(6) free ATPs per nerve terminal. Despite this large reservoir of ATP, we find that several key aspects of presynaptic function are severely impaired following even brief interruptions in activity-stimulated ATP synthesis.


Assuntos
Trifosfato de Adenosina/metabolismo , Mitocôndrias/metabolismo , Sinapses/metabolismo , Animais , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Terminações Pré-Sinápticas/metabolismo , Ratos , Ratos Sprague-Dawley , Vesículas Sinápticas/metabolismo
3.
Proc Natl Acad Sci U S A ; 121(21): e2314604121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38748581

RESUMO

We developed a significantly improved genetically encoded quantitative adenosine triphosphate (ATP) sensor to provide real-time dynamics of ATP levels in subcellular compartments. iATPSnFR2 is a variant of iATPSnFR1, a previously developed sensor that has circularly permuted superfolder green fluorescent protein (GFP) inserted between the ATP-binding helices of the ε-subunit of a bacterial F0-F1 ATPase. Optimizing the linkers joining the two domains resulted in a ~fivefold to sixfold improvement in the dynamic range compared to the previous-generation sensor, with excellent discrimination against other analytes, and affinity variants varying from 4 µM to 500 µM. A chimeric version of this sensor fused to either the HaloTag protein or a suitable spectrally separated fluorescent protein provides an optional ratiometric readout allowing comparisons of ATP across cellular regions. Subcellular targeting the sensor to nerve terminals reveals previously uncharacterized single-synapse metabolic signatures, while targeting to the mitochondrial matrix allowed direct quantitative probing of oxidative phosphorylation dynamics.


Assuntos
Trifosfato de Adenosina , Proteínas de Fluorescência Verde , Trifosfato de Adenosina/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Fluorescência Verde/genética , Humanos , Técnicas Biossensoriais/métodos , Animais , Fosforilação Oxidativa , ATPases Translocadoras de Prótons/metabolismo , ATPases Translocadoras de Prótons/genética
4.
J Neurochem ; 168(5): 910-954, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38183680

RESUMO

Although we have learned much about how the brain fuels its functions over the last decades, there remains much still to discover in an organ that is so complex. This article lays out major gaps in our knowledge of interrelationships between brain metabolism and brain function, including biochemical, cellular, and subcellular aspects of functional metabolism and its imaging in adult brain, as well as during development, aging, and disease. The focus is on unknowns in metabolism of major brain substrates and associated transporters, the roles of insulin and of lipid droplets, the emerging role of metabolism in microglia, mysteries about the major brain cofactor and signaling molecule NAD+, as well as unsolved problems underlying brain metabolism in pathologies such as traumatic brain injury, epilepsy, and metabolic downregulation during hibernation. It describes our current level of understanding of these facets of brain energy metabolism as well as a roadmap for future research.


Assuntos
Encéfalo , Metabolismo Energético , Animais , Humanos , Encéfalo/metabolismo
5.
Nat Rev Neurosci ; 20(3): 177-186, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30647451

RESUMO

Exocytosis is a fundamental membrane fusion process by which the soluble or membrane-associated cargoes of a secretory vesicle are delivered to the extracellular milieu or the cell surface. While essential for all organs, the brain relies on a specialized form of exocytosis to mediate information flow throughout its vast circuitry. Neurotransmitter-laden synaptic vesicles fuse with the plasma membrane on cue with astonishing speed in a probabilistic process that is both tightly regulated and capable of a fascinating array of plasticities. Here, we examine progress in the molecular understanding of synaptic vesicle fusion and its control.


Assuntos
Exocitose/fisiologia , Neurônios/fisiologia , Terminações Pré-Sinápticas/fisiologia , Transmissão Sináptica/fisiologia , Vesículas Sinápticas/fisiologia , Animais , Membrana Celular/metabolismo , Fusão de Membrana/fisiologia , Plasticidade Neuronal/fisiologia
6.
Annu Rev Cell Dev Biol ; 25: 133-60, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19575674

RESUMO

Presynaptic terminals are specialized compartments of neurons responsible for converting electrical signals into secreted chemicals. This self-renewing process of chemical synaptic transmission is accomplished by the calcium-triggered fusion of neurotransmitter-containing vesicles with the plasma membrane and subsequent retrieval and recycling of vesicle components. Whereas the release of neurotransmitters has been studied for over 50 years, the process of synaptic vesicle endocytosis has remained much more elusive. The advent of imaging techniques suited to monitor membrane retrieval at presynaptic terminals and the discovery of the molecules that orchestrate endocytosis have revolutionized our understanding of this critical trafficking event.


Assuntos
Endocitose , Sinapses/metabolismo , Vesículas Sinápticas/metabolismo , Animais , Membrana Celular/metabolismo , Terminações Pré-Sinápticas/metabolismo
7.
J Neurosci ; 37(47): 11366-11376, 2017 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-29054882

RESUMO

Parkinson's disease (PD) is characterized pathologically by the selective loss of substantia nigra (SN) dopaminergic (DAergic) neurons. Recent evidence has suggested a role of LRRK2, linked to the most frequent familial PD, in regulating synaptic vesicle (SV) trafficking. However, the mechanism whereby LRRK2 mutants contribute to nigral vulnerability remains unclear. Here we show that the most common PD mutation LRRK2 G2019S impairs SV endocytosis in ventral midbrain (MB) neurons, including DA neurons, and the slowed endocytosis can be rescued by inhibition of LRRK2 kinase activity. A similar endocytic defect, however, was not observed in LRRK2 mutant neurons from the neocortex (hereafter, cortical neurons) or the hippocampus, suggesting a brain region-specific vulnerability to the G2019S mutation. Additionally, we found MB-specific impairment of SV endocytosis in neurons carrying heterozygous deletion of SYNJ1 (PARK20), a gene that is associated with recessive Parkinsonism. Combining SYNJ1+/- and LRRK2 G2019S does not exacerbate SV endocytosis but impairs sustained exocytosis in MB neurons and alters specific motor functions of 1-year-old male mice. Interestingly, we show that LRRK2 directly phosphorylates synaptojanin1 in vitro, resulting in the disruption of endophilin-synaptojanin1 interaction required for SV endocytosis. Our work suggests a merge of LRRK2 and SYNJ1 pathogenic pathways in deregulating SV trafficking in MB neurons as an underlying molecular mechanism of early PD pathogenesis.SIGNIFICANCE STATEMENT Understanding midbrain dopaminergic (DAergic) neuron-selective vulnerability in PD is essential for the development of targeted therapeutics. We report, for the first time, a nerve terminal impairment in SV trafficking selectively in MB neurons but not cortical neurons caused by two PARK genes: LRRK2 (PARK8) and SYNJ1 (PARK20). We demonstrate that the enhanced kinase activity resulting from the most frequent G2019S mutation in LRRK2 is the key to this impairment. We provide evidence suggesting that LRRK2 G2019S and SYNJ1 loss of function share a similar pathogenic pathway in deregulating DAergic neuron SV endocytosis and that they play additive roles in facilitating each other's pathogenic functions in PD.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Endocitose , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Mesencéfalo/metabolismo , Doença de Parkinson/genética , Vesículas Sinápticas/metabolismo , Animais , Mutação com Ganho de Função , Deleção de Genes , Células HEK293 , Hipocampo/citologia , Hipocampo/metabolismo , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Masculino , Mesencéfalo/citologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Doença de Parkinson/metabolismo , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo
8.
Toxicol Appl Pharmacol ; 349: 39-54, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29630968

RESUMO

The antimicrobial agent triclosan (TCS) is used in products such as toothpaste and surgical soaps and is readily absorbed into oral mucosa and human skin. These and many other tissues contain mast cells, which are involved in numerous physiologies and diseases. Mast cells release chemical mediators through a process termed degranulation, which is inhibited by TCS. Investigation into the underlying mechanisms led to the finding that TCS is a mitochondrial uncoupler at non-cytotoxic, low-micromolar doses in several cell types and live zebrafish. Our aim was to determine the mechanisms underlying TCS disruption of mitochondrial function and of mast cell signaling. We combined super-resolution (fluorescence photoactivation localization) microscopy and multiple fluorescence-based assays to detail triclosan's effects in living mast cells, fibroblasts, and primary human keratinocytes. TCS disrupts mitochondrial nanostructure, causing mitochondria to undergo fission and to form a toroidal, "donut" shape. TCS increases reactive oxygen species production, decreases mitochondrial membrane potential, and disrupts ER and mitochondrial Ca2+ levels, processes that cause mitochondrial fission. TCS is 60 × more potent than the banned uncoupler 2,4-dinitrophenol. TCS inhibits mast cell degranulation by decreasing mitochondrial membrane potential, disrupting microtubule polymerization, and inhibiting mitochondrial translocation, which reduces Ca2+ influx into the cell. Our findings provide mechanisms for both triclosan's inhibition of mast cell signaling and its universal disruption of mitochondria. These mechanisms provide partial explanations for triclosan's adverse effects on human reproduction, immunology, and development. This study is the first to utilize super-resolution microscopy in the field of toxicology.


Assuntos
Anti-Infecciosos Locais/toxicidade , Sinalização do Cálcio/efeitos dos fármacos , Mastócitos/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/ultraestrutura , Triclosan/toxicidade , Células 3T3 , Animais , Degranulação Celular/efeitos dos fármacos , Retículo Endoplasmático/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Humanos , Queratinócitos/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Microtúbulos/efeitos dos fármacos , Microtúbulos/ultraestrutura , Cultura Primária de Células , Espécies Reativas de Oxigênio/metabolismo
9.
Nature ; 486(7401): 122-5, 2012 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-22678293

RESUMO

Synaptic neurotransmitter release is driven by Ca(2+) influx through active zone voltage-gated calcium channels (VGCCs). Control of active zone VGCC abundance and function remains poorly understood. Here we show that a trafficking step probably sets synaptic VGCC levels in rats, because overexpression of the pore-forming α1(A) VGCC subunit fails to change synaptic VGCC abundance or function. α2δs are a family of glycosylphosphatidylinositol (GPI)-anchored VGCC-associated subunits that, in addition to being the target of the potent neuropathic analgesics gabapentin and pregabalin (α2δ-1 and α2δ-2), were also identified in a forward genetic screen for pain genes (α2δ-3). We show that these proteins confer powerful modulation of presynaptic function through two distinct molecular mechanisms. First, α2δ subunits set synaptic VGCC abundance, as predicted from their chaperone-like function when expressed in non-neuronal cells. Second, α2δs configure synaptic VGCCs to drive exocytosis through an extracellular metal ion-dependent adhesion site (MIDAS), a conserved set of amino acids within the predicted von Willebrand A domain of α2δ. Expression of α2δ with an intact MIDAS motif leads to an 80% increase in release probability, while simultaneously protecting exocytosis from blockade by an intracellular Ca(2+) chelator. α2δs harbouring MIDAS site mutations still drive synaptic accumulation of VGCCs; however, they no longer change release probability or sensitivity to intracellular Ca(2+) chelators. Our data reveal dual functionality of these clinically important VGCC subunits, allowing synapses to make more efficient use of Ca(2+) entry to drive neurotransmitter release.


Assuntos
Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Exocitose , Neurotransmissores/metabolismo , Terminações Pré-Sinápticas/metabolismo , Potenciais de Ação , Animais , Canais de Cálcio/biossíntese , Canais de Cálcio Tipo L , Sinalização do Cálcio , Camundongos , Probabilidade , Ratos
10.
Proc Natl Acad Sci U S A ; 112(38): 11959-64, 2015 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-26351670

RESUMO

Identifying presynaptic mechanisms of general anesthetics is critical to understanding their effects on synaptic transmission. We show that the volatile anesthetic isoflurane inhibits synaptic vesicle (SV) exocytosis at nerve terminals in dissociated rat hippocampal neurons through inhibition of presynaptic Ca(2+) influx without significantly altering the Ca(2+) sensitivity of SV exocytosis. A clinically relevant concentration of isoflurane (0.7 mM) inhibited changes in [Ca(2+)]i driven by single action potentials (APs) by 25 ± 3%, which in turn led to 62 ± 3% inhibition of single AP-triggered exocytosis at 4 mM extracellular Ca(2+) ([Ca(2+)]e). Lowering external Ca(2+) to match the isoflurane-induced reduction in Ca(2+) entry led to an equivalent reduction in exocytosis. These data thus indicate that anesthetic inhibition of neurotransmitter release from small SVs occurs primarily through reduced axon terminal Ca(2+) entry without significant direct effects on Ca(2+)-exocytosis coupling or on the SV fusion machinery. Isoflurane inhibition of exocytosis and Ca(2+) influx was greater in glutamatergic compared with GABAergic nerve terminals, consistent with selective inhibition of excitatory synaptic transmission. Such alteration in the balance of excitatory to inhibitory transmission could mediate reduced neuronal interactions and network-selective effects observed in the anesthetized central nervous system.


Assuntos
Cálcio/metabolismo , Exocitose/efeitos dos fármacos , Isoflurano/farmacologia , Vesículas Sinápticas/metabolismo , Potenciais de Ação/efeitos dos fármacos , Animais , Neurônios GABAérgicos/efeitos dos fármacos , Neurônios GABAérgicos/metabolismo , Glutamatos/metabolismo , Cinética , Terminações Pré-Sinápticas/efeitos dos fármacos , Terminações Pré-Sinápticas/metabolismo , Ratos Sprague-Dawley , Vesículas Sinápticas/efeitos dos fármacos
11.
J Biol Chem ; 291(4): 1948-1956, 2016 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-26627835

RESUMO

Variation in PPP3CC, the gene that encodes the γ isoform of the calcineurin catalytic subunit, has been reported to be associated with schizophrenia. Because of its low expression level in most tissues, there has been little research devoted to the specific function of the calcineurin Aγ (CNAγ) versus the calcineurin Aα (CNAα) and calcineurin Aß (CNAß) catalytic isoforms. Consequently, we have a limited understanding of the role of altered CNAγ function in psychiatric disease. In this study, we demonstrate that CNAγ is present in the rodent and human brain and dephosphorylates a presynaptic substrate of calcineurin. Through a combination of immunocytochemistry and immuno-EM, we further show that CNAγ is localized to presynaptic terminals in hippocampal neurons. Critically, we demonstrate that RNAi-mediated knockdown of CNAγ leads to a disruption of synaptic vesicle cycling in cultured rat hippocampal neurons. These data indicate that CNAγ regulates a critical aspect of synaptic vesicle cycling and suggest that variation in PPP3CC may contribute to psychiatric disease by altering presynaptic function.


Assuntos
Calcineurina/metabolismo , Endocitose , Vesículas Sinápticas/enzimologia , Animais , Calcineurina/genética , Células Cultivadas , Hipocampo/citologia , Hipocampo/enzimologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Neurônios/enzimologia , Ratos , Vesículas Sinápticas/genética
12.
J Biol Chem ; 290(37): 22593-601, 2015 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-26224632

RESUMO

A long standing question in synaptic physiology is how neurotransmitter-filled vesicles are rebuilt after exocytosis. Among the first steps in this process is the endocytic retrieval of the transmembrane proteins that are enriched in synaptic vesicles (SVs). At least six types of transmembrane proteins must be recovered, but the rules for how this multiple cargo selection is accomplished are poorly understood. Among these SV cargos is the vesicular glutamate transporter (vGlut). We show here that vGlut1 has a strong influence on the kinetics of retrieval of half of the known SV cargos and that specifically impairing the endocytosis of vGlut1 in turn slows down other SV cargos, demonstrating that cargo retrieval is a collective cargo-driven process. Finally, we demonstrate that different cargos can be retrieved in the same synapse with different kinetics, suggesting that additional post-endocytic sorting steps likely occur in the nerve terminal.


Assuntos
Região CA1 Hipocampal/metabolismo , Região CA3 Hipocampal/metabolismo , Endocitose/fisiologia , Vesículas Sinápticas/metabolismo , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo , Animais , Região CA1 Hipocampal/citologia , Região CA3 Hipocampal/citologia , Células Cultivadas , Transporte Proteico/fisiologia , Ratos , Ratos Sprague-Dawley
13.
Biophys J ; 108(6): 1318-1329, 2015 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-25809246

RESUMO

Nervous system function relies on precise chemical communication between neurons at specialized junctions known as synapses. Complexin (CPX) is one of a small number of cytoplasmic proteins that are indispensable in controlling neurotransmitter release through SNARE and synaptic vesicle interactions. However, the mechanisms that recruit and stabilize CPX are poorly understood. The mobility of CPX tagged with photoactivatable green fluorescent protein (pGFP) was quantified in vivo using Caenorhabditis elegans. Although pGFP escaped the synapse within seconds, CPX-pGFP displayed both fast and slow decay components, requiring minutes for complete exchange of the synaptic pool. The longer synaptic residence time of CPX arose from both synaptic vesicle and SNARE interactions, and surprisingly, CPX mobility depended on synaptic activity. Moreover, mouse CPX-GFP reversibly dispersed out of hippocampal presynaptic terminals during stimulation, and blockade of vesicle fusion prevented CPX dispersion. Hence, synaptic CPX can rapidly redistribute and this exchange is influenced by neuronal activity, potentially contributing to use-dependent plasticity.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Sinapses/fisiologia , Proteínas Adaptadoras de Transporte Vesicular/genética , Animais , Axônios/fisiologia , Região CA1 Hipocampal/fisiologia , Região CA3 Hipocampal/fisiologia , Caenorhabditis elegans , Células Cultivadas , Exocitose/fisiologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Camundongos , Proteínas do Tecido Nervoso/genética , Terminações Pré-Sinápticas/fisiologia , Ratos Sprague-Dawley , Proteínas SNARE/metabolismo , Transmissão Sináptica/fisiologia , Vesículas Sinápticas/fisiologia
14.
J Neurosci ; 33(21): 8937-50, 2013 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-23699505

RESUMO

The control of neurotransmitter release at nerve terminals is of profound importance for neurological function and provides a powerful control system in neural networks. We show that the balance of enzymatic activities of the α isoform of the phosphatase calcineurin (CNAα) and the kinase cyclin-dependent kinase 5 (CDK5) has a dramatic influence over single action potential (AP)-driven exocytosis at nerve terminals. Acute or chronic loss of these enzymatic activities results in a sevenfold impact on single AP-driven exocytosis. We demonstrate that this control is mediated almost entirely through Cav2.2 (N-type) voltage-gated calcium channels as blocking these channels with a peptide toxin eliminates modulation by these enzymes. We found that a fraction of nerve terminals are kept in a presynaptically silent state with no measurable Ca(2+) influx driven by single AP stimuli attributable to the balance of CNAα and CDK5 activities because blockade of either CNAα or CDK5 activity changes the proportion of presynaptically silent nerve terminals. Thus, CNAα and CDK5 enzymatic activities are key determinants of release probability.


Assuntos
Calcineurina/metabolismo , Quinase 5 Dependente de Ciclina/metabolismo , Terminações Nervosas/metabolismo , Neurônios/citologia , Probabilidade , Potenciais de Ação/genética , Potenciais de Ação/fisiologia , Animais , Animais Recém-Nascidos , Cálcio/metabolismo , Bloqueadores dos Canais de Cálcio/farmacologia , Células Cultivadas , Quinase 5 Dependente de Ciclina/genética , Exocitose/efeitos dos fármacos , Exocitose/genética , Hipocampo/citologia , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Neurônios/metabolismo , Estimulação Luminosa , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Sprague-Dawley , Transfecção , Proteína 2 Associada à Membrana da Vesícula/genética , ômega-Agatoxina IVA/farmacologia , Proteína Vermelha Fluorescente
15.
J Neurosci ; 33(27): 10938-49, 2013 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-23825400

RESUMO

Working memory is an essential component of higher cognitive function, and its impairment is a core symptom of multiple CNS disorders, including schizophrenia. Neuronal mechanisms supporting working memory under normal conditions have been described and include persistent, high-frequency activity of prefrontal cortical neurons. However, little is known about the molecular and cellular basis of working memory dysfunction in the context of neuropsychiatric disorders. To elucidate synaptic and neuronal mechanisms of working memory dysfunction, we have performed a comprehensive analysis of a mouse model of schizophrenia, the forebrain-specific calcineurin knock-out mouse. Biochemical analyses of cortical tissue from these mice revealed a pronounced hyperphosphorylation of synaptic vesicle cycling proteins known to be necessary for high-frequency synaptic transmission. Examination of the synaptic vesicle cycle in calcineurin-deficient neurons demonstrated an impairment of vesicle release enhancement during periods of intense stimulation. Moreover, brain slice and in vivo electrophysiological analyses showed that loss of calcineurin leads to a gene dose-dependent disruption of high-frequency synaptic transmission and network activity in the PFC, correlating with selective working memory impairment. Finally, we showed that levels of dynamin I, a key presynaptic protein and calcineurin substrate, are significantly reduced in prefrontal cortical samples from schizophrenia patients, extending the disease relevance of our findings. Our data provide support for a model in which impaired synaptic vesicle cycling represents a critical node for disease pathologies underlying the cognitive deficits in schizophrenia.


Assuntos
Calcineurina/deficiência , Transtornos da Memória/metabolismo , Memória de Curto Prazo/fisiologia , Córtex Pré-Frontal/metabolismo , Transmissão Sináptica/fisiologia , Vesículas Sinápticas/metabolismo , Adulto , Animais , Calcineurina/genética , Feminino , Humanos , Masculino , Transtornos da Memória/genética , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Rede Nervosa/metabolismo , Técnicas de Cultura de Órgãos , Vesículas Sinápticas/genética
16.
bioRxiv ; 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38895313

RESUMO

The ketogenic diet is an effective treatment for drug-resistant epilepsy, but the therapeutic mechanisms are poorly understood. Although ketones are able to fuel the brain, it is not known whether ketones are directly metabolized by neurons on a time scale sufficiently rapid to fuel the bioenergetic demands of sustained synaptic transmission. Here, we show that nerve terminals can use the ketone ß-hydroxybutyrate in a cell- autonomous fashion to support neurotransmission in both excitatory and inhibitory nerve terminals and that this flexibility relies on Ca2+ dependent upregulation of mitochondrial metabolism. Using a genetically encoded ATP sensor, we show that inhibitory axons fueled by ketones sustain much higher ATP levels under steady state conditions than excitatory axons, but that the kinetics of ATP production following activity are slower when using ketones as fuel compared to lactate/pyruvate for both excitatory and inhibitory neurons.

17.
bioRxiv ; 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38405980

RESUMO

The endoplasmic reticulum (ER) is an important regulator of Ca2+ in cells and dysregulation of ER calcium homeostasis can lead to numerous pathologies. Understanding how various pharmacological and genetic perturbations of ER Ca2+ homeostasis impacts cellular physiology would likely be facilitated by more quantitative measurements of ER Ca2+ levels that allow easier comparisons across conditions. Here, we developed a ratiometric version of our original ER-GCaMP probe that allows for more quantitative comparisons of the concentration of Ca2+ in the ER across cell types and sub-cellular compartments. Using this approach we show that the resting concentration of ER Ca2+ in primary dissociated neurons is substantially lower than that in measured in embryonic fibroblasts.

18.
Physiology (Bethesda) ; 27(1): 15-24, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22311967

RESUMO

The strength of a synapse can profoundly influence network function. How this strength is set at the molecular level is a key question in neuroscience. Here, we review a simple model of neurotransmission that serves as a convenient framework to discuss recent studies on RIM and synaptotagmin.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Modelos Neurológicos , Neurotransmissores/metabolismo , Sinapses/metabolismo , Transmissão Sináptica/fisiologia , Sinaptotagminas/metabolismo , Animais
19.
Curr Opin Cell Biol ; 18(4): 416-21, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16806881

RESUMO

Synaptic vesicles are made locally in the nerve terminal during recycling of membrane. Synaptic vesicle proteins must be sorted and concentrated on the plasma membrane, packaged into a budding vesicle of precise size and cut away from the synaptic surface. Adaptors, scaffolds, BAR-domain and ENTH-domain proteins all must be coordinated to carry out this sequence of events prior to the action of dynamin. Details of how this is orchestrated at nerve terminals are just beginning to emerge.


Assuntos
Endocitose/fisiologia , Exocitose/fisiologia , Terminações Pré-Sinápticas/fisiologia , Animais , Membrana Celular/fisiologia , Proteínas de Membrana/fisiologia , Modelos Biológicos , Vesículas Sinápticas/fisiologia
20.
Elife ; 122023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-37014052

RESUMO

Control of neurotransmission efficacy is central to theories of how the brain computes and stores information. Presynaptic G-protein coupled receptors (GPCRs) are critical in this problem as they locally influence synaptic strength and can operate on a wide range of time scales. Among the mechanisms by which GPCRs impact neurotransmission is by inhibiting voltage-gated calcium (Ca2+) influx in the active zone. Here, using quantitative analysis of both single bouton Ca2+ influx and exocytosis, we uncovered an unexpected non-linear relationship between the magnitude of action potential driven Ca2+ influx and the concentration of external Ca2+ ([Ca2+]e). We find that this unexpected relationship is leveraged by GPCR signaling when operating at the nominal physiological set point for [Ca2+]e, 1.2 mM, to achieve complete silencing of nerve terminals. These data imply that the information throughput in neural circuits can be readily modulated in an all-or-none fashion at the single synapse level when operating at the physiological set point.


Assuntos
Terminações Pré-Sinápticas , Sinapses , Terminações Pré-Sinápticas/fisiologia , Transmissão Sináptica/fisiologia , Potenciais de Ação/fisiologia , Ácido gama-Aminobutírico , Cálcio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA