Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
J Physiol ; 602(9): 1987-2017, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38593215

RESUMO

When the foot dorsum contacts an obstacle during locomotion, cutaneous afferents signal central circuits to coordinate muscle activity in the four limbs. Spinal cord injury disrupts these interactions, impairing balance and interlimb coordination. We evoked cutaneous reflexes by electrically stimulating left and right superficial peroneal nerves before and after two thoracic lateral hemisections placed on opposite sides of the cord at 9- to 13-week interval in seven adult cats (4 males and 3 females). We recorded reflex responses in ten hindlimb and five forelimb muscles bilaterally. After the first (right T5-T6) and second (left T10-T11) hemisections, coordination of the fore- and hindlimbs was altered and/or became less consistent. After the second hemisection, cats required balance assistance to perform quadrupedal locomotion. Short-latency reflex responses in homonymous and crossed hindlimb muscles largely remained unaffected after staggered hemisections. However, mid- and long-latency homonymous and crossed responses in both hindlimbs occurred less frequently after staggered hemisections. In forelimb muscles, homolateral and diagonal mid- and long-latency response occurrence significantly decreased after the first and second hemisections. In all four limbs, however, when present, short-, mid- and long-latency responses maintained their phase-dependent modulation. We also observed reduced durations of short-latency inhibitory homonymous responses in left hindlimb extensors early after the first hemisection and delayed short-latency responses in the right ipsilesional hindlimb after the first hemisection. Therefore, changes in cutaneous reflex responses correlated with impaired balance/stability and interlimb coordination during locomotion after spinal cord injury. Restoring reflex transmission could be used as a biomarker to facilitate locomotor recovery. KEY POINTS: Cutaneous afferent inputs coordinate muscle activity in the four limbs during locomotion when the foot dorsum contacts an obstacle. Thoracic spinal cord injury disrupts communication between spinal locomotor centres located at cervical and lumbar levels, impairing balance and limb coordination. We investigated cutaneous reflexes during quadrupedal locomotion by electrically stimulating the superficial peroneal nerve bilaterally, before and after staggered lateral thoracic hemisections of the spinal cord in cats. We showed a loss/reduction of mid- and long-latency responses in all four limbs after staggered hemisections, which correlated with altered coordination of the fore- and hindlimbs and impaired balance. Targeting cutaneous reflex pathways projecting to the four limbs could help develop therapeutic approaches aimed at restoring transmission in ascending and descending spinal pathways.


Assuntos
Membro Posterior , Locomoção , Músculo Esquelético , Reflexo , Traumatismos da Medula Espinal , Animais , Gatos , Membro Posterior/inervação , Membro Posterior/fisiologia , Membro Posterior/fisiopatologia , Masculino , Feminino , Traumatismos da Medula Espinal/fisiopatologia , Reflexo/fisiologia , Locomoção/fisiologia , Músculo Esquelético/inervação , Músculo Esquelético/fisiologia , Músculo Esquelético/fisiopatologia , Pele/inervação , Vértebras Torácicas , Membro Anterior/fisiopatologia , Membro Anterior/fisiologia , Estimulação Elétrica
2.
J Neurophysiol ; 131(6): 997-1013, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38691528

RESUMO

During quadrupedal locomotion, interactions between spinal and supraspinal circuits and somatosensory feedback coordinate forelimb and hindlimb movements. How this is achieved is not clear. To determine whether forelimb movements modulate hindlimb cutaneous reflexes involved in responding to an external perturbation, we stimulated the superficial peroneal nerve in six intact cats during quadrupedal locomotion and during hindlimb-only locomotion (with forelimbs standing on stationary platform) and in two cats with a low spinal transection (T12-T13) during hindlimb-only locomotion. We compared cutaneous reflexes evoked in six ipsilateral and four contralateral hindlimb muscles. Results showed similar occurrence and phase-dependent modulation of short-latency inhibitory and excitatory responses during quadrupedal and hindlimb-only locomotion in intact cats. However, the depth of modulation was reduced in the ipsilateral semitendinosus during hindlimb-only locomotion. Additionally, longer-latency responses occurred less frequently in extensor muscles bilaterally during hindlimb-only locomotion, whereas short-latency inhibitory and longer-latency excitatory responses occurred more frequently in the ipsilateral and contralateral sartorius anterior, respectively. After spinal transection, short-latency inhibitory and excitatory responses were similar to both intact conditions, whereas mid- or longer-latency excitatory responses were reduced or abolished. Our results in intact cats and the comparison with spinal-transected cats suggest that the absence of forelimb movements suppresses inputs from supraspinal structures and/or cervical cord that normally contribute to longer-latency reflex responses in hindlimb extensor muscles.NEW & NOTEWORTHY During quadrupedal locomotion, the coordination of forelimb and hindlimb movements involves central circuits and somatosensory feedback. To demonstrate how forelimb movement affects hindlimb cutaneous reflexes during locomotion, we stimulated the superficial peroneal nerve in intact cats during quadrupedal and hindlimb-only locomotion as well as in spinal-transected cats during hindlimb-only locomotion. We show that forelimb movement influences the modulation of hindlimb cutaneous reflexes, particularly the occurrence of long-latency reflex responses.


Assuntos
Membro Anterior , Membro Posterior , Locomoção , Músculo Esquelético , Reflexo , Traumatismos da Medula Espinal , Animais , Gatos , Membro Posterior/fisiologia , Membro Anterior/fisiologia , Reflexo/fisiologia , Locomoção/fisiologia , Músculo Esquelético/fisiologia , Traumatismos da Medula Espinal/fisiopatologia , Movimento/fisiologia , Feminino , Masculino , Pele/inervação
3.
J Neurophysiol ; 128(6): 1593-1616, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36382895

RESUMO

Most previous studies investigated the recovery of locomotion in animals and people with incomplete spinal cord injury (SCI) during relatively simple tasks (e.g., walking in a straight line on a horizontal surface or a treadmill). We know less about the recovery of locomotion after incomplete SCI in left-right asymmetric conditions, such as turning or stepping along circular trajectories. To investigate this, we collected kinematic and electromyography data during split-belt locomotion at different left-right speed differences before and after a right thoracic lateral spinal cord hemisection in nine adult cats. After hemisection, although cats still performed split-belt locomotion, we observed several changes in the gait pattern compared with the intact state at early (1-2 wk) and late (7-8 wk) time points. Cats with larger lesions showed new coordination patterns between the fore- and hindlimbs, with the forelimbs taking more steps. Despite this change in fore-hind coordination, cats maintained consistent phasing between the fore- and hindlimbs. Adjustments in cycle and phase (stance and swing) durations between the slow and fast sides allowed animals to maintain 1:1 left-right coordination. Periods of triple support involving the right (ipsilesional) hindlimb decreased in favor of quad support and triple support involving the other limbs. Step and stride lengths decreased with concurrent changes in the right fore- and hindlimbs, possibly to avoid interference. The above adjustments in the gait pattern allowed cats to retain the ability to locomote in asymmetric conditions after incomplete SCI. We discuss potential plastic neuromechanical mechanisms involved in locomotor recovery in these conditions.NEW & NOTEWORTHY Everyday locomotion often involves left-right asymmetries, when turning, walking along circular paths, stepping on uneven terrains, etc. To show how incomplete spinal cord injury affects locomotor control in asymmetric conditions, we collected data before and after a thoracic lateral spinal hemisection on a split-belt treadmill with one side stepping faster than the other. We show that adjustments in kinematics and muscle activity allowed cats to retain the ability to perform asymmetric locomotion after hemisection.


Assuntos
Locomoção , Traumatismos da Medula Espinal , Animais , Locomoção/fisiologia , Marcha/fisiologia , Medula Espinal/fisiologia , Membro Posterior/fisiologia , Eletromiografia
4.
Int J Mol Sci ; 23(10)2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35628347

RESUMO

We describe and analyze a computational model of neural circuits in the mammalian spinal cord responsible for generating and shaping locomotor-like oscillations. The model represents interacting populations of spinal neurons, including the neurons that were genetically identified and characterized in a series of previous experimental studies. Here, we specifically focus on the ipsilaterally projecting V1 interneurons, their possible role in the spinal locomotor circuitry, and their involvement in the generation of locomotor oscillations. The proposed connections of these neurons and their involvement in different neuronal pathways in the spinal cord allow the model to reproduce the results of optogenetic manipulations of these neurons under different experimental conditions. We suggest the existence of two distinct populations of V1 interneurons mediating different ipsilateral and contralateral interactions within the spinal cord. The model proposes explanations for multiple experimental data concerning the effects of optogenetic silencing and activation of V1 interneurons on the frequency of locomotor oscillations in the intact cord and hemicord under different experimental conditions. Our simulations provide an important insight into the organization of locomotor circuitry in the mammalian spinal cord.


Assuntos
Neurônios , Medula Espinal , Animais , Simulação por Computador , Interneurônios/fisiologia , Mamíferos/fisiologia , Medula Espinal/fisiologia
5.
J Neurosci ; 38(17): 4104-4122, 2018 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-29563181

RESUMO

When the foot contacts an obstacle during locomotion, cutaneous inputs activate spinal circuits to ensure dynamic balance and forward progression. In quadrupeds, this requires coordinated reflex responses between the four limbs. Here, we investigated the patterns and phasic modulation of cutaneous reflexes in forelimb and hindlimb muscles evoked by inputs from all four limbs. Five female cats were implanted to record muscle activity and to stimulate the superficial peroneal and superficial radial nerves during locomotion. Stimulating these nerves evoked short-, mid-, and longer-latency excitatory and/or inhibitory responses in all four limbs that were phase-dependent. The largest responses were generally observed during the peak activity of the muscle. Cutaneous reflexes during mid-swing were consistent with flexion of the homonymous limb and accompanied by modification of the stance phases of the other three limbs, by coactivating flexors and extensors and/or by delaying push-off. Cutaneous reflexes during mid-stance were consistent with stabilizing the homonymous limb by delaying and then facilitating its push-off and modifying the support phases of the homolateral and diagonal limbs, characterized by coactivating flexors and extensors, reinforcing extensor activity and/or delaying push-off. The shortest latencies of homolateral and diagonal responses were consistent with fast-conducting disynaptic or trisynaptic pathways. Descending homolateral and diagonal pathways from the forelimbs to the hindlimbs had a higher probability of eliciting responses compared with ascending pathways from the hindlimbs to the forelimbs. Thus, in quadrupeds, intralimb and interlimb reflexes activated by cutaneous inputs ensure dynamic coordination of the four limbs, producing a whole-body response.SIGNIFICANCE STATEMENT The skin contains receptors that, when activated, send inputs to spinal circuits, signaling a perturbation. Rapid responses, or reflexes, in muscles of the contacted limb and opposite homologous limb help maintain balance and forward progression. Here, we investigated reflexes during quadrupedal locomotion in the cat by electrically stimulating cutaneous nerves in each of the four limbs. Functionally, responses appear to modify the trajectory or stabilize the movement of the stimulated limb while modifying the support phase of the other limbs. Reflexes between limbs are mediated by fast-conducting pathways that involve excitatory and inhibitory circuits controlling each limb. The comparatively stronger descending pathways from cervical to lumbar circuits controlling the forelimbs and hindlimbs, respectively, could serve a protective function.


Assuntos
Extremidades/fisiologia , Locomoção , Reflexo , Animais , Gatos , Extremidades/inervação , Feminino , Músculo Esquelético/inervação , Músculo Esquelético/fisiologia , Condução Nervosa , Tempo de Reação , Pele/inervação
6.
PLoS Comput Biol ; 14(4): e1006148, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29698394

RESUMO

The circuit organization within the mammalian brainstem respiratory network, specifically within and between the pre-Bötzinger (pre-BötC) and Bötzinger (BötC) complexes, and the roles of these circuits in respiratory pattern generation are continuously debated. We address these issues with a combination of optogenetic experiments and modeling studies. We used transgenic mice expressing channelrhodopsin-2 under the VGAT-promoter to investigate perturbations of respiratory circuit activity by site-specific photostimulation of inhibitory neurons within the pre-BötC or BötC. The stimulation effects were dependent on the intensity and phase of the photostimulation. Specifically: (1) Low intensity (≤ 1.0 mW) pulses delivered to the pre-BötC during inspiration did not terminate activity, whereas stronger stimulations (≥ 2.0 mW) terminated inspiration. (2) When the pre-BötC stimulation ended in or was applied during expiration, rebound activation of inspiration occurred after a fixed latency. (3) Relatively weak sustained stimulation (20 Hz, 0.5-2.0 mW) of pre-BötC inhibitory neurons increased respiratory frequency, while a further increase of stimulus intensity (> 3.0 mW) reduced frequency and finally (≥ 5.0 mW) terminated respiratory oscillations. (4) Single pulses (0.2-5.0 s) applied to the BötC inhibited rhythmic activity for the duration of the stimulation. (5) Sustained stimulation (20 Hz, 0.5-3.0 mW) of the BötC reduced respiratory frequency and finally led to apnea. We have revised our computational model of pre-BötC and BötC microcircuits by incorporating an additional population of post-inspiratory inhibitory neurons in the pre-BötC that interacts with other neurons in the network. This model was able to reproduce the above experimental findings as well as previously published results of optogenetic activation of pre-BötC or BötC neurons obtained by other laboratories. The proposed organization of pre-BötC and BötC circuits leads to testable predictions about their specific roles in respiratory pattern generation and provides important insights into key circuit interactions operating within brainstem respiratory networks.


Assuntos
Modelos Neurológicos , Centro Respiratório/fisiologia , Animais , Geradores de Padrão Central/fisiologia , Biologia Computacional , Simulação por Computador , Conectoma , Fenômenos Eletrofisiológicos , Camundongos , Camundongos Transgênicos , Optogenética , Estimulação Luminosa , Centro Respiratório/citologia , Fenômenos Fisiológicos Respiratórios , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/genética , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo
7.
J Neurophysiol ; 119(1): 96-117, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28978767

RESUMO

The spinal locomotor central pattern generator (CPG) generates rhythmic activity with alternating flexion and extension phases. This rhythmic pattern is likely to result from inhibitory interactions between neural populations representing flexor and extensor half-centers. However, it is unclear whether the flexor-extensor CPG has a quasi-symmetric organization with both half-centers critically involved in rhythm generation, features an asymmetric organization with flexor-driven rhythmogenesis, or comprises a pair of intrinsically rhythmic half-centers. There are experimental data that support each of the above concepts but appear to be inconsistent with the others. In this theoretical/modeling study, we present and analyze a CPG model architecture that can operate in different regimes consistent with the above three concepts depending on conditions, which are defined by external excitatory drives to CPG half-centers. We show that control of frequency and phase durations within each regime depends on network dynamics, defined by the regime-dependent expression of the half-centers' intrinsic rhythmic capabilities and the operating phase transition mechanisms (escape vs. release). Our study suggests state dependency in locomotor CPG operation and proposes explanations for seemingly contradictory experimental data. NEW & NOTEWORTHY Our theoretical/modeling study focuses on the analysis of locomotor central pattern generators (CPGs) composed of conditionally bursting half-centers coupled with reciprocal inhibition and receiving independent external drives. We show that this CPG framework can operate in several regimes consistent with seemingly contradictory experimental data. In each regime, we study how intrinsic dynamics and phase-switching mechanisms control oscillation frequency and phase durations. Our results provide insights into the organization of spinal circuits controlling locomotion.


Assuntos
Geradores de Padrão Central/fisiologia , Locomoção , Modelos Neurológicos , Animais , Humanos , Músculo Esquelético/fisiologia , Periodicidade , Tempo de Reação
8.
J Physiol ; 594(21): 6117-6131, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27292055

RESUMO

KEY POINTS: Alternation of flexor and extensor activity in the mammalian spinal cord is mediated by two classes of genetically identified inhibitory interneurons, V1 and V2b. The V1 interneurons are essential for high-speed locomotor activity. They secure flexor-extensor alternations in the intact cord but lose this function after hemisection, suggesting that they are activated by inputs from the contralateral side of the cord. The V2b interneurons are involved in flexor-extensor alternations in both intact cord and hemicords. We used a computational model of the spinal network, simulating the left and right rhythm-generating circuits interacting via several commissural pathways, and extended this model by incorporating V1 and V2b neuron populations involved in flexor-extensor interactions on each cord side. The model reproduces multiple experimental data on selective silencing and activation of V1 and/or V2b neurons and proposes the organization of their connectivity providing flexor-extensor alternation in the spinal cord. ABSTRACT: Alternating flexor and extensor activity represents the fundamental property underlying many motor behaviours including locomotion. During locomotion this alternation appears to arise in rhythm-generating circuits and transpires at all levels of the spinal cord including motoneurons. Recent studies in vitro and in vivo have shown that flexor-extensor alternation during locomotion involves two classes of genetically identified, inhibitory interneurons: V1 and V2b. Particularly, in the isolated mouse spinal cord, abrogation of neurotransmission derived by both V1 and V2b interneurons resulted in flexor-extensor synchronization, whereas selective inactivation of only one of these neuron types did not abolish flexor-extensor alternation. After hemisection, inactivation of only V2b interneurons led to the flexor-extensor synchronization, while inactivation of V1 interneurons did not affect flexor-extensor alternation. Moreover, optogenetic activation of V2b interneurons suppressed extensor-related activity, while similar activation of V1 interneurons suppressed both flexor and extensor oscillations. Here, we address these issues using the previously published computational model of spinal circuitry simulating bilateral interactions between left and right rhythm-generating circuits. In the present study, we incorporate V1 and V2b neuron populations on both sides of the cord to make them critically involved in flexor-extensor interactions. The model reproduces multiple experimental data on the effects of hemisection and selective silencing or activation of V1 and V2b neurons and suggests connectivity profiles of these neurons and their specific roles in left-right (V1) and flexor-extensor (both V2b and V1) interactions in the spinal cord that can be tested experimentally.


Assuntos
Modelos Neurológicos , Músculo Esquelético/inervação , Medula Espinal/fisiologia , Animais , Interneurônios/metabolismo , Interneurônios/fisiologia , Transporte de Íons , Mamíferos , Potenciais da Membrana , Neurônios Motores/metabolismo , Neurônios Motores/fisiologia , Músculo Esquelético/fisiologia , Medula Espinal/citologia
9.
J Physiol ; 594(23): 6947-6967, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27633893

RESUMO

KEY POINTS: Quadrupeds express different gaits depending on speed of locomotion. Central pattern generators (one per limb) within the spinal cord generate locomotor oscillations and control limb movements. Neural interactions between these generators define interlimb coordination and gait. We present a computational model of spinal circuits representing four rhythm generators with left-right excitatory and inhibitory commissural and fore-hind inhibitory interactions within the cord. Increasing brainstem drive to all rhythm generators and excitatory commissural interneurons induces an increasing frequency of locomotor oscillations accompanied by speed-dependent gait changes from walk to trot and to gallop and bound. The model closely reproduces and suggests explanations for multiple experimental data, including speed-dependent gait transitions in intact mice and changes in gait expression in mutants lacking certain types of commissural interneurons. The model suggests the possible circuit organization in the spinal cord and proposes predictions that can be tested experimentally. ABSTRACT: As speed of locomotion is increasing, most quadrupeds, including mice, demonstrate sequential gait transitions from walk to trot and to gallop and bound. The neural mechanisms underlying these transitions are poorly understood. We propose that the speed-dependent expression of different gaits results from speed-dependent changes in the interactions between spinal circuits controlling different limbs and interlimb coordination. As a result, the expression of each gait depends on (1) left-right interactions within the spinal cord mediated by different commissural interneurons (CINs), (2) fore-hind interactions on each side of the spinal cord and (3) brainstem drives to rhythm-generating circuits and CIN pathways. We developed a computational model of spinal circuits consisting of four rhythm generators (RGs) with bilateral left-right interactions mediated by V0 CINs (V0D and V0V sub-types) providing left-right alternation, and conditional V3 CINs promoting left-right synchronization. Fore and hind RGs mutually inhibited each other. We demonstrate that linearly increasing excitatory drives to the RGs and V3 CINs can produce a progressive increase in the locomotor speed accompanied by sequential changes of gaits from walk to trot and to gallop and bound. The model closely reproduces and suggests explanations for the speed-dependent gait expression observed in vivo in intact mice and in mutants lacking V0V or all V0 CINs. Specifically, trot is not expressed after removal of V0V CINs, and only bound is expressed after removal of all V0 CINs. The model provides important insights into the organization of spinal circuits and neural control of locomotion.


Assuntos
Marcha/fisiologia , Modelos Biológicos , Medula Espinal/fisiologia , Animais , Extremidades/fisiologia , Interneurônios/fisiologia , Camundongos Mutantes
10.
PLoS Comput Biol ; 11(5): e1004270, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25970489

RESUMO

The locomotor gait in limbed animals is defined by the left-right leg coordination and locomotor speed. Coordination between left and right neural activities in the spinal cord controlling left and right legs is provided by commissural interneurons (CINs). Several CIN types have been genetically identified, including the excitatory V3 and excitatory and inhibitory V0 types. Recent studies demonstrated that genetic elimination of all V0 CINs caused switching from a normal left-right alternating activity to a left-right synchronized "hopping" pattern. Furthermore, ablation of only the inhibitory V0 CINs (V0D subtype) resulted in a lack of left-right alternation at low locomotor frequencies and retaining this alternation at high frequencies, whereas selective ablation of the excitatory V0 neurons (V0V subtype) maintained the left-right alternation at low frequencies and switched to a hopping pattern at high frequencies. To analyze these findings, we developed a simplified mathematical model of neural circuits consisting of four pacemaker neurons representing left and right, flexor and extensor rhythm-generating centers interacting via commissural pathways representing V3, V0D, and V0V CINs. The locomotor frequency was controlled by a parameter defining the excitation of neurons and commissural pathways mimicking the effects of N-methyl-D-aspartate on locomotor frequency in isolated rodent spinal cord preparations. The model demonstrated a typical left-right alternating pattern under control conditions, switching to a hopping activity at any frequency after removing both V0 connections, a synchronized pattern at low frequencies with alternation at high frequencies after removing only V0D connections, and an alternating pattern at low frequencies with hopping at high frequencies after removing only V0V connections. We used bifurcation theory and fast-slow decomposition methods to analyze network behavior in the above regimes and transitions between them. The model reproduced, and suggested explanation for, a series of experimental phenomena and generated predictions available for experimental testing.


Assuntos
Marcha , Interneurônios/fisiologia , Algoritmos , Animais , Simulação por Computador , Locomoção/fisiologia , Camundongos , Camundongos Knockout , Modelos Estatísticos , Atividade Motora/fisiologia , N-Metilaspartato/química , Neurônios/fisiologia , Reconhecimento Automatizado de Padrão , Medula Espinal/patologia
11.
J Physiol ; 593(11): 2403-26, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25820677

RESUMO

KEY POINTS: Coordination of neuronal activity between left and right sides of the mammalian spinal cord is provided by several sets of commissural interneurons (CINs) whose axons cross the midline. Genetically identified inhibitory V0D and excitatory V0V CINs and ipsilaterally projecting excitatory V2a interneurons were shown to secure left-right alternation at different locomotor speeds. We have developed computational models of neuronal circuits in the spinal cord that include left and right rhythm-generating centres interacting bilaterally via three parallel pathways mediated by V0D , V2a-V0V and V3 neuron populations. The models reproduce the experimentally observed speed-dependent left-right coordination in normal mice and the changes in coordination seen in mutants lacking specific neuron classes. The models propose an explanation for several experimental results and provide insights into the organization of the spinal locomotor network and parallel CIN pathways involved in gait control at different locomotor speeds. ABSTRACT: Different locomotor gaits in mammals, such as walking or galloping, are produced by coordinated activity in neuronal circuits in the spinal cord. Coordination of neuronal activity between left and right sides of the cord is provided by commissural interneurons (CINs), whose axons cross the midline. In this study, we construct and analyse two computational models of spinal locomotor circuits consisting of left and right rhythm generators interacting bilaterally via several neuronal pathways mediated by different CINs. The CIN populations incorporated in the models include the genetically identified inhibitory (V0D ) and excitatory (V0V ) subtypes of V0 CINs and excitatory V3 CINs. The model also includes the ipsilaterally projecting excitatory V2a interneurons mediating excitatory drive to the V0V CINs. The proposed network architectures and CIN connectivity allow the models to closely reproduce and suggest mechanistic explanations for several experimental observations. These phenomena include: different speed-dependent contributions of V0D and V0V CINs and V2a interneurons to left-right alternation of neural activity, switching gaits between the left-right alternating walking-like activity and the left-right synchronous hopping-like pattern in mutants lacking specific neuron classes, and speed-dependent asymmetric changes of flexor and extensor phase durations. The models provide insights into the architecture of spinal network and the organization of parallel inhibitory and excitatory CIN pathways and suggest explanations for how these pathways maintain alternating and synchronous gaits at different locomotor speeds. The models propose testable predictions about the neural organization and operation of mammalian locomotor circuits.


Assuntos
Locomoção/fisiologia , Modelos Neurológicos , Neurônios/fisiologia , Medula Espinal/fisiologia , Animais , Camundongos Transgênicos
12.
bioRxiv ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38585778

RESUMO

Locomotion in mammals is directly controlled by the spinal neuronal network, operating under the control of supraspinal signals and somatosensory feedback that interact with each other. However, the functional architecture of the spinal locomotor network, its operation regimes, and the role of supraspinal and sensory feedback in different locomotor behaviors, including at different speeds, remain unclear. We developed a computational model of spinal locomotor circuits receiving supraspinal drives and limb sensory feedback that could reproduce multiple experimental data obtained in intact and spinal-transected cats during tied-belt and split-belt treadmill locomotion. We provide evidence that the spinal locomotor network operates in different regimes depending on locomotor speed. In an intact system, at slow speeds (< 0.4 m/s), the spinal network operates in a non-oscillating state-machine regime and requires sensory feedback or external inputs for phase transitions. Removing sensory feedback related to limb extension prevents locomotor oscillations at slow speeds. With increasing speed and supraspinal drives, the spinal network switches to a flexor-driven oscillatory regime and then to a classical half-center regime. Following spinal transection, the spinal network can only operate in the state-machine regime. Our results suggest that the spinal network operates in different regimes for slow exploratory and fast escape locomotor behaviors, making use of different control mechanisms.

13.
bioRxiv ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38712151

RESUMO

In quadrupeds, such as cats, cutaneous afferents from the forepaw dorsum signal external perturbations and send signals to spinal circuits to coordinate the activity in muscles of all four limbs. How these cutaneous reflex pathways from forelimb afferents are reorganized after an incomplete spinal cord injury is not clear. Using a staggered thoracic lateral hemisections paradigm, we investigated changes in intralimb and interlimb reflex pathways by electrically stimulating the left and right superficial radial nerves in seven adult cats and recording reflex responses in five forelimb and ten hindlimb muscles. After the first (right T5-T6) and second (left T10-T11) hemisections, forelimb-hindlimb coordination was altered and weakened. After the second hemisection, cats required balance assistance to perform quadrupedal locomotion. Short-, mid- and long-latency homonymous and crossed reflex responses in forelimb muscles and their phase modulation remained largely unaffected after staggered hemisections. The occurrence of homolateral and diagonal mid- and long-latency responses in hindlimb muscles evoked with left and right superficial radial nerve stimulation was significantly reduced at the first time point after the first hemisection, but partially recovered at the second time point with left superficial radial nerve stimulation. These responses were lost or reduced after the second hemisection. When present, all reflex responses, including homolateral and diagonal, maintained their phase-dependent modulation. Therefore, our results show a considerable loss in cutaneous reflex transmission from cervical to lumbar levels after incomplete spinal cord injury, albeit with preservation of phase modulation, likely affecting functional responses to external perturbations.

14.
J Physiol ; 591(22): 5491-508, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24081162

RESUMO

The spinal neural circuit contains inhibitory (CINi) and excitatory (CINe) commissural interneurons with axons crossing the mid-line. Direction of these axons to the other side of the cord is controlled by axon guidance molecules, such as Netrin-1 and DCC. The cord also contains glutamatergic interneurons, whose axon guidance involves the EphA4 receptor. In EphA4 knockout (KO) and Netrin-1 KO mice, the normal left-right alternating pattern is replaced with a synchronized hopping gait, and the cord of DCC KO mice exhibits uncoordinated left and right oscillations. To investigate the effects of these genetic transformations, we used a computational model of the spinal circuits containing left and right rhythm-generating neuron populations (RGs), each with a subpopulation of EphA4-positive neurons, and CINi and CINe populations mediating mutual inhibition and excitation between the left and right RGs. In the EphA4 KO circuits, half of the EphA4-positive axons crossed the mid-line and excited the contralateral RG neurons. In the Netrin-1 KO model, the number of contralateral CINi projections was significantly reduced, while in the DCC KO model, the numbers of both CINi and CINe connections were reduced. In our simulations, the EphA4 and Netrin-1 KO circuits switched from the left-right alternating pattern to a synchronized hopping pattern, and the DCC KO network exhibited uncoordinated left-right activity. The amplification of inhibitory interactions re-established an alternating pattern in the EphA4 and DCC KO circuits, but not in the Netrin-1 KO network. The model reproduces the genetic transformations and provides insights into the organization of the spinal locomotor network.


Assuntos
Interneurônios/fisiologia , Locomoção/fisiologia , Rede Nervosa/fisiologia , Medula Espinal/fisiologia , Animais , Axônios/metabolismo , Axônios/fisiologia , Marcha/fisiologia , Interneurônios/metabolismo , Locomoção/genética , Camundongos , Camundongos Knockout , Modelos Neurológicos , Atividade Motora/genética , Atividade Motora/fisiologia , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/metabolismo , Rede Nervosa/metabolismo , Netrina-1 , Receptor EphA4/genética , Receptor EphA4/metabolismo , Medula Espinal/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
15.
Eur J Neurosci ; 37(2): 212-30, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23121313

RESUMO

The neural mechanisms generating rhythmic bursting activity in the mammalian brainstem, particularly in the pre-Bötzinger complex (pre-BötC), which is involved in respiratory rhythm generation, and in the spinal cord (e.g. locomotor rhythmic activity) that persist after blockade of synaptic inhibition remain poorly understood. Experimental studies in rodent medullary slices containing the pre-BötC identified two mechanisms that could potentially contribute to the generation of rhythmic bursting: one based on the persistent Na(+) current (I(NaP)), and the other involving the voltage-gated Ca(2+) current (I(Ca)) and the Ca(2+) -activated nonspecific cation current (I(CAN)), activated by intracellular Ca(2+) accumulated from extracellular and intracellular sources. However, the involvement and relative roles of these mechanisms in rhythmic bursting are still under debate. In this theoretical/modelling study, we investigated Na(+)-dependent and Ca(2+)-dependent bursting generated in single cells and heterogeneous populations of synaptically interconnected excitatory neurons with I(NaP) and I(Ca) randomly distributed within populations. We analysed the possible roles of network connections, ionotropic and metabotropic synaptic mechanisms, intracellular Ca(2+) release, and the Na(+)/K(+) pump in rhythmic bursting generated under different conditions. We show that a heterogeneous population of excitatory neurons can operate in different oscillatory regimes with bursting dependent on I(NaP) and/or I(CAN), or independent of both. We demonstrate that the operating bursting mechanism may depend on neuronal excitation, synaptic interactions within the network, and the relative expression of particular ionic currents. The existence of multiple oscillatory regimes and their state dependence demonstrated in our models may explain different rhythmic activities observed in the pre-BötC and other brainstem/spinal cord circuits under different experimental conditions.


Assuntos
Potenciais de Ação , Cálcio/metabolismo , Modelos Neurológicos , Rede Nervosa/fisiologia , Sódio/metabolismo , Animais , Tronco Encefálico/fisiologia , Canais de Cálcio/fisiologia , Humanos , Neurônios/fisiologia , Potássio/metabolismo , ATPase Trocadora de Sódio-Potássio/fisiologia , Medula Espinal/fisiologia , Sinapses/fisiologia , Transmissão Sináptica
16.
bioRxiv ; 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37961258

RESUMO

Locomotion is a complex process involving specific interactions between the central neural controller and the mechanical components of the system. The basic rhythmic activity generated by locomotor circuits in the spinal cord defines rhythmic limb movements and their central coordination. The operation of these circuits is modulated by sensory feedback from the limbs providing information about the state of the limbs and the body. However, the specific role and contribution of central interactions and sensory feedback in the control of locomotor gait and posture remain poorly understood. We use biomechanical data on quadrupedal locomotion in mice and recent findings on the organization of neural interactions within the spinal locomotor circuitry to create and analyze a tractable mathematical model of mouse locomotion. The model includes a simplified mechanical model of the mouse body with four limbs and a central controller composed of four rhythm generators, each operating as a state machine controlling the state of one limb. Feedback signals characterize the load and extension of each limb as well as postural stability (balance). We systematically investigate and compare several model versions and compare their behavior to existing experimental data on mouse locomotion. Our results highlight the specific roles of sensory feedback and some central propriospinal interactions between circuits controlling fore and hind limbs for speed-dependent gait expression. Our models suggest that postural imbalance feedback may be critically involved in the control of swing-to-stance transitions in each limb and the stabilization of walking direction.

17.
Exp Neurol ; 368: 114496, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37499972

RESUMO

Thoracic spinal cord injury affects long propriospinal neurons that interconnect the cervical and lumbar enlargements. These neurons are crucial for coordinating forelimb and hindlimb locomotor movements in a speed-dependent manner. However, recovery from spinal cord injury is usually studied over a very limited range of speeds that may not fully expose circuitry dysfunction. To overcome this limitation, we investigated overground locomotion in rats trained to move over an extended distance with a wide range of speeds both pre-injury and after recovery from thoracic hemisection or contusion injuries. In this experimental context, intact rats expressed a speed-dependent continuum of alternating (walk and trot) and non-alternating (canter, gallop, half-bound gallop, and bound) gaits. After a lateral hemisection injury, rats recovered the ability to locomote over a wide range of speeds but lost the ability to use the highest-speed gaits (half-bound gallop and bound) and predominantly used the limb contralateral to the injury as lead during canter and gallop. A moderate contusion injury caused a greater reduction in maximal speed, loss of all non-alternating gaits, and emergence of novel alternating gaits. These changes resulted from weak fore-hind coupling together with appropriate control of left-right alternation. After hemisection, animals expressed a subset of intact gaits with appropriate interlimb coordination even on the side of the injury, where the long propriospinal connections were severed. These observations highlight how investigating locomotion over the full range of speeds can reveal otherwise hidden aspects of spinal locomotor control and post-injury recovery.


Assuntos
Contusões , Traumatismos da Medula Espinal , Ratos , Animais , Locomoção , Medula Espinal , Marcha/fisiologia , Membro Posterior
18.
bioRxiv ; 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36993490

RESUMO

Thoracic spinal cord injury affects long propriospinal neurons that interconnect the cervical and lumbar enlargements. These neurons are crucial for coordinating forelimb and hindlimb locomotor movements in a speed-dependent manner. However, recovery from spinal cord injury is usually studied over a very limited range of speeds that may not fully expose circuitry dysfunction. To overcome this limitation, we investigated overground locomotion in rats trained to move over an extended distance with a wide range of speeds both pre-injury and after recovery from thoracic hemisection or contusion injuries. In this experimental context, intact rats expressed a speed-dependent continuum of alternating (walk and trot) and non-alternating (canter, gallop, half-bound gallop, and bound) gaits. After a lateral hemisection injury, rats recovered the ability to locomote over a wide range of speeds but lost the ability to use the highest-speed gaits (half-bound gallop and bound) and predominantly used the limb contralateral to the injury as lead during canter and gallop. A moderate contusion injury caused a greater reduction in maximal speed, loss of all non-alternating gaits, and emergence of novel alternating gaits. These changes resulted from weak fore-hind coupling together with appropriate control of left-right alternation. After hemisection, animals expressed a subset of intact gaits with appropriate interlimb coordination even on the side of the injury, where the long propriospinal connections were severed. These observations highlight how investigating locomotion over the full range of speeds can reveal otherwise hidden aspects of spinal locomotor control and post-injury recovery.

19.
Front Syst Neurosci ; 17: 1199079, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37360774

RESUMO

Introduction: During locomotion, cutaneous reflexes play an essential role in rapidly responding to an external perturbation, for example, to prevent a fall when the foot contacts an obstacle. In cats and humans, cutaneous reflexes involve all four limbs and are task- and phase modulated to generate functionally appropriate whole-body responses. Methods: To assess task-dependent modulation of cutaneous interlimb reflexes, we electrically stimulated the superficial radial or superficial peroneal nerves in adult cats and recorded muscle activity in the four limbs during tied-belt (equal left-right speeds) and split-belt (different left-right speeds) locomotion. Results: We show that the pattern of intra- and interlimb cutaneous reflexes in fore- and hindlimbs muscles and their phase-dependent modulation were conserved during tied-belt and split-belt locomotion. Short-latency cutaneous reflex responses to muscles of the stimulated limb were more likely to be evoked and phase-modulated when compared to muscles in the other limbs. In some muscles, the degree of reflex modulation was significantly reduced during split-belt locomotion compared to tied-belt conditions. Split-belt locomotion increased the step-by-step variability of left-right symmetry, particularly spatially. Discussion: These results suggest that sensory signals related to left-right symmetry reduce cutaneous reflex modulation, potentially to avoid destabilizing an unstable pattern.

20.
eNeuro ; 10(6)2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37328297

RESUMO

Spinal sensorimotor circuits interact with supraspinal and peripheral inputs to generate quadrupedal locomotion. Ascending and descending spinal pathways ensure coordination between the forelimbs and hindlimbs. Spinal cord injury (SCI) disrupts these pathways. To investigate the control of interlimb coordination and hindlimb locomotor recovery, we performed two lateral thoracic hemisections on opposite sides of the cord (right T5-T6 and left T10-T11) at an interval of approximately two months in eight adult cats. In three cats, the spinal cord was transected at T12-T13. We collected electromyography (EMG) and kinematic data during quadrupedal and hindlimb-only locomotion before and after spinal lesions. We show that (1) cats spontaneously recover quadrupedal locomotion following staggered hemisections but require balance assistance after the second one, (2) coordination between the forelimbs and hindlimbs displays 2:1 patterns (two cycles of one forelimb within one hindlimb cycle) and becomes weaker and more variable after both hemisections, (3) left-right asymmetries in hindlimb stance and swing durations appear after the first hemisection and reverse after the second, and (4) support periods reorganize after staggered hemisections to favor support involving both forelimbs and diagonal limbs. Cats expressed hindlimb locomotion the day following spinal transection, indicating that lumbar sensorimotor circuits play a prominent role in hindlimb locomotor recovery after staggered hemisections. These results reflect a series of changes in spinal sensorimotor circuits that allow cats to maintain and recover some level of quadrupedal locomotor functionality with diminished motor commands from the brain and cervical cord, although the control of posture and interlimb coordination remains impaired.


Assuntos
Traumatismos da Medula Espinal , Medula Espinal , Animais , Locomoção , Membro Posterior , Eletromiografia , Postura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA