Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Inf Model ; 59(9): 3655-3666, 2019 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-31449403

RESUMO

Consensus scoring has become a commonly used strategy within structure-based virtual screening (VS) workflows with improved performance compared to those based in a single scoring function. However, no research has been devoted to analyze the worth of docking scoring functions components in consensus scoring. We implemented and tested a method that incorporates docking scoring functions components into the setting of high performance VS workflows. This method uses genetic algorithms for finding the combination of scoring components that maximizes the VS enrichment for any target. Our methodology was validated using a data set including ligands and decoys for 102 targets that have been widely used in VS validation studies. Results show that our approach outperforms other methods for all targets. It also boosts the initial enrichment performance of the traditional use of whole scoring functions in consensus scoring by an average of 45%. Our methodology showed to be outstandingly predictive when challenged to rescore external (previously unseen) data. Remarkably, CompScore was able not only to retain its performance after redocking with a different software, but also proved that the enrichment obtained was not artificial. CompScore is freely available at: http://bioquimio.udla.edu.ec/compscore/ .


Assuntos
Descoberta de Drogas/métodos , Software , Algoritmos , Desenho de Fármacos , Humanos , Ligantes , Simulação de Acoplamento Molecular , Ligação Proteica , Validação de Programas de Computador
2.
Environ Microbiol ; 20(1): 85-96, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29124862

RESUMO

Variovorax sp. WDL1 mediates hydrolysis of the herbicide linuron into 3,4-dichloroaniline (DCA) and N,O-dimethylhydroxylamine in a tripartite bacterial consortium with Comamonas testosteroni WDL7 and Hyphomicrobium sulfonivorans WDL6. Although strain WDL1 contains the dcaQTA1A2B operon for DCA oxidation, this conversion is mainly performed by WDL7. Phenotypic diversification observed in WDL1 cultures and scrutiny of the WDL1 genome suggest that WDL1 cultures consist of two dedicated subpopulations, i.e., a linuron-hydrolysing subpopulation (Lin + DCA-) and a DCA-oxidizing subpopulation (Lin-DCA+). Whole genome analysis of strains representing the respective subpopulations revealed that they are identical, aside from the presence of hylA (in Lin + DCA- cells) and the dcaQTA1A2B gene cluster (in Lin-DCA+ cells), and that these catabolic gene modules replace each other at exactly the same locus on a 1380 kb extra-chromosomal element that shows plasmid gene functions including genes for transferability by conjugation. Both subpopulations proliferate in consortium biofilms fed with linuron, but Lin + DCA- cells compose the main WDL1 subpopulation. Our observations instigated revisiting the interactions within the consortium and suggest that the physical separation of two essential linuron catabolic gene clusters in WDL1 by mutually exclusive integration in the same mobile genetic element is key to the existence of WDL1 in a consortium mode.


Assuntos
Biodegradação Ambiental , Comamonadaceae/metabolismo , Herbicidas/metabolismo , Hyphomicrobium/metabolismo , Linurona/metabolismo , Biofilmes , Comamonadaceae/classificação , Comamonadaceae/genética , Genoma Bacteriano/genética , Hyphomicrobium/classificação , Hyphomicrobium/genética , Sequências Repetitivas Dispersas/genética , Família Multigênica/genética , Sequenciamento Completo do Genoma
3.
Nature ; 479(7374): 487-92, 2011 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-22113690

RESUMO

The spider mite Tetranychus urticae is a cosmopolitan agricultural pest with an extensive host plant range and an extreme record of pesticide resistance. Here we present the completely sequenced and annotated spider mite genome, representing the first complete chelicerate genome. At 90 megabases T. urticae has the smallest sequenced arthropod genome. Compared with other arthropods, the spider mite genome shows unique changes in the hormonal environment and organization of the Hox complex, and also reveals evolutionary innovation of silk production. We find strong signatures of polyphagy and detoxification in gene families associated with feeding on different hosts and in new gene families acquired by lateral gene transfer. Deep transcriptome analysis of mites feeding on different plants shows how this pest responds to a changing host environment. The T. urticae genome thus offers new insights into arthropod evolution and plant-herbivore interactions, and provides unique opportunities for developing novel plant protection strategies.


Assuntos
Adaptação Fisiológica/genética , Genoma/genética , Herbivoria/genética , Tetranychidae/genética , Tetranychidae/fisiologia , Adaptação Fisiológica/fisiologia , Animais , Ecdisterona/análogos & derivados , Ecdisterona/genética , Evolução Molecular , Fibroínas/genética , Regulação da Expressão Gênica , Transferência Genética Horizontal/genética , Genes Homeobox/genética , Genômica , Herbivoria/fisiologia , Dados de Sequência Molecular , Muda/genética , Família Multigênica/genética , Nanoestruturas/química , Plantas/parasitologia , Seda/biossíntese , Seda/química , Transcriptoma/genética
4.
Nucleic Acids Res ; 43(16): e105, 2015 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-25990729

RESUMO

Clonal populations accumulate mutations over time, resulting in different haplotypes. Deep sequencing of such a population in principle provides information to reconstruct these haplotypes and the frequency at which the haplotypes occur. However, this reconstruction is technically not trivial, especially not in clonal systems with a relatively low mutation frequency. The low number of segregating sites in those systems adds ambiguity to the haplotype phasing and thus obviates the reconstruction of genome-wide haplotypes based on sequence overlap information.Therefore, we present EVORhA, a haplotype reconstruction method that complements phasing information in the non-empty read overlap with the frequency estimations of inferred local haplotypes. As was shown with simulated data, as soon as read lengths and/or mutation rates become restrictive for state-of-the-art methods, the use of this additional frequency information allows EVORhA to still reliably reconstruct genome-wide haplotypes. On real data, we show the applicability of the method in reconstructing the population composition of evolved bacterial populations and in decomposing mixed bacterial infections from clinical samples.


Assuntos
Genoma Bacteriano , Haplótipos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos , Infecções Bacterianas/microbiologia , Coinfecção/microbiologia , Escherichia coli/genética , Evolução Molecular , Humanos , Polimorfismo Genético
5.
Mycorrhiza ; 27(3): 225-232, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27882467

RESUMO

In epiphytic orchids, distinctive groups of fungi are involved in the symbiotic association. However, little is known about the factors that determine the mycorrhizal community structure. Here, we analyzed the orchid mycorrhizal fungi communities associated with three sympatric Cymbidieae epiphytic tropical orchids (Cyrtochilum flexuosum, Cyrtochilum myanthum, and Maxillaria calantha) at two sites located within the mountain rainforest of southern Ecuador. To characterize these communities at each orchid population, the ITS2 region was analyzed by Illumina MiSeq technology. Fifty-five mycorrhizal fungi operational taxonomic units (OTUs) putatively attributed to members of Serendipitaceae, Ceratobasidiaceae and Tulasnellaceae were identified. Significant differences in mycorrhizal communities were detected between the three sympatric orchid species as well as among sites/populations. Interestingly, some mycorrhizal OTUs overlapped among orchid populations. Our results suggested that populations of studied epiphytic orchids have site-adjusted mycorrhizal communities structured around keystone fungal species. Interaction with multiple mycorrhizal fungi could favor orchid site occurrence and co-existence among several orchid species.


Assuntos
Micorrizas/classificação , Micorrizas/isolamento & purificação , Orchidaceae/microbiologia , Análise de Sequência de DNA/métodos , Biodiversidade , DNA Fúngico/análise , Equador , Micorrizas/genética , Orchidaceae/classificação , Filogenia , Raízes de Plantas/microbiologia , Especificidade da Espécie , Simbiose
6.
Bioinformatics ; 30(9): 1316-8, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24407224

RESUMO

To facilitate the exploration of publicly available Zea mays expression data, we constructed a maize expression compendium, making use of an integration methodology and a consistent probe to gene mapping based on the 5b.60 sequence release of Z. mays. The compendium is made available through a web portal MAGIC that hosts a variety of analysis tools to easily browse and analyze the data. Our compendium is different from previous initiatives in combining expression values across different experiments by providing a consistent gene annotation across different platforms.


Assuntos
Expressão Gênica , Zea mays/genética , Regulação da Expressão Gênica de Plantas , Internet , Anotação de Sequência Molecular , Software
7.
BMC Genomics ; 15: 349, 2014 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-24885406

RESUMO

BACKGROUND: Bacterial interactions with the environment- and/or host largely depend on the bacterial glycome. The specificities of a bacterial glycome are largely determined by glycosyltransferases (GTs), the enzymes involved in transferring sugar moieties from an activated donor to a specific substrate. Of these GTs their coding regions, but mainly also their substrate specificity are still largely unannotated as most sequence-based annotation flows suffer from the lack of characterized sequence motifs that can aid in the prediction of the substrate specificity. RESULTS: In this work, we developed an analysis flow that uses sequence-based strategies to predict novel GTs, but also exploits a network-based approach to infer the putative substrate classes of these predicted GTs. Our analysis flow was benchmarked with the well-documented GT-repertoire of Campylobacter jejuni NCTC 11168 and applied to the probiotic model Lactobacillus rhamnosus GG to expand our insights in the glycosylation potential of this bacterium. In L. rhamnosus GG we could predict 48 GTs of which eight were not previously reported. For at least 20 of these GTs a substrate relation was inferred. CONCLUSIONS: We confirmed through experimental validation our prediction of WelI acting upstream of WelE in the biosynthesis of exopolysaccharides. We further hypothesize to have identified in L. rhamnosus GG the yet undiscovered genes involved in the biosynthesis of glucose-rich glycans and novel GTs involved in the glycosylation of proteins. Interestingly, we also predict GTs with well-known functions in peptidoglycan synthesis to also play a role in protein glycosylation.


Assuntos
Proteínas de Bactérias/genética , Campylobacter jejuni/enzimologia , Glicosiltransferases/genética , Lacticaseibacillus rhamnosus/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Campylobacter jejuni/metabolismo , Redes Reguladoras de Genes/genética , Glicosilação , Glicosiltransferases/química , Glicosiltransferases/metabolismo , Lacticaseibacillus rhamnosus/metabolismo , Cadeias de Markov , Especificidade por Substrato
8.
BMC Genomics ; 15: 207, 2014 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-24640961

RESUMO

BACKGROUND: Bulk segregant analysis (BSA) coupled to high throughput sequencing is a powerful method to map genomic regions related with phenotypes of interest. It relies on crossing two parents, one inferior and one superior for a trait of interest. Segregants displaying the trait of the superior parent are pooled, the DNA extracted and sequenced. Genomic regions linked to the trait of interest are identified by searching the pool for overrepresented alleles that normally originate from the superior parent. BSA data analysis is non-trivial due to sequencing, alignment and screening errors. RESULTS: To increase the power of the BSA technology and obtain a better distinction between spuriously and truly linked regions, we developed EXPLoRA (EXtraction of over-rePresented aLleles in BSA), an algorithm for BSA data analysis that explicitly models the dependency between neighboring marker sites by exploiting the properties of linkage disequilibrium through a Hidden Markov Model (HMM). Reanalyzing a BSA dataset for high ethanol tolerance in yeast allowed reliably identifying QTLs linked to this phenotype that could not be identified with statistical significance in the original study. Experimental validation of one of the least pronounced linked regions, by identifying its causative gene VPS70, confirmed the potential of our method. CONCLUSIONS: EXPLoRA has a performance at least as good as the state-of-the-art and it is robust even at low signal to noise ratio's i.e. when the true linkage signal is diluted by sampling, screening errors or when few segregants are available.


Assuntos
Algoritmos , Etanol/farmacologia , Locos de Características Quantitativas , Saccharomyces cerevisiae/efeitos dos fármacos , Mapeamento Cromossômico , Ligação Genética , Desequilíbrio de Ligação , Cadeias de Markov , Fenótipo , Saccharomyces cerevisiae/genética
9.
Mol Biol Evol ; 30(6): 1302-14, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23427276

RESUMO

Escherichia coli K12 is a commensal bacteria and one of the best-studied model organisms. Salmonella enterica serovar Typhimurium, on the other hand, is a facultative intracellular pathogen. These two prokaryotic species can be considered related phylogenetically, and they share a large amount of their genetic material, which is commonly termed the "core genome." Despite their shared core genome, both species display very different lifestyles, and it is unclear to what extent the core genome, apart from the species-specific genes, plays a role in this lifestyle divergence. In this study, we focus on the differences in expression domains for the orthologous genes in E. coli and S. Typhimurium. The iterative comparison of coexpression methodology was used on large expression compendia of both species to uncover the conservation and divergence of gene expression. We found that gene expression conservation occurs mostly independently from amino acid similarity. According to our estimates, at least more than one quarter of the orthologous genes has a different expression domain in E. coli than in S. Typhimurium. Genes involved with key cellular processes are most likely to have conserved their expression domains, whereas genes showing diverged expression are associated with metabolic processes that, although present in both species, are regulated differently. The expression domains of the shared "core" genome of E. coli and S. Typhimurium, consisting of highly conserved orthologs, have been tuned to help accommodate the differences in lifestyle and the pathogenic potential of Salmonella.


Assuntos
Sequência Conservada , Escherichia coli/genética , Evolução Molecular , Genes Bacterianos , Salmonella typhimurium/genética , Sequência de Bases , Análise por Conglomerados , Alinhamento de Sequência
10.
Nucleic Acids Res ; 40(19): 9506-12, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22904077

RESUMO

Genetic transformation is a natural process during which foreign DNA enters a cell and integrates into the genome. Apart from its relevance for horizontal gene transfer in nature, transformation is also the cornerstone of today's recombinant gene technology. Despite its importance, relatively little is known about the factors that determine transformation efficiency. We hypothesize that differences in DNA accessibility associated with nucleosome positioning may affect local transformation efficiency. We investigated the landscape of transformation efficiency at various positions in the Saccharomyces cerevisiae genome and correlated these measurements with nucleosome positioning. We find that transformation efficiency shows a highly significant inverse correlation with relative nucleosome density. This correlation was lost when the nucleosome pattern, but not the underlying sequence was changed. Together, our results demonstrate a novel role for nucleosomes and also allow researchers to predict transformation efficiency of a target region and select spots in the genome that are likely to yield higher transformation efficiency.


Assuntos
Nucleossomos/química , Transformação Genética , Sequência de Bases , DNA Fúngico/química , Saccharomyces cerevisiae/genética
11.
Plants (Basel) ; 13(6)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38592839

RESUMO

Coffee has immense value as a worldwide-appreciated commodity. However, its production faces the effects of climate change and the spread of severe diseases such as coffee leaf rust (CLR). The exploration of fungal endophytes associated with Coffea sp. has already found the existence of nearly 600 fungal species, but their role in the plants remains practically unknown. We have researched the diversity of leaf fungal endophytes in two Coffea arabica varieties: one susceptible and one resistant to CLR. Then, we conducted cross-infection essays with four common endophyte species (three Colletotrichum sp. and Xylaria sp. 1) and Hemileia vastatrix (CLR) in leaf discs, to investigate the interaction of the endophytes on CLR colonisation success and severity of infection. Two Colletotrichum sp., when inoculated 72 h before H. vastatrix, prevented the colonisation of the leaf disc by the latter. Moreover, the presence of endophytes prior to the arrival of H. vastatrix ameliorated the severity of CLR. Our work highlights both the importance of characterising the hidden biodiversity of endophytes and investigating their potential roles in the plant-endophyte interaction.

12.
Nucleic Acids Res ; 39(7): e41, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21149270

RESUMO

Increasingly large-scale expression compendia for different species are becoming available. By exploiting the modularity of the coexpression network, these compendia can be used to identify biological processes for which the expression behavior is conserved over different species. However, comparing module networks across species is not trivial. The definition of a biologically meaningful module is not a fixed one and changing the distance threshold that defines the degree of coexpression gives rise to different modules. As a result when comparing modules across species, many different partially overlapping conserved module pairs across species exist and deciding which pair is most relevant is hard. Therefore, we developed a method referred to as conserved modules across organisms (COMODO) that uses an objective selection criterium to identify conserved expression modules between two species. The method uses as input microarray data and a gene homology map and provides as output pairs of conserved modules and searches for the pair of modules for which the number of sharing homologs is statistically most significant relative to the size of the linked modules. To demonstrate its principle, we applied COMODO to study coexpression conservation between the two well-studied bacteria Escherichia coli and Bacillus subtilis. COMODO is available at: http://homes.esat.kuleuven.be/∼kmarchal/Supplementary_Information_Zarrineh_2010/comodo/index.html.


Assuntos
Perfilação da Expressão Gênica/métodos , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Mapeamento Cromossômico , Análise por Conglomerados , Escherichia coli/genética , Escherichia coli/metabolismo , Evolução Molecular , Regulação Bacteriana da Expressão Gênica , Genes Essenciais , Análise de Sequência com Séries de Oligonucleotídeos , Óperon , Probabilidade
13.
Appl Environ Microbiol ; 78(14): 4826-34, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22544260

RESUMO

The secondary metabolite mediating the GacS-dependent growth-inhibitory effect exerted by the rice rhizosphere isolate Pseudomonas putida RW10S2 on phytopathogenic Xanthomonas species was identified as white-line-inducing principle (WLIP), a member of the viscosin group of cyclic lipononadepsipeptides. WLIP producers are commonly referred to by the taxonomically invalid name "Pseudomonas reactans," based on their capacity to reveal the presence of a nearby colony of Pseudomonas tolaasii by inducing the formation of a visible precipitate ("white line") in agar medium between both colonies. This phenomenon is attributed to the interaction of WLIP with a cyclic lipopeptide of a distinct structural group, the fungitoxic tolaasin, and has found application as a diagnostic tool to identify tolaasin-producing bacteria pathogenic to mushrooms. The genes encoding the WLIP nonribosomal peptide synthetases WlpA, WlpB, and WlpC were identified in two separate genomic clusters (wlpR-wlpA and wlpBC) with an operon organization similar to that of the viscosin, massetolide, and entolysin biosynthetic systems. Expression of wlpR is dependent on gacS, and the encoded regulator of the LuxR family (WlpR) activates transcription of the biosynthetic genes and the linked export genes, which is not controlled by the RW10S2 quorum-sensing system PmrR/PmrI. In addition to linking the known phenotypes of white line production and hemolytic activity of a WLIP producer with WLIP biosynthesis, additional properties of ecological relevance conferred by WLIP production were identified, namely, antagonism against Xanthomonas and involvement in swarming and biofilm formation.


Assuntos
Proteínas de Bactérias/biossíntese , Lipopeptídeos/biossíntese , Oryza/microbiologia , Peptídeos Cíclicos/biossíntese , Pseudomonas putida/metabolismo , Rizosfera , Proteínas de Bactérias/genética , Biofilmes/crescimento & desenvolvimento , Meios de Cultura , Regulação Bacteriana da Expressão Gênica , Lipopeptídeos/genética , Óperon , Peptídeo Sintases/líquido cefalorraquidiano , Peptídeo Sintases/genética , Peptídeos Cíclicos/genética , Pseudomonas putida/genética , Pseudomonas putida/crescimento & desenvolvimento , Pseudomonas putida/fisiologia
14.
Front Plant Sci ; 13: 901733, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35845705

RESUMO

The repeatome is composed of diverse families of repetitive DNA that keep signatures on the historical events that shaped the evolution of their hosting species. The cold seasonal Loliinae subtribe includes worldwide distributed taxa, some of which are the most important forage and lawn species (fescues and ray-grasses). The Loliinae are prone to hybridization and polyploidization. It has been observed a striking two-fold difference in genome size between the broad-leaved (BL) and fine-leaved (FL) Loliinae diploids and a general trend of genome reduction of some high polyploids. We have used genome skimming data to uncover the composition, abundance, and potential phylogenetic signal of repetitive elements across 47 representatives of the main Loliinae lineages. Independent and comparative analyses of repetitive sequences and of 5S rDNA loci were performed for all taxa under study and for four evolutionary Loliinae groups [Loliinae, Broad-leaved (BL), Fine-leaved (FL), and Schedonorus lineages]. Our data showed that the proportion of the genome covered by the repeatome in the Loliinae species was relatively high (average ∼ 51.8%), ranging from high percentages in some diploids (68.7%) to low percentages in some high-polyploids (30.7%), and that changes in their genome sizes were likely caused by gains or losses in their repeat elements. Ty3-gypsy Retand and Ty1-copia Angela retrotransposons were the most frequent repeat families in the Loliinae although the relatively more conservative Angela repeats presented the highest correlation of repeat content with genome size variation and the highest phylogenetic signal of the whole repeatome. By contrast, Athila retrotransposons presented evidence of recent proliferations almost exclusively in the Lolium clade. The repeatome evolutionary networks showed an overall topological congruence with the nuclear 35S rDNA phylogeny and a geographic-based structure for some lineages. The evolution of the Loliinae repeatome suggests a plausible scenario of recurrent allopolyploidizations followed by diploidizations that generated the large genome sizes of BL diploids as well as large genomic rearrangements in highly hybridogenous lineages that caused massive repeatome and genome contractions in the Schedonorus and Aulaxyper polyploids. Our study has contributed to disentangling the impact of the repeatome dynamics on the genome diversification and evolution of the Loliinae grasses.

15.
Plants (Basel) ; 11(17)2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36079685

RESUMO

Allopolyploidy is considered a driver of diversity in subtribe Loliinae. We investigate the evolution and systematics of the poorly studied Mesoamerican and South American polyploid broad-leaved Festuca L. species of uncertain origin and unclear taxonomy. A taxonomic study of seven diagnostic morphological traits was conducted on a representation of 22 species. Phylogenomic analyses were performed on a representation of these supraspecific taxa and all other Loliinae lineages using separate data from the entire plastome, nuclear rDNA 45S and 5S genes, and repetitive DNA elements. F. subgen. Mallopetalon falls within the fine-leaved (FL) Loliinae clade, whereas the remaining taxa are nested within the broad-leaved (BL) Loliinae clade forming two separate Mexico-Central-South American (MCSAI, MCSAII) lineages. MCSAI includes representatives of F. sect. Glabricarpae and F. subgen. Asperifolia plus F. superba, and MCSAII of F. subgen. Erosiflorae and F. sect. Ruprechtia plus F. argentina. MCSAII likely had a BL Leucopoa paternal ancestor, MCSAI and MCSAII a BL Meso-South American maternal ancestor, and Mallopetalon FL, American I-II ancestors. Plastome vs. nuclear topological discordances corroborated the hybrid allopolyploid origins of these taxa, some of which probably originated from Northern Hemisphere ancestors. The observed data indicate rapid reticulate radiations in the Central-South American subcontinent. Our systematic study supports the reclassification of some studied taxa in different supraspecific Festuca ranks.

16.
Viruses ; 14(10)2022 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-36298852

RESUMO

An emerging virus isolated from papaya (Carica papaya) crops in northwestern (NW) Argentina was sequenced and characterized using next-generation sequencing. The resulting genome is 6667-nt long and encodes five open reading frames in an arrangement typical of other potexviruses. This virus appears to be a novel member within the genus Potexvirus. Blast analysis of RNA-dependent RNA polymerase (RdRp) and coat protein (CP) genes showed the highest amino acid sequence identity (67% and 71%, respectively) with pitaya virus X. Based on nucleotide sequence similarity and phylogenetic analysis, the name papaya virus X is proposed for this newly characterized potexvirus that was mechanically transmitted to papaya plants causing chlorotic patches and severe mosaic symptoms. Papaya virus X (PapVX) was found only in the NW region of Argentina. This prevalence could be associated with a recent emergence or adaptation of this virus to papaya in NW Argentina.


Assuntos
Carica , Potexvirus , Potexvirus/genética , Filogenia , Genoma Viral , Argentina , RNA Polimerase Dependente de RNA , Doenças das Plantas
17.
J Bacteriol ; 193(12): 3158-9, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21515775

RESUMO

Rhizobium etli is a Gram-negative soil-dwelling alphaproteobacterium that carries out symbiotic biological nitrogen fixation in close association with legume hosts. R. etli strains exhibit high sequence divergence and are geographically structured, with a potentially dramatic influence on the outcome of symbiosis. Here, we present the genome sequence of R. etli CNPAF512, a Brazilian isolate from bean nodules. We anticipate that the availability of genome sequences of R. etli strains from distinctly different areas will provide valuable new insights into the geographic mosaic of the R. etli pangenome and the evolutionary dynamics that shape it.


Assuntos
Fabaceae/microbiologia , Genoma Bacteriano , Rhizobium etli/genética , Nódulos Radiculares de Plantas/microbiologia , Brasil , Regulação Bacteriana da Expressão Gênica/fisiologia , Dados de Sequência Molecular , Fixação de Nitrogênio
18.
J Theor Biol ; 273(1): 167-78, 2011 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-21192951

RESUMO

Alignment-free classifiers are especially useful in the functional classification of protein classes with variable homology and different domain structures. Thus, the Topological Indices to BioPolymers (TI2BioP) methodology (Agüero-Chapin et al., 2010) inspired in both the TOPS-MODE and the MARCH-INSIDE methodologies allows the calculation of simple topological indices (TIs) as alignment-free classifiers. These indices were derived from the clustering of the amino acids into four classes of hydrophobicity and polarity revealing higher sequence-order information beyond the amino acid composition level. The predictability power of such TIs was evaluated for the first time on the RNase III family, due to the high diversity of its members (primary sequence and domain organization). Three non-linear models were developed for RNase III class prediction: Decision Tree Model (DTM), Artificial Neural Networks (ANN)-model and Hidden Markov Model (HMM). The first two are alignment-free approaches, using TIs as input predictors. Their performances were compared with a non-classical HMM, modified according to our amino acid clustering strategy. The alignment-free models showed similar performances on the training and the test sets reaching values above 90% in the overall classification. The non-classical HMM showed the highest rate in the classification with values above 95% in training and 100% in test. Although the higher accuracy of the HMM, the DTM showed simplicity for the RNase III classification with low computational cost. Such simplicity was evaluated in respect to HMM and ANN models for the functional annotation of a new bacterial RNase III class member, isolated and annotated by our group.


Assuntos
Dinâmica não Linear , Ribonuclease III/química , Sequência de Aminoácidos , Árvores de Decisões , Ensaios Enzimáticos , Escherichia coli/enzimologia , Cadeias de Markov , Dados de Sequência Molecular , Redes Neurais de Computação , Conformação Proteica , Curva ROC , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Reprodutibilidade dos Testes , Ribonuclease III/isolamento & purificação , Alinhamento de Sequência
19.
Plant Cell Rep ; 30(5): 913-28, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21279642

RESUMO

Mycosphaerella fijiensis, a hemibiotrophic fungus, is the causal agent of black leaf streak disease, the most serious foliar disease of bananas and plantains. To analyze the compatible interaction of M. fijiensis with Musa spp., a suppression subtractive hybridization (SSH) cDNA library was constructed to identify transcripts induced at late stages of infection in the host and the pathogen. In addition, a full-length cDNA library was created from the same mRNA starting material as the SSH library. The SSH procedure was effective in identifying specific genes predicted to be involved in plant-fungal interactions and new information was obtained mainly about genes and pathways activated in the plant. Several plant genes predicted to be involved in the synthesis of phenylpropanoids and detoxification compounds were identified, as well as pathogenesis-related proteins that could be involved in the plant response against M. fijiensis infection. At late stages of infection, jasmonic acid and ethylene signaling transduction pathways appear to be active, which corresponds with the necrotrophic life style of M. fijiensis. Quantitative PCR experiments revealed that antifungal genes encoding PR proteins and GDSL-like lipase are only transiently induced 30 days post inoculation (dpi), indicating that the fungus is probably actively repressing plant defense. The only fungal gene found was induced 37 dpi and encodes UDP-glucose pyrophosphorylase, an enzyme involved in the biosynthesis of trehalose. Trehalose biosynthesis was probably induced in response to prior activation of plant antifungal genes and may act as an osmoprotectant against membrane damage.


Assuntos
Ascomicetos/genética , Genes de Plantas/genética , Interações Hospedeiro-Patógeno/genética , Musa/genética , Doenças das Plantas/genética , UTP-Glucose-1-Fosfato Uridililtransferase/genética , Ascomicetos/patogenicidade , Ciclopentanos/metabolismo , Etilenos/metabolismo , Etiquetas de Sequências Expressas , Proteínas Fúngicas/genética , Biblioteca Gênica , Musa/microbiologia , Hibridização de Ácido Nucleico , Oxilipinas/metabolismo , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Proteínas de Plantas , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Transdução de Sinais , Fatores de Tempo
20.
Curr Top Med Chem ; 21(7): 599-611, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33441066

RESUMO

BACKGROUND: Molecular phylogenetic algorithms frequently disagree with the approaches considering reproductive compatibility and morphological criteria for species delimitation. The question stems if the resulting species boundaries from molecular, reproductive and/or morphological data are definitively not reconcilable; or if the existing phylogenetic methods are not sensitive enough to agree morphological and genetic variation in species delimitation. OBJECTIVE: We propose DISTATIS as an integrative framework to combine alignment-based (AB) and alignment-free (AF) distance matrices from ITS2 sequences/structures to shed light whether Gelasinospora and Neurospora are sister but independent genera. METHODS: We aimed at addressing this standing issue by harmonizing genus-specific classification based on their ascospore morphology and ITS2 molecular data. To validate our proposal, three phylogenetic approaches: i) traditional alignment-based, ii) alignment-free and iii) novel distance integrative (DI)-based were comparatively evaluated on a set of Gelasinospora and Neurospora species. All considered species have been extensively characterized at both the morphological and reproductive levels and there are known incongruences between their ascospore morphology and molecular data that hampers genus-specific delimitation. RESULTS: Traditional AB phylogenetic analyses fail at resolving the Gelasinospora and Neurospora genera into independent monophyletic clades following ascospore morphology criteria. In contrast, AF and DI approaches produced phylogenetic trees that could properly delimit the expected monophyletic clades. CONCLUSION: The DI approach outperformed the AF one in the sense that it could also divide the Neurospora species according to their reproduction mode.


Assuntos
Neurospora/classificação , Filogenia , Sordariales/classificação , Algoritmos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA