Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(22): 11931-11939, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32424105

RESUMO

Cell surfaces are often decorated with glycoconjugates that contain linear and more complex symmetrically and asymmetrically branched carbohydrates essential for cellular recognition and communication processes. Mannose is one of the fundamental building blocks of glycans in many biological membranes. Moreover, oligomannoses are commonly found on the surface of pathogens such as bacteria and viruses as both glycolipids and glycoproteins. However, their mechanism of action is not well understood, even though this is of great potential interest for translational medicine. Sequence-defined amphiphilic Janus glycodendrimers containing simple mono- and disaccharides that mimic glycolipids are known to self-assemble into glycodendrimersomes, which in turn resemble the surface of a cell by encoding carbohydrate activity via supramolecular multivalency. The synthetic challenge of preparing Janus glycodendrimers containing more complex linear and branched glycans has so far prevented access to more realistic cell mimics. However, the present work reports the use of an isothiocyanate-amine "click"-like reaction between isothiocyanate-containing sequence-defined amphiphilic Janus dendrimers and either linear or branched oligosaccharides containing up to six monosaccharide units attached to a hydrophobic amino-pentyl linker, a construct not expected to assemble into glycodendrimersomes. Unexpectedly, these oligoMan-containing dendrimers, which have their hydrophobic linker connected via a thiourea group to the amphiphilic part of Janus glycodendrimers, self-organize into nanoscale glycodendrimersomes. Specifically, the mannose-binding lectins that best agglutinate glycodendrimersomes are those displaying hexamannose. Lamellar "raft-like" nanomorphologies on the surface of glycodendrimersomes, self-organized from these sequence-defined glycans, endow these membrane mimics with high biological activity.


Assuntos
Biomimética/métodos , Dendrímeros/síntese química , Glicoconjugados/síntese química , Nanopartículas/química , Membrana Celular/química , Glicolipídeos/química , Interações Hidrofóbicas e Hidrofílicas , Isotiocianatos/metabolismo , Lectinas/metabolismo , Manose/metabolismo , Oligossacarídeos/metabolismo , Polissacarídeos/metabolismo , Pesquisa Translacional Biomédica/métodos
2.
Angew Chem Int Ed Engl ; 60(15): 8352-8360, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33493389

RESUMO

The effect of the two-dimensional glycan display on glycan-lectin recognition remains poorly understood despite the importance of these interactions in a plethora of cellular processes, in (patho)physiology, as well as its potential for advanced therapeutics. Faced with this challenge we utilized glycodendrimersomes, a type of synthetic vesicles whose membrane mimics the surface of a cell and offers a means to probe the carbohydrate biological activity. These single-component vesicles were formed by the self-assembly of sequence-defined mannose-Janus dendrimers, which serve as surrogates for glycolipids. Using atomic force microscopy and molecular modeling we demonstrated that even mannose, a monosaccharide, was capable of organizing the sugar moieties into periodic nanoarrays without the need of the formation of liquid-ordered phases as assumed necessary for rafts. Kinetics studies of Concanavalin A binding revealed that those nanoarrays resulted in a new effective ligand yielding a ten-fold increase in the kinetic and thermodynamic constant of association.


Assuntos
Dendrímeros/química , Manose/química , Sítios de Ligação , Concanavalina A/química , Cinética , Microscopia de Força Atômica , Modelos Moleculares , Estrutura Molecular , Termodinâmica
3.
Biotechnol Bioeng ; 117(1): 49-61, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31549734

RESUMO

Enzyme immobilization is extensively studied to improve enzyme properties in catalysis and analytical applications. Here, we introduce a simple and versatile enzyme immobilization platform based on adhesion-promoting peptides, namely Matter-tags. Matter-tags immobilize enzymes in an oriented way as a dense monolayer. The immobilization platform was established with three adhesion-promoting peptides; Cecropin A (CecA), liquid chromatography peak I (LCI), and Tachystatin A2 (TA2), that were genetically fused to enhanced green fluorescent protein and to two industrially important enzymes: a phytase (from Yersinia mollaretii) and a cellulase (CelA2 from a metagenomic library). Here, we report a universal and simple Matter-tag-based immobilization platform for enzymes on various materials including polymers (polystyrene, polypropylene, and polyethylene terephthalate), metals (stainless steel and gold), and silicon-based materials (silicon wafer). The Matter-tag-based enzyme immobilization is performed at ambient temperature within minutes (<10 min) in an aqueous solution harboring the phytase or cellulase by immersing the targeted material. The peptide LCI was identified as universal adhesion promoter; LCI immobilized both enzymes on all investigated materials. The attachment of phytase-LCI onto gold was characterized with surface plasmon resonance spectroscopy obtaining a dissociation constant value (KD ) of 2.9·10-8 M and a maximal surface coverage of 504 ng/cm².


Assuntos
Enzimas Imobilizadas , Proteínas Recombinantes de Fusão , Adsorção , Enzimas Imobilizadas/química , Enzimas Imobilizadas/genética , Enzimas Imobilizadas/metabolismo , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Metais/química , Peptídeos/química , Peptídeos/genética , Peptídeos/metabolismo , Polímeros/química , Ligação Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Silício/química , Propriedades de Superfície , Yersinia/enzimologia , Yersinia/genética
4.
Biomacromolecules ; 20(2): 959-968, 2019 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-30605608

RESUMO

Currently, one of the most promising treatments of lipopolysaccharides (LPS)-induced sepsis is based on hemofiltration. Nevertheless, proteins rapidly adsorbed on the artificial surface of membranes which leads to activation of coagulation impairing effective scavenging of the endotoxins. To overcome this challenge, we designed polymer-brush-coated microparticles displaying antifouling properties and functionalized them with polymyxin B (PMB) to specifically scavenge LPS the most common endotoxin. Poly[( N-(2-hydroxypropyl) methacrylamide)- co-(carboxybetaine methacrylamide)] brushes were grafted from poly(glycidyl methacrylate) microparticles using photoinduced single-electron transfer living radical polymerization (SET-LRP). Notably, only parts-per-million of copper catalyst were necessary to achieve brushes able to repel adsorption of proteins from blood plasma. The open porosity of the particles, accessible to polymerization, enabled us to immobilize sufficient PMB to selectively scavenge LPS from blood plasma.


Assuntos
Incrustação Biológica/prevenção & controle , Materiais Revestidos Biocompatíveis/farmacologia , Lipopolissacarídeos/metabolismo , Plasma/metabolismo , Acrilamidas/metabolismo , Adsorção , Compostos de Epóxi/metabolismo , Humanos , Metacrilatos/metabolismo , Polimerização/efeitos dos fármacos , Polímeros/química , Polimixina B/farmacologia , Proteínas/metabolismo , Propriedades de Superfície/efeitos dos fármacos
5.
Macromol Biosci ; 22(5): e2200025, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35170202

RESUMO

Interfacing artificial materials with biological tissues remains a challenge. The direct contact of their surface with the biological milieu results in multiscale interactions, in which biomacromolecules adsorb and act as transducers mediating the interactions with cells and tissues. So far, only antifouling polymer brushes have been able to conceal the surface of synthetic materials. However, their complex synthesis has precluded their translation to applications. Here, it is shown that ultrathin surface-attached hydrogel coatings of N-(2-hydroxypropyl) methacrylamide (HPMA) and carboxybetaine methacrylamide (CBMAA) provide the same level of protection as brushes. In spite of being readily applicable, these coatings prevent the fouling from whole blood plasma and provide a barrier to the adhesion of Gram positive and negative bacteria. The analysis of the components of the surface free energy and nanoindentation experiments reveals that the excellent antifouling properties stem from the strong surface hydrophilicity and the presence of a brush-like structure at the water interface. Moreover, these coatings can be functionalized to achieve antimicrobial activity while remaining stealth and non-cytotoxic to eukaryotic cells. Such level of performance is previously only achieved with brushes. Thus, it is anticipated that this readily applicable strategy is a promising route to enhance the biocompatibility of real biomedical devices.


Assuntos
Materiais Revestidos Biocompatíveis , Hidrogéis , Bactérias , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Hidrogéis/química , Hidrogéis/farmacologia , Polímeros/química , Propriedades de Superfície
6.
Adv Sci (Weinh) ; 9(17): e2200617, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35393756

RESUMO

The construction of biomembranes that faithfully capture the properties and dynamic functions of cell membranes remains a challenge in the development of synthetic cells and their application. Here a new concept for synthetic cell membranes based on the self-assembly of amphiphilic comb polymers into vesicles, termed ionic combisomes (i-combisomes) is introduced. These combs consist of a polyzwitterionic backbone to which hydrophobic tails are linked by electrostatic interactions. Using a range of microscopies and molecular simulations, the self-assembly of a library of combs in water is screened. It is discovered that the hydrophobic tails form the membrane's core and force the backbone into a rod conformation with nematic-like ordering confined to the interface with water. This particular organization resulted in membranes that combine the stability of classic polymersomes with the biomimetic thickness, flexibility, and lateral mobility of liposomes. Such unparalleled matching of biophysical properties and the ability to locally reconfigure the molecular topology of its constituents enable the harboring of functional components of natural membranes and fusion with living bacteria to "hijack" their periphery. This provides an almost inexhaustible palette to design the chemical and biological makeup of the i-combisomes membrane resulting in a powerful platform for fundamental studies and technological applications.


Assuntos
Biomimética , Lipossomos , Interações Hidrofóbicas e Hidrofílicas , Lipossomos/química , Polímeros/química , Água
7.
Adv Mater ; 34(49): e2206288, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36134536

RESUMO

Building functional mimics of cell membranes is an important task toward the development of synthetic cells. So far, lipid and amphiphilic block copolymers are the most widely used amphiphiles with the bilayers by the former lacking stability while membranes by the latter are typically characterized by very slow dynamics. Herein, a new type of Janus dendrimer containing a zwitterionic phosphocholine hydrophilic headgroup (JDPC ) and a 3,5-substituted dihydrobenzoate-based hydrophobic dendron is introduced. JDPC self-assembles in water into zwitterionic dendrimersomes (z-DSs) that faithfully recapitulate the cell membrane in thickness, flexibility, and fluidity, while being resilient to harsh conditions and displaying faster pore closing dynamics in the event of membrane rupture. This enables the fabrication of hybrid DSs with components of natural membranes, including pore-forming peptides, structure-directing lipids, and glycans to create raft-like domains or onion vesicles. Moreover, z-DSs can be used to create active synthetic cells with life-like features that mimic vesicle fusion and motility as well as environmental sensing. Despite their fully synthetic nature, z-DSs are minimal cell mimics that can integrate and interact with living matter with the programmability to imitate life-like features and beyond.


Assuntos
Membrana Celular
8.
Macromol Biosci ; 21(9): e2100158, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34145970

RESUMO

The ability of proteins to adsorb irreversibly onto surfaces opens new possibilities to functionalize biological interfaces. Herein, the mechanism and kinetics of adsorption of protein-polymer macromolecules with the ability to equip surfaces with antifouling properties are investigated. These macromolecules consist of the liquid chromatography peak I peptide from which antifouling polymer brushes are grafted using single electron transfer-living radical polymerization. Surface plasmon resonance spectroscopy reveals an adsorption mechanism that follows a Langmuir-type of binding with a strong binding affinity to gold. X-ray reflectivity supports this by proving that the binding occurs exclusively by the peptide. However, the lateral organization at the surface is directed by the cylindrical eGFP. The antifouling functionality of the unimolecular coatings is confirmed by contact with blood plasma. All coatings reduce the fouling from blood plasma by 8894% with only minor effect of the degree of polymerization for the studied range (DP between 101 and 932). The excellent antifouling properties, combined with the ease of polymerization and the straightforward coating procedure make this a very promising antifouling concept for a multiplicity of applications.


Assuntos
Incrustação Biológica , Polímeros , Adsorção , Incrustação Biológica/prevenção & controle , Cinética , Polimerização , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA