Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
J Anim Ecol ; 93(1): 57-70, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37975479

RESUMO

The island species-area relationship (ISAR) describes how species richness increases with increasing area of a given island or island-like habitat, such as freshwater lakes. While the ISAR is one of the most common phenomena observed in ecology, there is variation in both the form of the relationship and its underlying mechanisms. We compiled a global data set of benthic macroinvertebrates from 524 shallow freshwater lakes, ranging from 1 to 293,300 ha in area. We used individual-based rarefaction to determine the degree to which ISAR was influenced by mechanisms other than passive sampling (larger islands passively sample more individuals from the regional pool and, therefore, have more species than smaller islands), which would bias results away from expected relationships between rarefied species richness (and other measures that capture relative abundances) and lake area. We also examined how climate may alter the shape of the ISARs. We found that both rarefied species richness (the number of species standardized by area or number of individuals) and a measure of evenness emphasizing common species exhibit shallow slopes in relationships with lake area, suggesting that the expected ISARs in these lakes most likely result from passive sampling. While there was considerable variation among ISARs across the investigated lakes, we found an overall positive rarefied ISAR for lakes in warm (i.e. tropical/subtropical) regions (n = 195), and in contrast, an overall negative rarefied ISAR in cool (i.e. north temperate) lakes (n = 329). This suggested that mechanisms beyond passive sampling (e.g. colonization-extinction dynamics and/or heterogeneity) were more likely to operate in warm lakes. One possible reason for this difference is that the area-dependent intensity of fish predation, which can lead to flatter ISARs, is weaker in warmer relative to cooler lakes. Our study illustrates the importance of understanding both the pattern and potential processes underlying the ISARs of freshwater lakes in different climatic regions. Furthermore, it provides a baseline for understanding how further changes to the ecosystem (i.e. in lake area or climate) might influence biodiversity patterns.


Assuntos
Biodiversidade , Ecossistema , Animais , Lagos , Peixes , Ecologia
2.
Ecotoxicol Environ Saf ; 270: 115834, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38101976

RESUMO

In aquatic ecosystems, light penetrating the sediment surface in shallow lakes may regulate the internal phosphorus (P) release through benthic primary production, which subsequently affects oxidation, pH levels, and alkaline phosphatase activity in the upper sediment. To study the effects of light exposure on the P dynamics at the sediment-water interface under eutrophic conditions, a two-month mesocosm experiment was conducted in twelve cement tanks (1000 L each). The tanks were equipped with Light-Emitting Diode (LED) lights, and surface sediments collected from eutrophic Lake Nanhu (China) were exposed to four different light intensities (0, 50, 100, 200 µmol m-2 s-1). The results revealed that: 1) Both the total phosphorus concentration and the phosphorus release flux from the sediment were lower in the light treatments (mean value, 0.59-0.71 mg L-1 and 0.00-0.01 mg m-2 d-1, respectively) than in the control treatment (0.77 mg L-1 and 0.01 mg m-2 d-1, respectively), indicating that light supplement could decrease the internal P release. 2) Benthic primary production promoted by light directly absorbed soluble reactive phosphorus and decreased the internal P release. The resulting improved production could also increase dissolved oxygen concentrations at the sediment-water interface, thus indirectly inhibiting internal P release. 3) The relative contributions of direct absorption and indirect inhibition on the internal P release ranged between 23% to 69% and 31% to 77% depending on the light intensity.


Assuntos
Fósforo , Poluentes Químicos da Água , Fósforo/análise , Lagos , Ecossistema , Eutrofização , Sedimentos Geológicos , Água , China , Poluentes Químicos da Água/análise , Monitoramento Ambiental
3.
J Fish Biol ; 103(6): 1321-1334, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37605608

RESUMO

Large reductions in fish biomass are common both as a method of managing lake ecosystems by fish removals (biomanipulation) and as naturally occurring fish kills. To further understand how fish reductions change feeding patterns of fish, we studied the diets of small- to medium-sized roach (Rutilus rutilus) and European perch (Perca fluviatilis) on a monthly basis using gut-content analysis during an 18-month period before and after a whole-lake fish removal in a eutrophic shallow lake. Further, we performed in-depth analyses of zoobenthos communities of the profundal and littoral zones, as well as analysed the zooplankton community in the littoral and pelagic parts of the lake to estimate abundance and biomass of potential diet items. We found that, in general, there was a trend toward increased zoobenthivory in both species and among all-sized fish after fish removal, regardless of prior diet preference. Reduced piscivory among larger perch (>150 mm) and reduced zooplanktivory among smaller perch and roach (<150 mm) were also observed. Moreover, during a short period of high zooplankton biomass after fish removal, both perch and roach (all sizes) shifted their diet toward daphnids, which likely caused a decrease in daphnid population. We suggest that such change toward periodical zooplanktivory across fish species and size groups may lead to unexpectedly high top-down control by fish after lake restoration by fish removal.


Assuntos
Cyprinidae , Percas , Animais , Lagos , Ecossistema , Dieta/veterinária
4.
Glob Chang Biol ; 26(12): 6831-6851, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32893967

RESUMO

Submerged macrophytes are of key importance for the structure and functioning of shallow lakes and can be decisive for maintaining them in a clear water state. The ongoing climate change affects the macrophytes through changes in temperature and precipitation, causing variations in nutrient load, water level and light availability. To investigate how these factors jointly determine macrophyte dominance and growth, we conducted a highly standardized pan-European experiment involving the installation of mesocosms in lakes. The experimental design consisted of mesotrophic and eutrophic nutrient conditions at 1 m (shallow) and 2 m (deep) depth along a latitudinal temperature gradient with average water temperatures ranging from 14.9 to 23.9°C (Sweden to Greece) and a natural drop in water levels in the warmest countries (Greece and Turkey). We determined percent plant volume inhabited (PVI) of submerged macrophytes on a monthly basis for 5 months and dry weight at the end of the experiment. Over the temperature gradient, PVI was highest in the shallow mesotrophic mesocosms followed by intermediate levels in the shallow eutrophic and deep mesotrophic mesocosms, and lowest levels in the deep eutrophic mesocosms. We identified three pathways along which water temperature likely affected PVI, exhibiting (a) a direct positive effect if light was not limiting; (b) an indirect positive effect due to an evaporation-driven water level reduction, causing a nonlinear increase in mean available light; and (c) an indirect negative effect through algal growth and, thus, high light attenuation under eutrophic conditions. We conclude that high temperatures combined with a temperature-mediated water level decrease can counterbalance the negative effects of eutrophic conditions on macrophytes by enhancing the light availability. While a water level reduction can promote macrophyte dominance, an extreme reduction will likely decrease macrophyte biomass and, consequently, their capacity to function as a carbon store and food source.


Assuntos
Lagos , Água , Nutrientes , Suécia , Temperatura
5.
Ecol Appl ; 30(7): e02160, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32363772

RESUMO

In recent years, considerable efforts have been made to restore turbid, phytoplankton-dominated shallow lakes to a clear-water state with high coverage of submerged macrophytes. Various dynamic lake models with simplified physical representations of vertical gradients, such as PCLake, have been used to predict external nutrient load thresholds for such nonlinear regime shifts. However, recent observational studies have questioned the concept of regime shifts by emphasizing that gradual changes are more common than sudden shifts. We investigated if regime shifts would be more gradual if the models account for depth-dependent heterogeneity of the system by including the possibility of vertical gradients in the water column and sediment layers for the entire depth. Hence, bifurcation analysis was undertaken using the 1D hydrodynamic model GOTM, accounting for vertical gradients, coupled to the aquatic ecosystem model PCLake, which is implemented in the framework for aquatic biogeochemical modeling (FABM). First, the model was calibrated and validated against a comprehensive data set covering two consecutive 7-yr periods from Lake Hinge, a shallow, eutrophic Danish lake. The autocalibration program Auto-Calibration Python (ACPy) was applied to achieve a more comprehensive adjustment of model parameters. The model simulations showed excellent agreement with observed data for water temperature, total nitrogen, and nitrate and good agreement for ammonium, total phosphorus, phosphate, and chlorophyll a concentrations. Zooplankton and macrophyte coverage were adequately simulated for the purpose of this study, and in general the GOTM-FABM-PCLake model simulations performed well compared with other model studies. In contrast to previous model studies ignoring depth heterogeneity, our bifurcation analysis revealed that the spatial extent and depth limitation of macrophytes as well as phytoplankton chlorophyll-a responded more gradually over time to a reduction in the external phosphorus load, albeit some hysteresis effects still appeared. In a management perspective, our study emphasizes the need to include depth heterogeneity in the model structure to more correctly determine at which external nutrient load a given lake changes ecosystem state to a clear-water condition.


Assuntos
Ecossistema , Lagos , Clorofila A , Dinamarca , Eutrofização , Fósforo/análise , Fitoplâncton
6.
Glob Chang Biol ; 24(11): 5044-5055, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30005138

RESUMO

Blooms of cyanobacteria are a current threat to global water security that is expected to increase in the future because of increasing nutrient enrichment, increasing temperature and extreme precipitation in combination with prolonged drought. However, the responses to multiple stressors, such as those above, are often complex and there is contradictory evidence as to how they may interact. Here we used broad scale data from 494 lakes in central and northern Europe, to assess how cyanobacteria respond to nutrients (phosphorus), temperature and water retention time in different types of lakes. Eight lake types were examined based on factorial combinations of major factors that determine phytoplankton composition and sensitivity to nutrients: alkalinity (low and medium-high), colour (clear and humic) and mixing intensity (polymictic and stratified). In line with expectations, cyanobacteria increased with temperature and retention time in five of the eight lake types. Temperature effects were greatest in lake types situated at higher latitudes, suggesting that lakes currently not at risk could be affected by warming in the future. However, the sensitivity of cyanobacteria to temperature, retention time and phosphorus varied among lake types highlighting the complex responses of lakes to multiple stressors. For example, in polymictic, medium-high alkalinity, humic lakes cyanobacteria biovolume was positively explained by retention time and a synergy between TP and temperature, while in polymictic, medium-high alkalinity, clear lakes only retention time was identified as an explanatory variable. These results show that, although climate change will need to be accounted for when managing the risk of cyanobacteria in lakes, a "one-size fits-all" approach is not appropriate. When forecasting the response of cyanobacteria to future environmental change, including changes caused by climate and local management, it will be important to take this differential sensitivity of lakes into account.


Assuntos
Cianobactérias , Lagos/microbiologia , Mudança Climática , Meio Ambiente , Europa (Continente) , Fósforo/análise , Fitoplâncton
7.
Oecologia ; 188(4): 1167-1182, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30374676

RESUMO

We studied community-environment relationships of lake macrophytes at two metacommunity scales using data from 16 regions across the world. More specifically, we examined (a) whether the lake macrophyte communities respond similar to key local environmental factors, major climate variables and lake spatial locations in each of the regions (i.e., within-region approach) and (b) how well can explained variability in the community-environment relationships across multiple lake macrophyte metacommunities be accounted for by elevation range, spatial extent, latitude, longitude, and age of the oldest lake within each metacommunity (i.e., across-region approach). In the within-region approach, we employed partial redundancy analyses together with variation partitioning to investigate the relative importance of local variables, climate variables, and spatial location on lake macrophytes among the study regions. In the across-region approach, we used adjusted R2 values of the variation partitioning to model the community-environment relationships across multiple metacommunities using linear regression and commonality analysis. We found that niche filtering related to local lake-level environmental conditions was the dominant force structuring macrophytes within metacommunities. However, our results also revealed that elevation range associated with climate (increasing temperature amplitude affecting macrophytes) and spatial location (likely due to dispersal limitation) was important for macrophytes based on the findings of the across-metacommunities analysis. These findings suggest that different determinants influence macrophyte metacommunities within different regions, thus showing context dependency. Moreover, our study emphasized that the use of a single metacommunity scale gives incomplete information on the environmental features explaining variation in macrophyte communities.


Assuntos
Ecossistema , Lagos , Clima
8.
Ecol Indic ; 94: 185-197, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30393465

RESUMO

The European Water Framework Directive has been adopted by Member States to assess and manage the ecological integrity of surface waters. Specific challenges include harmonizing diverse assessment systems across Europe, linking ecological assessment to restoration measures and reaching a common view on 'good' ecological status. In this study, nine national macrophyte-based approaches for assessing ecological status were compared and harmonized, using a large dataset of 539 European lakes. A macrophyte common metric, representing the average standardized view of each lake by all countries, was used to compare national methods. This was also shown to reflect the total phosphorus (r2 = 0.32), total nitrogen (r2 = 0.22) as well as chlorophyll-a (r2 = 0.35-0.38) gradients, providing a link between ecological data, stressors and management decisions. Despite differing assessment approaches and initial differences in classification, a consensus was reached on how type-specific macrophyte assemblages change across the ecological status gradient and where ecological status boundaries should lie. A marked decline in submerged vegetation, especially Charophyta (characterizing 'good' status), and an increase in abundance of free-floating plants (characterizing 'less than good' status) were the most significant changes along the ecological status gradient. Macrophyte communities of 'good' status lakes were diverse with many charophytes and several Potamogeton species. A large number of taxa occurred across the entire gradient, but only a minority dominated at 'less than good' status, including filamentous algae, lemnids, nymphaeids, and several elodeids (e.g., Zannichellia palustris and Elodea nuttallii). Our findings establish a 'guiding image' of the macrophyte community at 'good' ecological status in hard-water lakes of the Central-Baltic region of Europe.

9.
Glob Chang Biol ; 21(12): 4449-63, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26258771

RESUMO

Fresh waters make a disproportionately large contribution to greenhouse gas (GHG) emissions, with shallow lakes being particular hot spots. Given their global prevalence, how GHG fluxes from shallow lakes are altered by climate change may have profound implications for the global carbon cycle. Empirical evidence for the temperature dependence of the processes controlling GHG production in natural systems is largely based on the correlation between seasonal temperature variation and seasonal change in GHG fluxes. However, ecosystem-level GHG fluxes could be influenced by factors, which while varying seasonally with temperature are actually either indirectly related (e.g. primary producer biomass) or largely unrelated to temperature, for instance nutrient loading. Here, we present results from the longest running shallow-lake mesocosm experiment which demonstrate that nutrient concentrations override temperature as a control of both the total and individual GHG flux. Furthermore, testing for temperature treatment effects at low and high nutrient levels separately showed only one, rather weak, positive effect of temperature (CH4 flux at high nutrients). In contrast, at low nutrients, the CO2 efflux was lower in the elevated temperature treatments, with no significant effect on CH4 or N2 O fluxes. Further analysis identified possible indirect effects of temperature treatment. For example, at low nutrient levels, increased macrophyte abundance was associated with significantly reduced fluxes of both CH4 and CO2 for both total annual flux and monthly observation data. As macrophyte abundance was positively related to temperature treatment, this suggests the possibility of indirect temperature effects, via macrophyte abundance, on CH4 and CO2 flux. These findings indicate that fluxes of GHGs from shallow lakes may be controlled more by factors indirectly related to temperature, in this case nutrient concentration and the abundance of primary producers. Thus, at ecosystem scale, response to climate change may not follow predictions based on the temperature dependence of metabolic processes.


Assuntos
Poluentes Atmosféricos/análise , Mudança Climática , Eutrofização , Efeito Estufa , Lagos/análise , Dióxido de Carbono/análise , Dinamarca , Metano/análise , Temperatura
10.
Ecol Appl ; 24(8): 1926-44, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-29185663

RESUMO

Complex ecological models are used to predict the consequences of anticipated future changes in climate and nutrient loading for lake water quality. These models may, however, suffer from nonuniqueness in that various sets of model parameter values may yield equally satisfactory representations of the system being modeled, but when applied in future scenarios these sets of values may divert considerably in their simulated outcomes. Compilation of an ensemble of model runs allows us to account for simulation variability arising from model parameter estimates. Thus, we propose a new approach for aquatic ecological models creating a more robust prediction of future water quality. We used our ensemble approach in an application of the widely used PCLake model for Danish shallow Lake Arreskov, which during the past two decades has demonstrated frequent shifts between turbid and clear water states. Despite marked variability, the span of our ensemble runs encapsulated 70­90% of the observed variation in lake water quality. The model exercise demonstrates that future warming and increased nutrient loading lead to lower probability of a clear water, vegetation-rich state and greater likelihood of cyanobacteria dominance. In a 6.0°C warming scenario, for instance, the current nutrient loading of nitrogen and phosphorus must be reduced by about 75% to maintain the present ecological state of Lake Arreskov, but even in a near-future 2.0°C warming scenario, a higher probability of a turbid, cyanobacteria-dominated state is predicted. As managers may wish to determine the probability of achieving a certain ecological state, our proposed ensemble approach facilitates new ways of communicating future stressor impacts.


Assuntos
Mudança Climática , Ecossistema , Lagos/química , Modelos Teóricos , Rios/química , Poluentes Químicos da Água/química , Animais , Simulação por Computador , Conservação dos Recursos Naturais , Dinamarca , Monitoramento Ambiental , Peixes/fisiologia , Plantas , Temperatura , Fatores de Tempo , Qualidade da Água
11.
Nat Commun ; 15(1): 809, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38280872

RESUMO

Aquatic ecosystems are threatened by eutrophication from nutrient pollution. In lakes, eutrophication causes a plethora of deleterious effects, such as harmful algal blooms, fish kills and increased methane emissions. However, lake-specific responses to nutrient changes are highly variable, complicating eutrophication management. These lake-specific responses could result from short-term stochastic drivers overshadowing lake-independent, long-term relationships between phytoplankton and nutrients. Here, we show that strong stoichiometric long-term relationships exist between nutrients and chlorophyll a (Chla) for 5-year simple moving averages (SMA, median R² = 0.87) along a gradient of total nitrogen to total phosphorus (TN:TP) ratios. These stoichiometric relationships are consistent across 159 shallow lakes (defined as average depth < 6 m) from a cross-continental, open-access database. We calculate 5-year SMA residuals to assess short-term variability and find substantial short-term Chla variation which is weakly related to nutrient concentrations (median R² = 0.12). With shallow lakes representing 89% of the world's lakes, the identified stoichiometric long-term relationships can globally improve quantitative nutrient management in both lakes and their catchments through a nutrient-ratio-based strategy.


Assuntos
Ecossistema , Lagos , Clorofila A , Monitoramento Ambiental , Eutrofização , Proliferação Nociva de Algas , Nutrientes , Fósforo/análise , Nitrogênio/análise , China
12.
Sci Total Environ ; 939: 173573, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38823703

RESUMO

The impact of global warming on plant abundance has been widely discussed, but it remains unclear how warming affects plant physiological traits, and how these traits contribute to the abundance of aquatic plants. We explored the adjustments in physiological traits of two common aquatic plant species (Potamogeton crispus L. and Elodea canadensis Michx.) and their links to plant abundance in three temperature treatments by determining twelve physiological traits and plant abundance over an 11-month period in outdoor mesocosms. This mesocosms facility has been running uninteruptedly for 16 years, rendering the plants a unique opportunity to adapt to the warming differences. We found that 1) warming reduced the starch storage in winter for P. crispus and in summer for E. canadensis while increased the nitrogenous substances (e.g., TN, FAA, and proline) in winter for P. crispus. 2) For E. canadensis, TC, starch, SC, and sucrose contents were higher in summer than in winter regardless of warming, while TC, SC, and sucrose contents were lower in summer for P. crispus. 3) Warming decreased the association strength between physiological traits and plant abundance for P. crispus but enhanced it for E. canadensis. 4) E. canadensis showed increased interaction strength among physiological traits under warming, indicating increased metabolic exertion in the response to warming, which contributed to the reduction in abundance. Trait interaction strength of P. crispus was reduced under warming, but with less impact on plant abundance compared with E. canadensis. Our study emphasizes that warming alters the network of plant physiological traits and their contribution to abundance and that different strengths of susceptibility to warming of the various plant species may alter the composition of plant communities in freshwater ecosystems.


Assuntos
Aquecimento Global , Hydrocharitaceae/fisiologia , Potamogetonaceae/fisiologia , Estações do Ano , Plantas
13.
Water Res ; 253: 121325, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38367379

RESUMO

Phytoplankton taxa are strongly interconnected as a network, which could show temporal dynamics and non-linear responses to changes in drivers at both seasonal and long-term scale. Using a high quality dataset of 20 Danish lakes (1989-2008), we applied extended Local Similarity Analysis to construct temporal network of phytoplankton communities for each lake, obtained sub-network for each sampling month, and then measured indices of network complexity and stability for each sub-network. We assessed how lake re-oligotrophication, climate warming and grazers influenced the temporal dynamics on network complexity and stability of phytoplankton community covering three aspects: seasonal trends, long-term trends and detrended variability. We found strong seasonality for the complexity and stability of phytoplankton network, an increasing trend for the average degree, modularity, nestedness, persistence and robustness, and a decreasing trend for connectance, negative:positive interactions and vulnerability. Our study revealed a cascading effect of lake re-oligotrophication, climate warming and zooplankton grazers on phytoplankton network stability through changes in network complexity characterizing diversity, interactions and topography. Network stability of phytoplankton increased with average degree, modularity, nestedness and decreased with connectance and negative:positive interactions. Oligotrophication and warming stabilized the phytoplankton network (enhanced robustness, persistence and decreased vulnerability) by enhancing its average degree, modularity, nestedness and by reducing its connectance, while zooplankton richness promoted stability of phytoplankton network through increases in average degree and decreases in negative interactions. Our results further indicate that the stabilization effects might lead to more closed, compartmentalized and nested interconnections especially in the deeper lakes, in the warmer seasons and during bloom periods. From a temporal dynamic network view, our findings highlight stabilization of the phytoplankton community as an adaptive response to lake re-oligotrophication, climate warming and grazers.


Assuntos
Clima , Fitoplâncton , Animais , Fitoplâncton/fisiologia , Estações do Ano , Zooplâncton/fisiologia , Lagos , Ecossistema
14.
Phys Chem Chem Phys ; 15(22): 8710-5, 2013 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-23639947

RESUMO

20 nm ZnO nanoparticles are used to fabricate the mesoporous photoanode of the CdS/CdSe quantum dot-sensitized solar cells by the simple doctor blade method. A maximum power conversion efficiency of 4.46% has been achieved, which indicated exciting prospects for ZnO nanoparticle based quantum dot-sensitized solar cells.


Assuntos
Compostos de Cádmio/química , Nanopartículas/química , Pontos Quânticos , Compostos de Selênio/química , Energia Solar , Sulfetos/química , Óxido de Zinco/química , Fontes de Energia Elétrica
15.
Nat Commun ; 14(1): 398, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36693848

RESUMO

Since its inception, the theory of alternative equilibria in shallow lakes has evolved and been applied to an ever wider range of ecological and socioecological systems. The theory posits the existence of two alternative stable states or equilibria, which in shallow lakes are characterised by either clear water with abundant plants or turbid water where phytoplankton dominate. Here, we used data simulations and real-world data sets from Denmark and north-eastern USA (902 lakes in total) to examine the relationship between shallow lake phytoplankton biomass (chlorophyll-a) and nutrient concentrations across a range of timescales. The data simulations demonstrated that three diagnostic tests could reliably identify the presence or absence of alternative equilibria. The real-world data accorded with data simulations where alternative equilibria were absent. Crucially, it was only as the temporal scale of observation increased (>3 years) that a predictable linear relationship between nutrient concentration and chlorophyll-a was evident. Thus, when a longer term perspective is taken, the notion of alternative equilibria is not required to explain the response of chlorophyll-a to nutrient enrichment which questions the utility of the theory for explaining shallow lake response to, and recovery from, eutrophication.


Assuntos
Clorofila , Lagos , Clorofila A , Biomassa , Fitoplâncton , Água , Eutrofização , Fósforo
16.
Water Res ; 245: 120580, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37708778

RESUMO

The unprecedented global increase in the anthropogenic-derived nitrogen (N) input may have profound effects on phosphorus (P) dynamics and may potentially lead to enhanced eutrophication as demonstrated in short-term mesocosm experiments. However, the role of N-influenced P release is less well studied in large-scale ecosystems. To gain more insight into ecosystem effects, we conducted a five-year large-scale experiment in ten ponds (700-1000 m2 each) with two types of sediments and five targeted total N concentrations (TN) by adding NH4Cl fertilizer (0.5, 1, 5, 10, and 25 mg N L-1). The results showed that: (ⅰ) The sediment P release increased significantly when TN exceeded 10-25 mg N L-1. (ⅱ) The most pronounced sediment P release increase occurred in summer and from sediments rich in organic matter (OMSed). (ⅲ) TN, algal biomass, fish biomass, non-algal turbidity, sediment pH, and OMSed were the dominant factors explaining the sediment P release, as suggested by piecewise structural equation modeling. We propose several mechanisms that may have stimulated P release, i.e. high ammonium input causes a stoichiometric N:P imbalance and induce alkaline phosphatase production and dissolved P uptake by phytoplankton, leading to enhanced inorganic P diffusion gradient between sediment and water; higher pelagic fish production induced by the higher phytoplankton production may have led increased sediment P resuspension through disturbance; low oxygen level in the upper sediment caused by nitrification and organic decomposition of the settled phytoplankton and, finally, long-term N application-induced sediment acidification as a net effect of ammonium hydrolysis, nitrification, denitrification; The mechanisms revealed by this study shed new light on the complex processes underlying the N-stimulated sediment P release, with implications also for the strategies used for restoring eutrophicated lakes.


Assuntos
Compostos de Amônio , Lagos , Animais , Lagos/química , Ecossistema , Fósforo/análise , Sedimentos Geológicos , Eutrofização , Nitrogênio/análise , China
17.
Ecol Appl ; 22(4): 1187-200, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22827127

RESUMO

Mitigating nutrient losses from anthropogenic nonpoint sources is today of particular importance for improving the water quality of numerous freshwater lakes worldwide. Several empirical relationships between land use and in-lake water quality variables have been developed, but they are often weak, which can in part be attributed to lack of detailed information about land use activities or point sources. We examined a comprehensive data set comprising land use data, point-source information, and in-lake water quality for 414 Danish lakes. By excluding point-source-influenced lakes (n = 210), the strength in relationship (R2) between in-lake total nitrogen (TN) and total phosphorus (TP) concentrations and the proportion of agricultural land use in the watershed increased markedly, from 10-12% to 39-42% for deep lakes and from 10-12% to 21-23% for shallow lakes, with the highest increase for TN. Relationships between TP and agricultural land use were even stronger for lakes with rivers in their watershed (55%) compared to lakes without (28%), indicating that rivers mediate a stronger linkage between landscape activity and lake water quality by providing a "delivery" mechanism for excess nutrients in the watershed. When examining the effect of different near-freshwater land zones in contrast to the entire watershed, relationships generally improved with size of zone (25, 50, 100, 200, and 400 m from the edge of lake and streams) but were by far strongest using the entire watershed. The proportion of agricultural land use in the entire watershed was best in explaining lake water quality, both relative to estimated nutrient surplus at agricultural field level and near-lake land use, which somewhat contrasts typical strategies of management policies that mainly target agricultural nutrient applications and implementation of near-water buffer zones. This study suggests that transport mechanisms within the whole catchment are important for the nutrient export to lakes. Hence, the whole watershed should be considered when managing nutrient loadings to lakes, and future policies should ideally target measures that reduce the proportion of cultivated land in the watershed to successfully improve lake water quality.


Assuntos
Ecossistema , Lagos/química , Movimentos da Água , Poluentes Químicos da Água/química , Agricultura , Dinamarca , Monitoramento Ambiental , Sistemas de Informação Geográfica , Atividades Humanas , Nitrogênio/química , Fósforo/química , Árvores
18.
Sci Total Environ ; 825: 153751, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35167891

RESUMO

Characteristics of bottom sediments in lake mesocosms 11 years after starting the experiment were studied in order to determine the effects of nutrient loading, temperature increase and vegetation type on concentration and vertical distribution of phosphorus (P) forms. The experimental setup consisted of 24 outdoor flow-through mesocosms with two nutrient treatments - low (L) and high (H) and 3 temperature levels - ambient (T0), heated by 2-4 °C (T1) and 3-6 °C (T2) in four replicates. Thickness of the organic sediment was measured and the sediment analysed for dry weight, organic matter, and P fractions (according to a sequential extraction scheme) and organic P compounds (by 31P nuclear magnetic resonance spectroscopy). Higher nutrient loading led to increased sediment accumulation and higher concentration of total P and most P fractions, except P bound to aluminium and humic matter. The dominant vegetation type covaried with nutrient levels. Vertical gradients in Ca bound P and mobile P in low nutrient mesocosms was perhaps a result of P coprecipitation with calcite on macrophytes and P uptake by roots indicating that in macrophyte-rich lakes, plants can be important modifiers of early P diagenesis. Temperature alone did not significantly affect sediment accumulation rate but the interaction effect between nutrient and temperature treatments was significant. At high nutrient loading, sediment thickness decreased with increasing temperature, but at low nutrient loading, it increased with warming. The effect of warming on sediment composition became obvious only in nutrient enriched mesocosms showing that eutrophication makes shallow lake ecosystems more susceptible to climate change.


Assuntos
Lagos , Fósforo , Mudança Climática , Ecossistema , Eutrofização , Sedimentos Geológicos , Fósforo/análise
19.
Sci Total Environ ; 804: 150050, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34509851

RESUMO

Fish larvae play an important structuring role for their prey and show ontogenetic shifts in diet. Changes in diet differ between species and habitats and may also be affected by turbidity (eutrophication). We investigated the diet (stomach content) and the food selection (ratio of ingested prey and prey availability) of roach and perch larvae in a clear lake and of roach, perch and pikeperch larvae in a turbid lake multiple times during spring to autumn. The diet of the fish larvae changed with size, and for roach and perch larvae between the lakes. Coexisting species of fish larvae had different diets in the two lakes, pointing to resource partitioning; yet, in the clear lake, medium-sized larvae had a high diet overlap, suggesting a competitive relationship at this developmental stage. In the clear lake, roach larvae showed diel differentiation in diet, while perch demonstrated diet shifts between habitats, which probably aided in reducing competition and also evidenced an effect of light on the larval prey capture and/or predator-fish larvae interactions. In the turbid lake, roach and perch larvae did not reveal differences in diet between habitats or time of the day, owing to homogeneity of food items and poor light conditions. However, the diet of pikeperch larvae differed between day and night following daily variations in the abundance of its preferred prey. The roach larvae were highly selective for Bosmina, Daphnia and benthic cladocerans, perch larvae generally consumed what was available, while pikeperch primarily preyed on cyclopoid copepodites. We conclude that turbidity acted as a cover for fish larvae in the turbid lake. Under eutrophication-induced turbidity scenarios the effects of fish larvae on their prey are stronger (i.e., high selectivity for several resources) than that of larvae in clear waters, creating a negative feedback on the path to restore water clarity.


Assuntos
Lagos , Percas , Animais , Dieta , Preferências Alimentares , Larva , Água
20.
Sci Total Environ ; 803: 150049, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34500271

RESUMO

A mesocosm experiment was conducted in a temperate eutrophic lake with the hypotheses: 1) the addition of a labile form of DOC would trigger a more pronounced response in phytoplankton biomass and composition compared with a non-labile form; 2) DOC addition would increase phytoplankton biomass by co-inserting organic nutrients for phytoplankton growth; 3) DOC addition would change phytoplankton composition, in particular towards mixotrophic taxa due to higher DOC availability; and that 4) there would be differences in phytoplankton responses to DOC addition, depending on whether sediment was included or not. We used two types of mesocosms: pelagic mesocosms with closed bottom, and benthic mesocosms open to the sediment. The experiment ran for 29 days in total. The DOC addition occurred once, at Day 1. Besides the control, there were two treatments: HuminFeed® (non-labile DOC) at a concentration of 2 mg L-1, and a combination of 2 mg L-1 HuminFeed® and 2 mg L-1 DOC from alder leaf leachate (labile). Responses were detected only in the treatment with alder leaf extract. Ecosystem processes responded immediately to DOC addition, with the fall in dissolved oxygen and pH indicating an increase in respiration, relative to primary production (Day 2). In contrast, there was a delay of a few days in structural responses in the phytoplankton community (Day 6). Phytoplankton biomass increased after DOC addition, probably boosted by the phosphorus released from alder leaf extract. Changes in phytoplankton composition towards mixotrophic taxa were not as strong as changes in biomass, and happened only in the pelagic mesocosms. With the DOC addition, diatoms prevailed in benthic mesocosms, while the contribution of colonial buoyant cyanobacteria increased in the pelagic ones. This study points towards the necessity to look in greater detail at specific responses of phytoplankton to DOC concentration increases considering lake-habitat and sediment influence.


Assuntos
Lagos , Fitoplâncton , Biomassa , Ecossistema , Fósforo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA