RESUMO
Tuberculosis is a global serious problem that imposes major health, economic and social challenges worldwide. The search for new antitubercular drugs is extremely important which could be achieved via inhibition of different druggable targets. Mycobacterium tuberculosis enoyl acyl carrier protein reductase (InhA) enzyme is essential for the survival of M. tuberculosis. In this investigation, a series of coumarin based thiazole derivatives was synthesized relying on a molecular hybridization approach and was assessed against thewild typeMtb H37Rv and its mutant strain (ΔkatG) via inhibiting InhA enzyme. Among the synthesized derivatives, compounds 2b, 3i and 3j were the most potent against wild type M. tuberculosis with MIC values ranging from 6 to 8 µg/ mL and displayed low cytotoxicity towards mouse fibroblasts at concentrations 8-13 times higher than the MIC values. The three hybrids could also inhibit the growth of ΔkatGmutant strain which is resistant to isoniazid (INH). Compounds 2b and 3j were able to inhibit the growth of mycobacteria inside human macrophages, indicating their ability to penetrate human professional phagocytes. The two derivatives significantly suppress mycobacterial biofilm formation by 10-15 %. The promising target compounds were also assessed for their inhibitory effect against InhA and showed potent effectiveness with IC50 values of 0.737 and 1.494 µM, respectively. Molecular docking studies revealed that the tested compounds occupied the active site of InhA in contact with the NAD+ molecule. The 4-phenylcoumarin aromatic system showed binding interactions within the hydrophobic pocket of the active site. Furthermore, H-bond formation and π -π stacking interactions were also recorded for the promising derivatives.
Assuntos
Antituberculosos , Proteínas de Bactérias , Cumarínicos , Desenho de Fármacos , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis , Oxirredutases , Tiazóis , Cumarínicos/farmacologia , Cumarínicos/química , Cumarínicos/síntese química , Antituberculosos/farmacologia , Antituberculosos/síntese química , Antituberculosos/química , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/enzimologia , Tiazóis/farmacologia , Tiazóis/química , Tiazóis/síntese química , Relação Estrutura-Atividade , Humanos , Oxirredutases/antagonistas & inibidores , Oxirredutases/metabolismo , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/metabolismo , Estrutura Molecular , Animais , Camundongos , Relação Dose-Resposta a Droga , Modelos Moleculares , Simulação de Acoplamento Molecular , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/químicaRESUMO
Sporadically and periodically, influenza outbreaks threaten global health and the economy. Antigen drift-induced influenza virus mutations hamper antiviral drug development. Thus, a novel antiviral agent is urgently needed to address medication inefficacy issues. Herein, sixteen new quinoline-triazole hybrids 6a-h and 9a-h were prepared and evaluated in vitro against the H1N1 virus. In particular, 6d, 6e, and 9b showed promising H1N1 antiviral activity with selective index (SI) CC50/IC50 values of 15.8, 37, and 29.15. After that, the inhibition rates for various mechanisms of action (virus replication, adsorption, and virucidal activity) were investigated for the most efficient candidates 6d, 6e, and 9b. Additionally, their ability to inhibit neuraminidase was evaluated. With an IC50 value of 0.30 µM, hybrid 6d demonstrated effective and comparable inhibitory activity to Oseltamivir. Ultimately, molecular modeling investigations, encompassing molecular docking and molecular dynamic simulations, were conducted to provide a scientific basis for the observed antiviral results.
Assuntos
Antivirais , Relação Dose-Resposta a Droga , Inibidores Enzimáticos , Vírus da Influenza A Subtipo H1N1 , Neuraminidase , Quinolinas , Triazóis , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus da Influenza A Subtipo H1N1/enzimologia , Antivirais/farmacologia , Antivirais/química , Antivirais/síntese química , Quinolinas/química , Quinolinas/farmacologia , Quinolinas/síntese química , Neuraminidase/antagonistas & inibidores , Neuraminidase/metabolismo , Triazóis/química , Triazóis/farmacologia , Triazóis/síntese química , Relação Estrutura-Atividade , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/síntese química , Estrutura Molecular , Humanos , Testes de Sensibilidade Microbiana , Descoberta de Drogas , Simulação de Acoplamento MolecularRESUMO
Tuberculosis (TB) is a global issue that poses a significant economic burden as a result of the ongoing emergence of drug-resistant strains. The urgent requirement for the development of novel antitubercular drugs can be addressed by targeting specific enzymes. One such enzyme, Mycobacterium tuberculosis (MTB) enoyl-acyl carrier protein (enoyl-ACP) reductase (InhA), plays a crucial role in the survival of the MTB bacterium. In this research study, a series of hybrid compounds combining quinolone and isatin were synthesized and assessed for their effectiveness against MTB, as well as their ability to inhibit the activity of the InhA enzyme in this bacterium. Among the compounds tested, 7a and 5g exhibited the most potent inhibitory activity against MTB, with minimum inhibitory concentration (MIC) values of 55 and 62.5 µg/mL, respectively. These compounds were further evaluated for their inhibitory effects on InhA and demonstrated significant activity compared to the reference drug Isoniazid (INH), with IC50 values of 0.35 ± 0.01 and 1.56 ± 0.06 µM, respectively. Molecular docking studies investigated the interactions between compounds 7a and 5g and the target enzyme, revealing hydrophobic contacts with important amino acid residues in the active site. To further confirm the stability of the complexes formed by 5g and 7a with the target enzyme, molecular dynamic simulations were employed, which demonstrated that both compounds 7a and 5g undergo minor structural changes and remain nearly stable throughout the simulated process, as assessed through RMSD, RMSF, and Rg values.
Assuntos
Isatina , Mycobacterium tuberculosis , Quinolinas , Humanos , Proteína de Transporte de Acila/farmacologia , Isatina/farmacologia , Simulação de Acoplamento Molecular , Oxirredutases/metabolismo , Antituberculosos/farmacologia , Antituberculosos/química , Testes de Sensibilidade Microbiana , Quinolinas/farmacologia , Proteínas de Bactérias/metabolismoRESUMO
RAS (rat sarcoma) oncoproteins are crucial for the growth of some human cancers, including lung, colorectal, and pancreatic adenocarcinomas. The RAS family contains three known human isoforms H(Harvey)-RAS, N(Neuroblastoma)-RAS, and K(Kirsten)-RAS. Mutations in RAS proteins cause up to ~ 30% of cancer cases. For almost 30 years, mutant proteins druggable pockets remained undiscovered, they are nearly identical to their essential, wild-type counterparts and cause cancer. Recent research has increased our knowledge of RAS's structure, processing, and signaling pathways and revealed novel insights into how it works in cancer cells. We highlight several approaches that inhibit RAS activity with small compounds in this review: substances that blocked farnesyltransferase (FTase), isoprenylcysteine carboxyl methyltransferase (Icmt), and RAS-converting enzyme 1 (Rce1) three important enzymes required for RAS localization. Inhibitors block the son of sevenless (SOS) protein's role in nucleotide exchange activity, small molecules that interfered with the phosphodiesterase (PDEδ)-mediated intracellular RAS transport processes, substances that focused on inhibiting RAS-effector interactions. Inhibitors are made to suppress the oncogenic K-RAS G12C mutant only when the nucleophilic cysteine residue at codon 12 is present and many inhibitors with various mechanisms like breaking the organization membrane of K-RAS nano-clustering. So, this is a thorough analysis of the most recent advancements in K-RAS-targeted anticancer techniques, hopefully offering insight into the field's future.
RESUMO
A series of 4-phenylcoumarin derivatives was synthesized and evaluated for their cellular anti-HIV-1 and HIV-2 activities as well as their inhibitory effects against HIV-1 reverse transcriptase (RT). The hydrazone compound 8b and the ethylthiosemicarbazide derivative 4c showed the best inhibition activity against wild-type (WT) HIV-1. The promising compounds were further evaluated against HIV-1 RT and exhibited significant inhibitory activity with compound 8b showing comparable effect to the reference NNRTI Efavirenz (IC50 = 9.01 nM). Structure activity relationship study revealed the importance of 6-chloro and 4-phenyl substituents for optimum activity, as well as the 5-atoms linker (=N-NH-CO-CH2-O-) at position 7 of coumarin scaffold that can support the rotation and flexibility of compound 8b to fit well in the binding pocket. The molecular docking of compound 8b demonstrated a typical seahorse binding mode with better binding interactions that covered more residues when compared to Efavirenz.
Assuntos
Fármacos Anti-HIV , HIV-1 , Simulação de Acoplamento Molecular , Inibidores da Transcriptase Reversa/química , Cumarínicos/farmacologia , Relação Estrutura-Atividade , Transcriptase Reversa do HIV , Desenho de Fármacos , Fármacos Anti-HIV/químicaRESUMO
Bacterial virulence becomes a significant challenge for clinical treatments, particularly those characterized as Multi-Drug-Resistant (MDR) strains. Therefore, the preparation of new compounds with active moieties could be a successful approach for eradication of MDR strains. For this purpose, newly synthesized quinoline compounds were prepared and tested for their antimicrobial activity against Methicillin-Resistant Staphylococcus Aureus (MRSA) and Pseudomonas Aeruginosa (PA). Among the synthesized derivatives, compounds 1-(quinolin-2-ylamino)pyrrolidine-2,5-dione (8) and 2-(2-((5-methylfuran-2-yl)methylene)hydrazinyl)quinoline (12) were shown to possess the highest antimicrobial activity with the minimum inhibitory concentration with the values of 5±2.2 and10±1.5â µg/mL towards Pseudomonas aeruginosa without any activity towards MRSA. Interestingly, compounds 2-(2-((1H-indol-3-yl)methylene)hydrazinyl)quinoline (13) and 2-(4-bromophenyl)-3-(quinolin-2-ylamino)thiazolidin-4-one (16c) showed significant inhibition activity against Staphylococcus aureus MRSA and Pseudomonas aeruginosa. Compound 13 (with indole moiety) particularly displayed excellent bactericidal activity with low MIC values 20±3.3 and 10±1.5â µg/mL against Staphylococcus aureus MRSA and Pseudomonas aeruginosa, respectively. Effects molecular modelling was used to determine the mode of action for the antimicrobial effect. The stability of complexes formed by docking and target-ligand pairing was evaluated using molecular dynamics simulations. The compounds were also tested for binding affinity to the target protein using MM-PBSA. Density-functional theory (DFT) calculations were also used to investigate the electrochemical properties of various compounds.
Assuntos
Staphylococcus aureus Resistente à Meticilina , Quinolinas , Simulação de Dinâmica Molecular , Pseudomonas aeruginosa , Antibacterianos/química , Staphylococcus aureus , Testes de Sensibilidade Microbiana , Quinolinas/farmacologia , Quinolinas/química , Simulação de Acoplamento MolecularRESUMO
Among all cancer types, breast cancer (BC) still stands as one of the most serious diseases responsible for a large number of cancer-associated deaths among women worldwide, and diagnosed cases are increasing year by year worldwide. For a very long time, hormonal therapy, surgery, chemotherapy, and radiotherapy were used for breast cancer treatment. However, these treatment approaches are becoming progressively futile because of multidrug resistance and serious side effects. Consequently, there is a pressing demand to develop more efficient and safer agents that can fight breast cancer belligerence and inhibit cancer cell proliferation, invasion and metastasis. Currently, there is an avalanche of newly designed and synthesized molecular entities targeting multiple types of breast cancer. This review highlights several important synthesized compounds with promising anti-BC activity that are categorized according to their chemical structures.
Assuntos
Antineoplásicos , Neoplasias da Mama , Proliferação de Células/efeitos dos fármacos , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Células MCF-7RESUMO
Heading the list of the critical health-related issues worldwide, cancer continues to be a one of the most serious life-threatening diseases. The rate of cancer-related mortality is at alarming level globally because of poor ability of prevention, diagnosis and efficient treatment of cancers. Pertaining to its wide prevalence in many naturally occurring compounds, coumarin as a privileged scaffold is endowed with outstanding anticancer profile. Different classes of coumarin-based anticancer agents that act through diverse mechanisms of action have been comprehensively investigated by many researchers, such as alkylating agents, topoisomerase inhibitors, hormone antagonists, angiogenesis inhibitors, antimitotic agents, apoptosis inducers, human carbonic anhydrase inhibitors, telomerase inhibitors and other mechanisms. Accordingly, medicinal chemists and drug design scientists embarked on exploring diverse coumarin-based derivatives comprehending their potential to develop new efficient anticancer agents. The present review provides an overview of different anticancer classes based on the coumarin scaffold that have been reported since 2015 with particular emphasis on their cellular and enzymatic mechanism of actions.
Assuntos
Antineoplásicos/uso terapêutico , Cumarínicos/uso terapêutico , Antineoplásicos/farmacologia , Cumarínicos/farmacologia , Humanos , Estrutura Molecular , Relação Estrutura-AtividadeRESUMO
Human health in the current medical era is facing numerous challenges, especially cancer. So, the therapeutic arsenal for cancer should be unremittingly enriched with novel small molecules that selectively target tumour cells with minimal toxicity towards normal cells. In this context, herein a new series of 3,6-disubstituted pyridazines 11a-r has been synthesised and evaluated for in vitro anticancer activity. They possessed good anti-proliferative action towards human breast cancer T-47D (IC50 range: 0.43 ± 0.01 - 35.9 ± 1.18 µM) and MDA-MB-231 (IC50 range: 0.99 ± 0.03 - 34.59 ± 1.13 µM) cell lines, whereas they displayed weak activity against the tested ovarian cancer cell line SKOV-3. Among the studied compounds, the methyltetrahydropyran-bearing pyridazine 11m emerged as the unique submicromolar growth inhibitor herein reported towards both T-47D (IC50 = 0.43 ± 0.01 µM) and MDA-MB-231 (IC50 = 0.99 ± 0.03 µM) cell lines. In addition, the biological results indicated that pyridazines 11l and 11m exerted an efficient alteration within the cell cycle progression as well as induction of apoptosis in both T-47D and MDA-MB-231 cells. Moreover, pyridazines 11l and 11m displayed good mean tumour S. I. values of 13.7 and 16.1 upon assessment of their cytotoxicity towards non-tumorigenic breast MCF-10A cells. Furthermore, an in silico study proposed CDK2 as a probable enzymatic target for pyridazines 11, and explored their binding interactions within the vicinity of CDK2 binding site. Subsequently, pyridazines 11e, 11h, 11l, and 11m were selected to be evaluated for their ability to inhibit CDK2, where they exerted good inhibitory activity (IC50 = 151, 43.8, 55.6 and 20.1 nM, respectively). Finally, the in silico study implied that target pyridazines 11 exhibited not only an efficient anticancer activity but also an acceptable ADME, physicochemical and druglikeness properties, specifically pyridazines 11l and 11m. Overall the obtained results from this study quite sustained our strategy and gave us a robust opportunity for further development and optimisation of 3,6-disubstituted pyridazine scaffold to enrich therapeutic arsenal with efficient and safe anticancer CDK inhibitors.
Assuntos
Antineoplásicos/farmacologia , Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Descoberta de Drogas , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases/farmacologia , Piridazinas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Quinase 2 Dependente de Ciclina/metabolismo , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Piridazinas/síntese química , Piridazinas/química , Relação Estrutura-AtividadeRESUMO
Herein, we report the synthesis of different novel sets of coumarin-6-sulfonamide derivatives bearing different functionalities (4a, b, 8a-d, 11a-d, 13a, b, and 15a-c), and in vitro evaluation of their growth inhibitory activity towards the proliferation of three cancer cell lines; HepG2 (hepatocellular carcinoma), MCF-7 (breast cancer), and Caco-2 (colon cancer). HepG2 cells were the most sensitive cells to the influence of the target coumarins. Compounds 13a and 15a emerged as the most active members against HepG2 cells (IC50 = 3.48 ± 0.28 and 5.03 ± 0.39 µM, respectively). Compounds 13a and 15a were able to induce apoptosis in HepG2 cells, as assured by the upregulation of the Bax and downregulation of the Bcl-2, besides boosting caspase-3 levels. Besides, compound 13a induced a significant increase in the percentage of cells at Pre-G1 by 6.4-folds, with concurrent significant arrest in the G2-M phase by 5.4-folds compared to control. Also, 13a displayed significant increase in the percentage of annexin V-FITC positive apoptotic cells from 1.75-13.76%. Moreover, QSAR models were established to explore the structural requirements controlling the anti-proliferative activities.
Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Cumarínicos/química , Relação Quantitativa Estrutura-Atividade , Sulfonamidas/química , Antineoplásicos/síntese química , Células CACO-2 , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Cumarínicos/farmacologia , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células Hep G2 , Humanos , Células MCF-7 , Estrutura Molecular , Sulfonamidas/farmacologiaRESUMO
In this study, we designed and synthesized a series of coumarin derivatives as antitubercular agents targeting the enoyl acyl carrier protein reductase (InhA) enzyme. Among the synthesized compounds, the tetrazole derivative 4c showed the most potent antitubercular effect with a minimum inhibitory concentration value (MIC) of 15 µg mL-1 against Mtb H37Rv and could also inhibit the growth of the mutant strain (ΔkatG). Compound 4c was able to penetrate Mtb-infected human macrophages and suppress the intracellular growth of tubercle bacilli. Moreover, the target derivative 4c showed a potent inhibitory effect against InhA enzyme with an IC50 value of 0.565 µM, which was superior to the reference InhA inhibitor triclosan. Molecular docking of compound 4c within the InhA active site revealed the importance of the 4-phenylcoumarin ring system and tetrazole moiety for activity. Finally, the physicochemical properties and pharmacokinetic parameters of 4c were investigated.
RESUMO
AIMS: The present study evaluated the effect of oral zinc supplementation on shortening hospital length of stay. METHODS: A systematic review was conducted for randomized control trials in patients who were hospitalized regardless of age and cause of admission. Studies were collected from PubMed, Web of Science, SCOPUS, and the Cochrane Library until July 2023. Results were compared between the zinc group and those who received a placebo and/or the standard therapy. RESULTS: Eight studies were qualified for our meta-analysis. Of the 1267 patients, 633 and 634 were in the zinc supplementation and control groups, respectively. The meta-analysis found that oral zinc supplementation group experienced a lower length of hospital stay than the control group (mean difference, -0.43 days; 95% confidence interval, -0.65 to -0.22; P < 0.0001; heterogeneity, I2 = 20%). CONCLUSION: The administration of oral zinc supplements was associated with a slightly reduced duration of hospital stay.
RESUMO
Malignant melanoma is the most invasive skin cancer with the highest risk of death. The inhibition of BRAFV600E appears relevant for overcoming secondary resistance developed during melanoma treatment. BRAFV600E triggers angiogenesis via modification of the expression of angiogenic inducers, which play a crucial role in the metastasis of melanoma. Accordingly, the dual inhibition of the BRAFV600E/VEGFR-2 signaling pathway is considered a rational approach in the design of anti-melanoma candidates. In this study, a new class of pyrazolylindolin-2-one linked coumarin derivatives as dual BRAFV600E/VEGFR-2 inhibitors targeting A375 melanoma cells was designed. Target compounds were tailored to occupy the pockets of BRAFV600E and VEGFR-2. Most of the synthesized compounds demonstrated potent mean growth inhibitory activity against A375 cells. Compound 4j was the most active cytotoxic derivative, displaying an IC50 value at a low micromolar concentration of 0.96 µM with a significant safety profile. Moreover, 4j showed dual potent inhibitory activity against BRAFV600E and VEGFR-2 (IC50 = 1.033 and 0.64 µM, respectively) and was more active than the reference drug sorafenib. Furthermore, derivative 4j caused significant G0/G1 cell cycle arrest, induced apoptosis, and inhibited the migration of melanoma cells. Molecular docking showed that compound 4j achieved the highest ΔG value of -9.5 kcal mol-1 against BRAFV600E and significant ΔG of -8.47 kcal mol-1 against VEGFR-2. Furthermore, the structure-activity relationship study revealed that TPSA directly contributed to the anticancer activity of the tested compounds.
RESUMO
Because resistant variants of the disease are always emerging, tuberculosis is a global issue that affects economies. New antitubercular medications should be developed, and this can be done by inhibiting druggable targets. Enoyl acyl carrier protein (ACP) reductase (InhA) is a crucial enzyme for the survival of Mycobacterium tuberculosis (MTB). In this study, a series of small molecules based on non-fused and fused heterocycles (pyridine, coumarin, quinoline, and indole) tethered with benzenesulfonohydrazide were prepared via an aza-Michael reaction exploiting a one-pot synthesis approach. The synthesized molecules (2-7) were evaluated for their activity against tubercle bacilli. Three analogues showed efficacy against tuberculosis, with compound 7 demonstrating a MIC value as low as 8 µg mL-1. Consequently, compounds 3 and 7 successfully hindered the growth of mycobacteria in human monocyte-derived macrophages (MDMs), demonstrating their ability to penetrate human professional phagocytes. Furthermore, they restricted the ability of mycobacteria to produce biofilms. In addition, the inhibitory effects of compounds 3 and 7 against InhA were assessed. Compound 7 exhibited the best efficacy, with an IC50 value of 0.91 µM. The findings showed that the sulfonamide and methyl ester's carbonyl functionalities were engaged in hydrogen bonding with the essential Ile194 and Tyr158 residues, respectively.
RESUMO
The development of effective drugs targeting the K-Ras oncogene product is a significant focus in anticancer drug development. Despite the lack of successful Ras signaling inhibitors, recent research has identified PDEδ, a KRAS transporter, as a potential target for inhibiting the oncogenic KRAS signaling pathway. This study aims to investigate the interactions between eight K-Ras inhibitors (deltarazine, deltaflexin 1 and 2, and its analogues) and PDEδ to understand their binding modes. The research will utilize computational techniques such as density functional theory (DFT) and molecular electrostatic surface potential (MESP), molecular docking, binding site analyses, molecular dynamic (MD) simulations, electronic structure computations, and predictions of the binding free energy. Molecular dynamic simulations (MD) will be used to predict the binding conformations and pharmacophoric features in the active site of PDEδ for the examined structures. The binding free energies determined using the MMPB(GB)SA method will be compared with the observed potency values of the tested compounds. This computational approach aims to enhance understanding of the PDEδ selective mechanism, which could contribute to the development of novel selective inhibitors for K-Ras signaling.
Assuntos
Simulação de Dinâmica Molecular , Proteínas Proto-Oncogênicas p21(ras) , Simulação de Acoplamento Molecular , Proteínas Proto-Oncogênicas p21(ras)/genética , Sítios de Ligação , Domínio CatalíticoRESUMO
The spread of drug-resistant tuberculosis strains has become a significant economic burden globally. To tackle this challenge, there is a need to develop new drugs that target specific mycobacterial enzymes. Among these enzymes, InhA, which is crucial for the survival of Mycobacterium tuberculosis, is a key target for drug development. Herein, 24 compounds were synthesized by merging 4-carboxyquinoline with triazole motifs. These molecules were then tested for their effectiveness against different strains of tuberculosis, including M. bovis BCG, M. tuberculosis, and M. abscessus. Additionally, their ability to inhibit the InhA enzyme was also evaluated. Several molecules showed potential as inhibitors of M. tuberculosis. Compound 5n displayed the highest efficacy with a MIC value of 12.5 µg/mL. Compounds 5g, 5i, and 5n exhibited inhibitory effects on InhA. Notably, 5n showed significant activity compared to the reference drug Isoniazid. Molecular docking analysis revealed interactions between these molecules and their target enzyme. Additionally, the molecular dynamic simulations confirmed the stability of the complexes formed by quinoline-triazole conjugate 5n with the InhA. Finally, 5n underwent in silico analysis to predict its ADME characteristics. These findings provide promising insights for developing novel small compounds that are safe and effective for the global fight against tuberculosis.
RESUMO
Multidrug resistance (MDR) mechanisms in cancer cells are greatly influenced by glutathione transferase P1-1 (hGSTP1-1). The use of synthetic or natural compounds as hGSTP1-1 inhibitors is considered an effective approach to overcome MDR. Nine compounds consisting of coumarin-6-sulfonamide linked to chalcone derivatives were synthesized and evaluated for their ability to inhibit hGSTP1-1. Among the synthetic derivatives, compounds 5g, 5f, and 5a displayed the most potent inhibitory effect, with IC50 values of 12.2 ± 0.5 µΜ, 12.7 ± 0.7 and 16.3 ± 0.6, respectively. Kinetic inhibition analysis of the most potent molecule, 5g, showed that it behaves as a mixed-type inhibitor of the target enzyme. An in vitro cytotoxicity assessment of 5a, 5f, and 5g against the human prostate cancer cell lines DU-145 and PC3, as well as the breast cancer cell line MCF-7, demonstrated that compound 5g exhibited the most pronounced cytotoxic effect on all tested cell lines. Molecular docking studies were performed to predict the structural and molecular determinants of 5g, 5f, and 5a binding to hGSTP1-1. In agreement with the experimental data, the results revealed that 5g exhibited the lowest docking score among the three studied inhibitors as a consequence of shape complementarity, governed by van der Waals, hydrogen bonds and a π-π stacking interaction. These findings suggest that coumarin-chalcone hybrids offer new perspectives for the development of safe and efficient natural product-based sensitizers that can target hGSTP1-1 for anticancer purposes.
Assuntos
Cumarínicos , Glutationa S-Transferase pi , Simulação de Acoplamento Molecular , Sulfonamidas , Humanos , Cumarínicos/química , Cumarínicos/farmacologia , Glutationa S-Transferase pi/antagonistas & inibidores , Glutationa S-Transferase pi/metabolismo , Sulfonamidas/química , Sulfonamidas/farmacologia , Linhagem Celular Tumoral , Chalcona/química , Chalcona/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Chalconas/química , Chalconas/farmacologia , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Células MCF-7RESUMO
In a search for new drug candidates for one of the neglected tropical diseases, leishmaniasis, twenty quinoline-isatin hybrids were synthesized and tested for their in vitro antileishmanial activity against Leishmaniamajor strain. All the synthesized compounds showed promising in vitro activity against the promastigote form in a low micromolar range (IC50 = 0.5084-5.9486 µM) superior to the reference miltefosine (IC50 = 7.8976 µM). All the target compounds were then tested against the intracellular amastigote form and showed promising inhibition effects (IC50 = 0.60442-8.2948 µM versus 8.08 µM for miltefosine). Compounds 4e, 4b and 4f were shown to possess the highest antileishmanial activity against both promastigote and amastigote forms. The most active compounds were proven to exhibit their significant antileishmanial effects through antifolate mechanism, targeting DHFR-TS and PTR1. To evaluate the safety profile of the most active derivatives 4e, 4b and 4f, the in vitro cytotoxicity test was carried out and displayed higher selectivity indices than the reference miltefosine. Molecular docking within putative target protein PTR1 confirmed the high potentiality of the most active compounds 4e, 4b and 4f to block the catalytic activity of Lm-PTR1.
Assuntos
Antiprotozoários , Isatina , Quinolinas , Isatina/farmacologia , Simulação de Acoplamento Molecular , Quinolinas/farmacologia , Relação Estrutura-AtividadeRESUMO
Heterocyclic compounds have been featured as the key building blocks for the development of biologically active molecules. In addition to being derived from renewable raw materials, fatty acids possess a variety of biological properties. The two bioactive ingredients are being combined by many researchers to produce hybrid molecules that have a number of desirable properties. Biological activities and significance of heterocyclic derivatives of fatty acids have been demonstrated in a new class of heterocyclic compounds called heterocyclic fatty acid hybrid derivatives. The significance of heterocyclic-fatty acid hybrid derivatives has been emphasized in numerous research articles over the past few years. In this review, we emphasize the development of synthetic methods and their biological evaluation for heterocyclic fatty acid derivatives. These reports, combined with the upcoming compilation, are expected to serve as comprehensive foundations and references for synthetic, preparative, and applicable methods in medicinal chemistry.
RESUMO
In accordance with WHO statistics, leishmaniasis is one of the top neglected tropical diseases, affecting around 700 000 to one million people per year. To that end, a new series of coumarin-1,2,3-triazole hybrid compounds was designed and synthesized. All new compounds exerted higher activity than miltefosine against L. major promastigotes and amastigotes. Seven compounds showed single digit micromolar IC50 values whereas three compounds (13c, 14b and 14c) displayed submicromolar potencies. A mechanistic study to elucidate the antifolate-dependent activity of these compounds revealed that folic and folinic acids abrogated their antileishmanial effects. These compounds exhibited high safety margins in normal VERO cells, expressed as high selectivity indices. Docking simulation studies on the folate pathway enzymes pteridine reductase and DHFR-TS imparted strong theoretical support to the observed biological activities. Besides, docking experiments on human DHFR revealed minimal binding interactions thereby highlighting the selectivity of these compounds. Predicted in silico physicochemical and pharmacokinetic parameters were adequate. In view of this, the structural characteristics of these compounds demonstrated their suitability as antileishmanial lead compounds.