Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(1)2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36616950

RESUMO

Positioning via outdoor fingerprinting, which exploits the radio signals emitted by cellular towers, is fundamental in many applications. In most cases, the localization performance is affected by the availability of information about the emitters, such as their coverage. While several projects aim at collecting cellular network data via crowdsourcing observations, none focuses on information about the structure of the networks, which is paramount to correctly model their topology. The difficulty of such a modeling is exacerbated by the inherent differences among cellular technologies, the strong spatio-temporal nature of positioning, and the continuously evolving configuration of the networks. In this paper, we first show how to synthesize a detailed conceptual schema of cellular networks on the basis of the signal fingerprints collected by devices. We turned it into a logical one, and we exploited that to build a relational spatio-temporal database capable of supporting a crowdsourced collection of data. Next, we populated the database with heterogeneous cellular observations originating from multiple sources. In addition, we illustrate how the developed system allows us to properly deal with the evolution of the network configuration, e.g., by detecting cell renaming phenomena and by making it possible to correct inconsistent measurements coming from mobile devices, fostering positioning tasks. Finally, we provide a wide range of basic, spatial, and temporal analyses about the arrangement of the cellular network and its evolution over time, demonstrating how the developed system can be used to reconstruct and maintain a deep knowledge of the cellular network, possibly starting from crowdsourced information only.


Assuntos
Crowdsourcing , Tempo , Bases de Dados Factuais , Células Epiteliais , Tecnologia
2.
Sci Data ; 9(1): 177, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35440646

RESUMO

Polysomnography (PSG) is a fundamental diagnostical method for the detection of Obstructive Sleep Apnea Syndrome (OSAS). Historically, trained physicians have been manually identifying OSAS episodes in individuals based on PSG recordings. Such a task is highly important for stroke patients, since in such cases OSAS is linked to higher mortality and worse neurological deficits. Unfortunately, the number of strokes per day vastly outnumbers the availability of polysomnographs and dedicated healthcare professionals. The data in this work pertains to 30 patients that were admitted to the stroke unit of the Udine University Hospital, Italy. Unlike previous studies, exclusion criteria are minimal. As a result, data are strongly affected by noise, and individuals may suffer from several comorbidities. Each patient instance is composed of overnight vital signs data deriving from multi-channel ECG, photoplethysmography and polysomnography, and related domain expert's OSAS annotations. The dataset aims to support the development of automated methods for the detection of OSAS events based on just routinely monitored vital signs, and capable of working in a real-world scenario.


Assuntos
Apneia Obstrutiva do Sono , Acidente Vascular Cerebral , Humanos , Polissonografia , Apneia Obstrutiva do Sono/complicações , Apneia Obstrutiva do Sono/diagnóstico , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/diagnóstico , Sinais Vitais
3.
Artif Intell Med ; 118: 102133, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34412849

RESUMO

Obstructive Sleep Apnea Syndrome (OSAS) is the most common sleep-related breathing disorder. It is caused by an increased upper airway resistance during sleep, which determines episodes of partial or complete interruption of airflow. The detection and treatment of OSAS is particularly important in patients who suffered a stroke, because the presence of severe OSAS is associated with higher mortality, worse neurological deficits, worse functional outcome after rehabilitation, and a higher likelihood of uncontrolled hypertension. The gold standard test for diagnosing OSAS is polysomnography (PSG). Unfortunately, performing a PSG in an electrically hostile environment, like a stroke unit, on neurologically impaired patients is a difficult task; moreover, the number of strokes per day vastly outnumbers the availability of polysomnographs and dedicated healthcare professionals. Hence, a simple and automated recognition system to identify OSAS cases among acute stroke patients, relying on routinely recorded vital signs, is highly desirable. The vast majority of the work done so far focuses on data recorded in ideal conditions and highly selected patients, and thus it is hardly exploitable in real-life circumstances, where it would be of actual use. In this paper, we propose a novel convolutional deep learning architecture able to effectively reduce the temporal resolution of raw waveform data, like physiological signals, extracting key features that can be used for further processing. We exploit models based on such an architecture to detect OSAS events in stroke unit recordings obtained from the monitoring of unselected patients. Unlike existing approaches, annotations are performed at one-second granularity, allowing physicians to better interpret the model outcome. Results are considered to be satisfactory by the domain experts. Moreover, through tests run on a widely-used public OSAS dataset, we show that the proposed approach outperforms current state-of-the-art solutions.


Assuntos
Aprendizado Profundo , Apneia Obstrutiva do Sono , Humanos , Polissonografia , Sono , Apneia Obstrutiva do Sono/diagnóstico , Sinais Vitais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA