Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Bioengineering (Basel) ; 10(7)2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37508906

RESUMO

Medical image segmentation is a vital healthcare endeavor requiring precise and efficient models for appropriate diagnosis and treatment. Vision transformer (ViT)-based segmentation models have shown great performance in accomplishing this task. However, to build a powerful backbone, the self-attention block of ViT requires large-scale pre-training data. The present method of modifying pre-trained models entails updating all or some of the backbone parameters. This paper proposes a novel fine-tuning strategy for adapting a pretrained transformer-based segmentation model on data from a new medical center. This method introduces a small number of learnable parameters, termed prompts, into the input space (less than 1% of model parameters) while keeping the rest of the model parameters frozen. Extensive studies employing data from new unseen medical centers show that the prompt-based fine-tuning of medical segmentation models provides excellent performance regarding the new-center data with a negligible drop regarding the old centers. Additionally, our strategy delivers great accuracy with minimum re-training on new-center data, significantly decreasing the computational and time costs of fine-tuning pre-trained models. Our source code will be made publicly available.

2.
Med Image Anal ; 90: 102989, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37827111

RESUMO

The number of studies on deep learning for medical diagnosis is expanding, and these systems are often claimed to outperform clinicians. However, only a few systems have shown medical efficacy. From this perspective, we examine a wide range of deep learning algorithms for the assessment of glioblastoma - a common brain tumor in older adults that is lethal. Surgery, chemotherapy, and radiation are the standard treatments for glioblastoma patients. The methylation status of the MGMT promoter, a specific genetic sequence found in the tumor, affects chemotherapy's effectiveness. MGMT promoter methylation improves chemotherapy response and survival in several cancers. MGMT promoter methylation is determined by a tumor tissue biopsy, which is then genetically tested. This lengthy and invasive procedure increases the risk of infection and other complications. Thus, researchers have used deep learning models to examine the tumor from brain MRI scans to determine the MGMT promoter's methylation state. We employ deep learning models and one of the largest public MRI datasets of 585 participants to predict the methylation status of the MGMT promoter in glioblastoma tumors using MRI scans. We test these models using Grad-CAM, occlusion sensitivity, feature visualizations, and training loss landscapes. Our results show no correlation between these two, indicating that external cohort data should be used to verify these models' performance to assure the accuracy and reliability of deep learning systems in cancer diagnosis.


Assuntos
Neoplasias Encefálicas , Aprendizado Profundo , Glioblastoma , Humanos , Idoso , Glioblastoma/diagnóstico por imagem , Glioblastoma/genética , Metilação , Reprodutibilidade dos Testes , Metilases de Modificação do DNA/genética , Metilases de Modificação do DNA/metabolismo , Metilases de Modificação do DNA/uso terapêutico , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Imageamento por Ressonância Magnética/métodos , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/uso terapêutico , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Enzimas Reparadoras do DNA/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA