Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
J Am Chem Soc ; 135(46): 17401-7, 2013 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-24152119

RESUMO

MO3 (M = Mo, W) or VI-VI binary compounds are important semiconducting oxides that show great promise for a variety of applications. In an effort to tune and enhance their properties in a systematic manner we have applied a designing strategy to deliberately introduce organic linker molecules in these perovskite-like crystal lattices. This approach has led to a wealth of new hybrid structures built on one-dimensional (1D) and two-dimensional (2D) VI-VI modules. The hybrid semiconductors exhibit a number of greatly improved properties and new functionality, including broad band gap tunability, negative thermal expansion, largely reduced thermal conductivity, and significantly enhanced dielectric constant compared to their MO3 parent phases.

2.
Micromachines (Basel) ; 15(1)2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38258191

RESUMO

This paper presents a novel piezoelectric micromachined ultrasonic transducer (PMUT) with theoretical simulation, fabrication, and testing. Conventional methods using a PCB or an external horn to adjust the PMUT acoustic field angle are limited by the need for transducer size. To address this limitation, the stepped-tube (expanded tube) backside cavity PMUT has been proposed. The stepped-tube PMUT and the tube PMUT devices have the same membrane structure, and the acoustic impedance matching of the PMUT is optimized by modifying the boundary conditions of the back cavity structure. The acoustic comparison experiments show that the average output sound pressure of the stepped-tube backside cavity PMUT has increased by 17%, the half-power-beam-width (θ-3db) has been reduced from 55° to 30° with a reduction of 45%, and the side lobe level signal is reduced from 147 mV to 66 mV. In addition, this work is fabricated on an eight-inch wafer. The process is compatible with standard complementary metal oxide semiconductor (CMOS), conditions are stable, and the cost is controllable, plus it facilitates the batch process. These conclusions suggest that the stepped-tube backside cavity PMUT will bring new, effective, and reliable solutions to ranging applications.

3.
Micromachines (Basel) ; 15(1)2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38258190

RESUMO

The advancement of spatial interaction technology has greatly enriched the domain of consumer electronics. Traditional solutions based on optical technologies suffers high power consumption and significant costs, making them less ideal in lightweight implementations. In contrast, ultrasonic solutions stand out due to their lower power consumption and cost-effectiveness, capturing widespread attention and interest. This paper addresses the challenges associated with the application of ultrasound sensors in spatial localization. Traditional ultrasound systems are hindered by blind spots, large physical dimensions, and constrained measurement ranges, limiting their practical applicability. To overcome these limitations, this paper proposes a miniature ultrasonic spatial localization module employing piezoelectric micromechanical ultrasonic transducers (PMUTs). The module is comprised of three devices each with dimension of 1.2 mm × 1.2 mm × 0.5 mm, operating at a frequency of around 180 kHz. This configuration facilitates a comprehensive distance detection range of 0-800 mm within 80° directivity, devoid of blind spot. The error rate and failure range of measurement as well as their relationship with the SNR (signal-to-noise ratio) are also thoroughly investigated. This work heralds a significant enhancement in hand spatial localization capabilities, propelling advancements in acoustic sensor applications of the meta-universe.

4.
IEEE Trans Biomed Eng ; 66(6): 1580-1587, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30452346

RESUMO

High-frequency ultrasonic imaging with improved spatial resolution has gained increasing attention in the field of biomedical imaging. Sensitivity of transducers plays a pivotal role in determining ultrasonic image quality. Conventional ultrasonic transducers are mostly made from lead-based piezoelectric materials that may be harmful to the human body and the environment. In this study, a new (K,Na)NbO3-KTiNbO5-BaZrO3-Fe2O3-MgO (KNN-NTK-FM) lead-free piezoelectric ceramic was utilized in developing eco-friendly transducers for high-frequency biomedical ultrasonic imaging applications. A needle transducer with a small active aperture size of 0.45 × 0.55 mm2 was designed and evaluated. The fabricated transducer exhibits great performance with a high center frequency (52.6 MHz), a good electromechanical coupling (keff ∼ 0.45), a large bandwidth (64.4% at -6 dB), and a very low two-way insertion loss (10.1 dB). Such high sensitivity is superior to those transducers based on other lead-free piezoelectric materials and can even be comparable to the lead-based ones. Imaging performance of the KNN-NTK-FM needle transducer was analyzed by imaging a wire phantom and an agar tissue-mimicking phantom. Imaging capabilities of the transducer were further demonstrated by ex vivo imaging studies on a porcine eyeball and a rabbit aorta. The results suggest that the KNN-NTK-FM piezoceramic has many attractive properties over other lead-free piezoelectric materials in developing eco-friendly highly sensitive transducers for high-frequency biomedical ultrasonic imaging applications.


Assuntos
Cerâmica/química , Processamento de Imagem Assistida por Computador/métodos , Processamento de Sinais Assistido por Computador , Transdutores , Ultrassonografia/instrumentação , Animais , Aorta/diagnóstico por imagem , Desenho de Equipamento , Olho/diagnóstico por imagem , Química Verde , Imagens de Fantasmas , Coelhos , Suínos , Ultrassonografia/métodos
5.
J Phys Chem B ; 112(51): 16590-600, 2008 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-19032059

RESUMO

In this report, we will describe the effect of different concentrations of HfO2 nanopowders on the structure and properties of [Nafion/(HfO2)n] membranes with n = 0, 3, 5, 9, 11, 13, and 15 wt %, respectively. Films were prepared by a solvent casting procedure using HfO2 oxoclusters and Nafion. Seven new homogeneous membranes were obtained with thicknesses ranging from 200 to 350 microm. Each membrane is characterized by a rough HfO2-rich surface and a smooth Nafion-rich surface, with different physical-chemical properties. Membrane characterization was accomplished by means of thermogravimetric analysis (TGA), morphological measurements (environmental scanning electron microscopy) and vibrational spectroscopy (Fourier transform infrared attenuated total reflectance spectroscopy and Fourier transform Raman spectroscopy). These systems can be described in terms of five types of water domains, Nafion-HfO2 species with well-defined stoichiometry surrounded by Nafion and hydrated hafnia. The highest conductivity at 125 degrees C (3.2 x 10-2 S x cm(-1)) was measured on the [Nafion/(HfO2)5] film by electrical spectroscopy, with a stability range of conductivity between 5 and 115 degrees C.

6.
Artigo em Inglês | MEDLINE | ID: mdl-18334327

RESUMO

Lead-based piezoelectric ceramics are suitable materials for noninvasive applications of ultrasound in medicine. However, the embedded therapeutic and diagnostic procedures require the use of lead-free piezoelectric materials as active elements in transducers. With this goal in mind, we investigated the substitution of Ba(2+) cations in a lead-free piezoelectric system of K(1/2)Na(1/2)NbO(3)-LiTaO(3)-LiSbO(3) (KNN-LT-LS) with perovskite structure. The Ba(2+) was added to the system as an A-site dopant in the range of 0-2 mol% in increments of 0.5 mol%. The addition of Ba(2+) improved the piezoelectric charge coefficient, d(33), and longitudinal coupling coefficient, k(33). The composition with 1 mol% Ba2+ had 36% and 58% higher d(33) and k(33), respectively, than the undoped composition. It appeared that the addition of Ba(2+) induced "soft" characteristics in this lead-free piezoelectric system. This was verified by the increase of remnant polarization along with the decline of coercive field. The Ba(2+) behaved as a grain growth inhibitor and caused a drastic reduction in polarization level (approximately 60%) when the grain size became smaller than approximately 1.5 microm. Incorporation of Ba(2+) up to 1.5 mol% increased the bulk resistivity of the KNN-LT-LS system and then reduced it drastically at higher dopant concentrations. The electron-hole compensation model fit well with the results obtained in this study and verified the A-site substitution of donor-doped barium. KNN-LT-LS ceramics with 0 mol% and 1 mol% Ba(2+) were used to fabricate single-element ultrasonic transducers resonating at 5.5 MHz. The -6 dB fractional bandwidth and -20 dB pulse length of the probe made of doped ceramic were 50% and 1.68 micros, respectively. This indicated that this system could be considered as a candidate for invasive and/or embedded medical ultrasound applications.


Assuntos
Cerâmica/química , Cerâmica/efeitos da radiação , Transdutores , Ultrassonografia/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Chumbo , Teste de Materiais , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Soluções
7.
Natl Sci Rev ; 10(9): nwad205, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37565192
8.
Artigo em Inglês | MEDLINE | ID: mdl-29610088

RESUMO

This paper discusses the fabrication and characterization of 3.5-MHz single-element transducers for therapeutic applications in which the active elements are made of hard lead-free BNT-based and hard commercial PZT (PZT-841) piezoceramics. Composition of (BiNa0.88K0.08Li0.04)0.5(Ti0.985Mn0.015)O3 (BNKLT88-1.5Mn) was used to develop lead-free piezoelectric ceramic. Mn-doped samples exhibited high mechanical quality factor ( ) of 970, thickness coupling coefficient ( ) of 0.48, a dielectric constant ( ) of 310 (at 1 kHz), depolarization temperature ( ) of 200 °C, and coercive field ( ) of 52.5 kV/cm. Two different unfocused single-element transducers using BNKLT88-1.5Mn and PZT-841 with the same center frequency of 3.5 MHz and similar aperture size of 10.7 and 10.5 mm were fabricated. Pulse-echo response, acoustic frequency spectrum, acoustic pressure field, and acoustic intensity field of transducers were characterized. The BNT-based transducer shows linear response up to the peak-to-peak voltage of 105 V in which the maximum rarefactional acoustic pressure of 1.1 MPa, and acoustic intensity of 43 W/cm2 were achieved. Natural focal point of this transducer was at 60 mm from the surface of the transducer.


Assuntos
Cerâmica/química , Metais Pesados/química , Transdutores , Terapia por Ultrassom/instrumentação , Desenho de Equipamento
9.
IEEE Trans Ultrason Ferroelectr Freq Control ; 54(10): 1992-2000, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18019236

RESUMO

Traditional flextensional transducers classified in seven groups based on their designs have been used extensively in 1-100 kHz range for mine hunting, fish finding, oil explorations, and biomedical applications. In this study, a new family of small, low cost underwater, and biomedical transducers has been developed. After the fabrication of transducers, finite-elements analysis (FEA) was used extensively in order to optimize these miniature versions of high-power, low-frequency flextensional transducer designs to achieve broad bandwidth for both transmitting and receiving, engineered vibration modes, and optimized acoustic directivity patterns. Transducer topologies with various shapes, cross sections, and symmetries can be fabricated through high-volume, low-cost ceramic and metal extrusion processes. Miniaturized transducers posses resonance frequencies in the range of above 1 MHz to below 10 kHz. Symmetry and design of the transducer, polling patterns, driving and receiving electrode geometries, and driving conditions have a strong effect on the vibration modes, resonance frequencies, and radiation patterns. This paper is devoted to small, multimode flextensional transducers with active shells, which combine the advantages of small size and low-cost manufacturing with control of the shape of the acoustic radiation/receive pattern. The performance of the transducers is emphasized.

10.
Artigo em Inglês | MEDLINE | ID: mdl-17186914

RESUMO

Epitaxial and (110) oriented paraelectric thin films of Ba0.60Sro.40TiO3 were grown on (100) oriented NdGaO3 orthorhombic substrates, and the nonlinear dielectric properties were studied at 10 GHz along selected in-plane crystallographic directions in the film thickness range of 25-1200 nm. The measured dielectric properties show strong residual strain and in-plane directional dependence. For instance, the in-plane relative permittivity is found to vary from as much as 500 to 150 along [110] and [001], respectively, in the 600 nm film. Tunability was found to vary from as much as 54% to 20% in all films and directions. In a given film, the best tunability is observed along the compressed axis in a mixed strain state, 54% along [110] in the 600 nm film. It is shown that, by nanoscale manipulation of epitaxy and planar anisotropy, the return loss and phase shift in a paraelectric can be tuned over a rather wide range. The approach presented herein opens avenues for obtaining various degrees of phase shift on the same film, enabling one with an additional degree of freedom in device design and fabrication as well as multifunctionality.


Assuntos
Compostos de Bário/química , Compostos de Bário/efeitos da radiação , Membranas Artificiais , Micro-Ondas , Modelos Químicos , Nanoestruturas/química , Nanoestruturas/efeitos da radiação , Titânio/química , Titânio/efeitos da radiação , Anisotropia , Simulação por Computador , Impedância Elétrica , Eletroquímica/instrumentação , Eletroquímica/métodos , Campos Eletromagnéticos , Teste de Materiais , Nanoestruturas/ultraestrutura , Tamanho da Partícula
11.
Artigo em Inglês | MEDLINE | ID: mdl-16048177

RESUMO

In the last 25 years, piezoelectric ceramic-polymer composites have been conceptualized, prototyped, fabricated, and implemented in an array of applications encompassing medical imaging and military missions, among others. A detailed snapshot of the materials used, and a detailed account of the major innovative methods developed in making various piezoelectric ceramic-polymer composites are presented. The salient aspects of processing of such composites are summarized, and structure-processing-property relations are described using connectivity as the unifying central concept. Computer-aided design (CAD)-based fabrication methods, which result in composites whose structural complexity surpass that of composites obtained with traditional methods, are described to introduce the reader to novel concepts in processing of piezocomposites. A brief survey of some recent advances made in modeling of (0-3), (1-3), and (2-2) composites also is provided.

12.
Artigo em Inglês | MEDLINE | ID: mdl-12322880

RESUMO

This paper presents a two-dimensional analytical model of a spiral-shaped PZT ceramic actuator. Developed using elasticity theory and a zero-stress assumption, the theoretical analysis has been formulated for a piecewise semicircular representation of the spiral-shaped actuator. Closed-form solutions of the tangential displacement of the equivalent spiral under applied electrical field in the poling direction have been obtained. To develop confidence in the theoretical model, results are compared with those obtained using finite element analysis (FEA). Results from both are then compared with previously reported experimental findings, and reasonable agreement is achieved.


Assuntos
Acústica/instrumentação , Simulação por Computador , Cristalografia/métodos , Eletroquímica/métodos , Chumbo/química , Modelos Teóricos , Titânio/química , Zircônio/química , Elasticidade , Capacitância Elétrica , Análise de Elementos Finitos , Movimento (Física) , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Estresse Mecânico , Transdutores
13.
Artigo em Inglês | MEDLINE | ID: mdl-22899131

RESUMO

This paper discusses the fabrication and characterization of a single-element ultrasonic transducer with a lead-free piezoelectric active element. A piezoelectric ceramic with composition of 0.88Bi(0.5)Na(0.5)TiO(3)-0.08Bi(0.5)K(0.5)TiO(3)- 0.04Bi(0.5)Li(0.5)TiO(3) was chosen as the active element of the transducer. This composition exhibited a thickness coupling coefficient (kt) of 0.45, a dielectric constant of 440 (at 1 kHz), and a longitudinal piezoelectric coefficient (d(33)) of 84 pC·N(-1). To make the transducer, the ceramic was sandwiched between an epoxy-tungsten backing layer and a silver epoxy matching layer. An epoxy lens was also incorporated into the transducer's design to focus the ultrasound beam. The focused transducer with a center frequency of about 23 MHz demonstrated a -6-dB bandwidth of 55% and an insertion loss of -32 dB; the -20-dB pulsed length was measured to be 150 ns. A phantom made of copper wires (30 µm in diameter) was utilized to investigate the imaging capability of the transducer. The results indicated that the fabricated transducer, with a lateral resolution of 260 µm and a relatively high depolarization temperature, could be considered as a candidate for replacement of lead-based ultrasonic transducers.

14.
Artigo em Inglês | MEDLINE | ID: mdl-23007750

RESUMO

We have studied the effect of deposition parameters on the microstructure, crystallinity, and ferroelectric properties of 0.88(Bi(0.5)Na(0.5))TiO(3)-0.08(Bi(0.5)K(0.5))TiO(3)¿0.04BaTiO(3) thin films grown on SrRuO(3)-coated SrTiO(3) substrates by pulsed laser deposition. The parameters studied were the repetition rates, substrate temperatures, oxygen pressures, and laser energies. It was realized that the films prepared at 800°C, 10 Hz, 400 mtorr, and 1.2 Jcm(-2) exhibited the highest ferroelectric properties. The measured remanent polarization, dielectric constant at 1 kHz, and coercive field for this film were about 30 µCcm(-2), 645, and 85 kVcm(-1), respectively. Increasing the oxygen pressure during deposition from 200 to 400 mtorr improved the crystallinity, microstructure, dielectric constant, and polarization of the films. The leakage current and dielectric loss were suppressed at 400 mtorr because of the lower concentration of oxygen vacancies and disappearing pinholes and surface undulations in the film deposited at this pressure.

15.
Artigo em Inglês | MEDLINE | ID: mdl-20889401

RESUMO

Recent progress in lead-free piezoelectric ceramics and thin films with special emphasis on alkaline niobatebased and bismuth sodium titanate-based systems is reviewed concisely. Modifications of potassium sodium niobate (KNN) ceramics are presented and subsequent improvements in the electrical properties are summarized. Special attention is devoted to the phase diagram of the KNN system when a solid solution is formed with other perovskite niobates and titanates. Impact of A-site and B-site dopants on the electromechanical properties of KNN ceramics are distinguished in view of transition temperatures. It is shown that the addition of most A-site and B-site dopants reduces the transition temperatures and improves the piezoactivity at room temperature. This is attributed to the shift of polymorphic transition from tetragonal to orthorhombic phase in the vicinity of room temperature. In contrast, formation of a solid solution of KNN with 18 mol% AgNbO3 revealed a significant enhancement of properties without a notable change in the transition temperatures. Also, a bismuth sodium titanate (BNT) composition is introduced with particular emphasis on its binary and ternary derivatives. Moderate piezoelectric properties reported at the morphotropic phase boundaries, formed in BNT-based solid solutions are also represented. Advances on thin films based on these two compositions are evaluated and challenges involved with development of stoichiometric thin films with low leakage current are discussed.

16.
ChemSusChem ; 3(4): 471-5, 2010 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-20209512

RESUMO

By using a nondestructive, ultrasensitive, fluorescence kinetic technique, we measure in situ the photochemical energy conversion efficiency and electron transfer kinetics on the acceptor side of histidine-tagged photosystem II core complexes tethered to gold surfaces. Atomic force microscopy images coupled with Rutherford backscattering spectroscopy measurements further allow us to assess the quality, number of layers, and surface density of the reaction center films. Based on these measurements, we calculate that the theoretical photoelectronic current density available for an ideal monolayer of core complexes is 43 microA cm(-2) at a photon flux density of 2000 micromol quanta m(-2) s(-1) between 365 and 750 nm. While this current density is approximately two orders of magnitude lower than the best organic photovoltaic cells (for an equivalent area), it provides an indication for future improvement strategies. The efficiency could be improved by increasing the optical cross section, by tuning the electron transfer physics between the core complexes and the metal surface, and by developing a multilayer structure, thereby making biomimetic photoelectron devices for hydrogen generation and chemical sensing more viable.


Assuntos
Ouro/química , Processos Fotoquímicos , Complexo de Proteína do Fotossistema II/química , Cianobactérias/enzimologia , Transporte de Elétrons , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Cinética , Complexo de Proteína do Fotossistema II/metabolismo , Espectrometria de Fluorescência , Propriedades de Superfície
17.
Artigo em Inglês | MEDLINE | ID: mdl-20040411

RESUMO

We present a new type of actuator named bilayer piezoelectric/electrostrictive dome unimorph (BIPEDU), fabricated by attaching a piezoelectric-electrostrictive monolithic bilayer composites (PE-MBLC) to a metal plate. Various ratios of piezoelectric/electrostrictive (P/E) volume percent were used to form PE-MBLC. It was found that d(33)(eff) and K(eff) in PE-MBLC follow the series 2-2 composite mixing rule. However, the measured results were slightly lower than those of the calculated values because of a large difference in dielectric displacement between piezoelectric and electrostrictive layers and because the electrostrictor acts as the resistor that impedes the domain switching in piezoelectric layer during poling. In addition, we have investigated the field-induced displacement in PE-MBLC and BIPEDU actuators. In comparison, the displacement of BIPEDU actuators was much higher than that of PE-MBLC actuators. This was attributed to the good quality of bonding between ceramic and metal, which contributed to the proper stress/force transfer, as well as the metal sheet, which acted as a flextentional structure for PE-MBLC to generate more axial displacement in BIPEDU actuators. The load dependence of displacement in BIPEDU was obtained. In addition, the BIPEDU showed high reliability during the displacement cyclic testing.


Assuntos
Acústica/instrumentação , Eletrônica/instrumentação , Sistemas Microeletromecânicos/instrumentação , Transdutores , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
18.
Artigo em Inglês | MEDLINE | ID: mdl-19574120

RESUMO

We propose a new type of flextensional actuator comprised of an electromechanically active element which is a piezoelectric-electrostrictive monolithic bi-layer composite (PE-MBLC) capped by truncated thin brass sheets. The PE-MBLC contains equal amounts of 0.65[Pb(Mg(1/3)Nb(2/3))O(3)]-0.35PbTiO(3) and 0.9[Pb(Mg(1/3)Nb(2/3))O(3)]-0.1PbTiO(3) by volume, and is obtained by a co-sintering process. With applied E(max) = 10 kV/cm unipolar drive, the maximum axial displacement (u(33)) produced by the uncapped and capped PE-MBLC is 11 and 21 microm, respectively. The hysteresis in unipolar u(33) at 0.5 E(max) is 4.6% for the uncapped PE-MBLC, while that for the capped one is 11%. Under bipolar excitation, the maximum u(33) for uncapped is 11.6 microm at +E(max) and 6.6 microm at +E(max) with an asymmetry factor (zeta) of 1.75 for which u(33) < 0 for all E < 0. Under bipolar excitation, the maximum u(33) at +E(max) for the capped PE-MBLC is 19 microm while that for -E(max) is 8 microm with zeta = 2.4, for which u(33) > 0 at -E(max) but is smaller than the u(33) at +E(max). The origins of the observed asymmetry in u(33) are discussed in the context of symmetry superposition and deformation mechanics of the endcaps.


Assuntos
Transferência de Energia , Sistemas Microeletromecânicos/instrumentação , Transdutores , Módulo de Elasticidade , Desenho de Equipamento , Análise de Falha de Equipamento , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
19.
Artigo em Inglês | MEDLINE | ID: mdl-19251524

RESUMO

This paper presents the fabrication and characterization of single-element ultrasonic transducers whose active elements are made of lead-free piezoceramic, 1-3 PZT/polymer composite and PVDF film. The lead free piezoelectric KNNLT- LS(K(0.44)Na(0.52)Li(0.04))(Nb(0.84)Ta(0.10)S(0.06)b)O(3) powders and ceramics were prepared under controlled humidity and oxygen flow rate during sintering. Due to its moderate longitudinal piezoelectric charge coefficient (175 pC/N) and k(t) of 0.50, the KNN-LT-LS composition may be a good candidate for high frequency transducer applications. PZT fibers with 25 microm diameter formed by the viscose suspension spinning process were incorporated into epoxy to fabricate 1-3 composites with the averaged k(t) = 0.64 and d(33) = 400 pC/N. Using KNN-LS-LT ceramic, 1-3 PZT fiber composite, and PVDF film, 3 different unfocused single element transducers with center frequencies of 25 MHz were fabricated. The acoustic characterization of the transducers demonstrated that wideband and low insertion loss could be obtained employing KNN-LS-LT ceramic. The -6 dB bandwidth and insertion loss were 70% and -21 dB, respectively. In comparison, the insertion loss of the ceramic transducer was much smaller than those made with 1-3 composite and PVDF film. This was attributed to closer electrical impedance match to 50 ohm and higher thickness coupling coefficient of the ceramic transducer.


Assuntos
Chumbo/química , Polivinil/química , Titânio/química , Transdutores , Ultrassonografia/instrumentação , Zircônio/química , Acústica , Algoritmos , Fenômenos Químicos , Impedância Elétrica
20.
Artigo em Inglês | MEDLINE | ID: mdl-19686974

RESUMO

Recent progress in (K0.44, Na0.52, Li0.04)O3-based ceramics (KNN) with special emphasis on(K0.44,Na0.52,Li0.04)(Nb0.84,Ta0.10,Sb0.06)O3 (KNN-LT-LS) is reviewed concisely. The base KNN and its compositional derivatives are analyzed in terms of dopant-property relationships, which are then extended to the ternary derivatives. The effects of processing conditions such as humidity, precursor purity, and oxygen partial pressure during sintering are elaborated on from a phenomenological perspective. It is also shown that the spontaneous polarization is sensitive to the processing route chosen for synthesis (mixed oxide versus perovskite routes). Special attention is devoted to the discussion of the morphotropic phase boundary (MPB) dilemma in the KNN-LT-LS system, where it is shown that the origin of high piezoelectric activity is actually due to a polymorphic transition at room temperature. It is shown that prototype transducers based on pure and 1 mol% Ba2+ doped KNN-LT-LS exhibit performance metrics comparable to those fabricated using PZT-5H. Overall, KNNLT- LS ceramics show great promise for lead-free applications, although issues such as temperature dependence of properties and strong sensitivity to processing conditions remain as the 2 major challenges.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA