Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Brain ; 147(7): 2483-2495, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38701342

RESUMO

Network neuroscience offers a unique framework to understand the organizational principles of the human brain. Despite recent progress, our understanding of how the brain is modulated by focal lesions remains incomplete. Resection of the temporal lobe is the most effective treatment to control seizures in pharmaco-resistant temporal lobe epilepsy (TLE), making this syndrome a powerful model to study lesional effects on network organization in young and middle-aged adults. Here, we assessed the downstream consequences of a focal lesion and its surgical resection on the brain's structural connectome, and explored how this reorganization relates to clinical variables at the individual patient level. We included adults with pharmaco-resistant TLE (n = 37) who underwent anterior temporal lobectomy between two imaging time points, as well as age- and sex-matched healthy controls who underwent comparable imaging (n = 31). Core to our analysis was the projection of high-dimensional structural connectome data-derived from diffusion MRI tractography from each subject-into lower-dimensional gradients. We then compared connectome gradients in patients relative to controls before surgery, tracked surgically-induced connectome reconfiguration from pre- to postoperative time points, and examined associations to patient-specific clinical and imaging phenotypes. Before surgery, individuals with TLE presented with marked connectome changes in bilateral temporo-parietal regions, reflecting an increased segregation of the ipsilateral anterior temporal lobe from the rest of the brain. Surgery-induced connectome reorganization was localized to this temporo-parietal subnetwork, but primarily involved postoperative integration of contralateral regions with the rest of the brain. Using a partial least-squares analysis, we uncovered a latent clinical imaging signature underlying this pre- to postoperative connectome reorganization, showing that patients who displayed postoperative integration in bilateral fronto-occipital cortices also had greater preoperative ipsilateral hippocampal atrophy, lower seizure frequency and secondarily generalized seizures. Our results bridge the effects of focal brain lesions and their surgical resections with large-scale network reorganization and interindividual clinical variability, thus offering new avenues to examine the fundamental malleability of the human brain.


Assuntos
Lobectomia Temporal Anterior , Conectoma , Epilepsia do Lobo Temporal , Lobo Temporal , Humanos , Feminino , Masculino , Adulto , Epilepsia do Lobo Temporal/cirurgia , Epilepsia do Lobo Temporal/fisiopatologia , Epilepsia do Lobo Temporal/diagnóstico por imagem , Epilepsia do Lobo Temporal/patologia , Lobo Temporal/patologia , Lobo Temporal/cirurgia , Lobo Temporal/diagnóstico por imagem , Lobectomia Temporal Anterior/métodos , Pessoa de Meia-Idade , Adulto Jovem , Imagem de Tensor de Difusão , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/patologia , Epilepsia Resistente a Medicamentos/cirurgia , Epilepsia Resistente a Medicamentos/diagnóstico por imagem , Epilepsia Resistente a Medicamentos/fisiopatologia , Epilepsia Resistente a Medicamentos/patologia
2.
J Neurosurg Case Lessons ; 8(15)2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39378521

RESUMO

BACKGROUND: Microsurgical resection of drug-resistant epilepsy-associated perirolandic lesions can lead to postoperative motor impairment. Magnetic resonance imaging (MRI)-guided laser interstitial thermal therapy (MRgLITT) has emerged as a less invasive alternative, offering reduced surgical risks and improved neurological outcomes. Electrophysiological tools routinely used for motor mapping in resective microsurgery are incompatible with intraoperative MRI. The utilization of advanced neuroimaging adjuncts for eloquent brain mapping during MRgLITT is imperative. The authors present the case of a 17-year-old athlete who underwent MRgLITT for a perirolandic long-term epilepsy-associated tumor (LEAT). They performed probabilistic multi-tissue constrained spherical deconvolution (MT-CSD) tractography to delineate the corticospinal tract (CST) for presurgical planning and intraoperative image guidance. The CST tractography was integrated into neuronavigation and MRgLITT workstation software to guide the ablation while monitoring the CST throughout the procedure. OBSERVATIONS: The integration of CST tractography into neuronavigation workstation planning and laser ablation workstation thermoablation is feasible and practical, facilitating complete ablation of a deep-seated perirolandic LEAT while preserving motor function. LESSONS: Probabilistic MT-CSD tractography enhanced MRgLITT planning as well as intraprocedural CST visualization and preservation, leading to a favorable functional outcome. The limitations of tractography and the predictability of thermal output distribution compared to the gold standard of microsurgical resection merit further discussion. https://thejns.org/doi/10.3171/CASE24139.

3.
JAMA Neurol ; 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39348148

RESUMO

Importance: Drug-resistant temporal lobe epilepsy (TLE) has been associated with hippocampal pathology. Most surgical treatment strategies, including resection and responsive neurostimulation (RNS), focus on this disease epicenter; however, imaging alterations distant from the hippocampus, as well as emerging data from responsive neurostimulation trials, suggest conceptualizing TLE as a network disorder. Objective: To assess whether brain networks connected to areas of atrophy in the hippocampus align with the topography of distant neuroimaging alterations and RNS response. Design, Setting, and Participants: This retrospective case-control study was conducted between July 2009 and June 2022. Data collection for this multicenter, population-based study took place across 4 tertiary referral centers in Montréal, Canada; Querétaro, México; Nanjing, China; and Salt Lake City, Utah. Eligible patients were diagnosed with TLE according to International League Against Epilepsy criteria and received either neuroimaging or neuroimaging and RNS to the hippocampus. Patients with encephalitis, traumatic brain injury, or bilateral TLE were excluded. Main Outcomes and Measures: Spatial alignment between brain network topographies. Results: Of the 110 eligible patients, 94 individuals diagnosed with TLE were analyzed (51 [54%] female; mean [SD] age, 31.3 [10.9] years). Hippocampal thickness maps in TLE were compared to 120 healthy control individuals (66 [55%] female; mean [SD] age, 29.8 [9.5] years), and areas of atrophy were identified. Using an atlas of normative connectivity (n = 1000), 2 brain networks were identified that were functionally connected to areas of hippocampal atrophy. The first network was defined by positive correlations to temporolimbic, medial prefrontal, and parietal regions, whereas the second network by negative correlations to frontoparietal regions. White matter changes colocalized to the positive network (t93 = -3.82; P = 2.44 × 10-4). In contrast, cortical atrophy localized to the negative network (t93 = 3.54; P = 6.29 × 10-3). In an additional 38 patients (20 [53%] female; mean [SD] age, 35.8 [11.3] years) treated with RNS, connectivity between the stimulation site and atrophied regions within the negative network was associated with seizure reduction (t212 = -2.74; P = .007). Conclusions and Relevance: The findings in this study indicate that distributed pathology in TLE may occur in brain networks connected to the hippocampal epicenter. Connectivity to these same networks was associated with improvement following RNS. A network approach to TLE may reveal therapeutic targets outside the traditional target in the hippocampus.

4.
BJA Open ; 5: 100125, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37587993

RESUMO

Objectives: Although the development of artificial intelligence (AI) technologies in medicine has been significant, their application to paediatric anaesthesia is not well characterised. As the paediatric operating room is a data-rich environment that requires critical clinical decision-making, this systematic review aims to characterise the current use of AI in paediatric anaesthesia and to identify barriers to the successful integration of such technologies. Methods: This review was registered with PROSPERO (CRD42022304610), the international registry for systematic reviews. The search strategy was prepared by a librarian and run in five electronic databases (Embase, Medline, Central, Scopus, and Web of Science). Collected articles were screened by two reviewers. Included studies described the use of AI for paediatric anaesthesia (<18 yr old) within the perioperative setting. Results: From 3313 records identified in the initial search, 40 were included in this review. Identified applications of AI were described for patient risk factor prediction (24 studies; 60%), anaesthetic depth estimation (2; 5%), anaesthetic medication/technique decision guidance (2; 5%), intubation assistance (1; 2.5%), airway device selection (3; 7.5%), physiological variable monitoring (6; 15%), and operating room scheduling (2; 5%). Multiple domains of AI were discussed including machine learning, computer vision, fuzzy logic, and natural language processing. Conclusion: There is an emerging literature regarding applications of AI for paediatric anaesthesia, and their clinical integration holds potential for ultimately improving patient outcomes. However, multiple barriers to their clinical integration remain including a lack of high-quality input data, lack of external validation/evaluation, and unclear generalisability to diverse settings. Systematic review protocol: CRD42022304610 (PROSPERO).

5.
Neurosci Biobehav Rev ; 139: 104752, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35760387

RESUMO

Attention Deficit/Hyperactivity Disorder (ADHD) has been associated with atypical patterns of neural activity measured by electroencephalography (EEG). However, the identification of EEG diagnostic biomarkers has been complicated by the disorder's heterogeneity. The objective of this review was to synthesize the literature investigating EEG variation in patients diagnosed with ADHD, addressing the following questions: 1) Are the diagnostic ADHD subtypes associated with different EEG characteristics? 2) Are EEG measures correlated with ADHD traits and/or symptom severity? and 3) Do classification techniques using EEG measures reveal different clinical presentations of ADHD? Outcomes highlight the potential for electrophysiological measures to provide meaningful insights into the heterogeneity of ADHD, although direct translation of EEG biomarkers for diagnostic purposes is not yet supported. Key measures that show promise for the discrimination of existing ADHD subtypes and symptomatology include: resting state and task-related modulation of alpha, beta and theta power, and the event-related N2 and P3 components. Prescriptions are discussed for future studies that may help to bridge the gap between research and clinical application.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico , Biomarcadores , Eletroencefalografia/métodos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA