Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 223
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38775873

RESUMO

PURPOSE: The current study evaluated the in vitro activities of ceftolozane/tazobactam (C/T), imipenem/relebactam (IMI/REL), and comparators against recent (2017-2021) clinical isolates of gram-negative bacilli from two countries in southern Europe. METHODS: Nine clinical laboratories (two in Greece; seven in Italy) each collected up to 250 consecutive gram-negative isolates per year from lower respiratory tract, intraabdominal, urinary tract, and bloodstream infection samples. MICs were determined by the CLSI broth microdilution method and interpreted using 2022 EUCAST breakpoints. ß-lactamase genes were identified in select ß-lactam-nonsusceptible isolate subsets. RESULTS: C/T inhibited the growth of 85-87% of Enterobacterales and 94-96% of ESBL-positive non-CRE NME (non-Morganellaceae Enterobacterales) isolates from both countries. IMI/REL inhibited 95-98% of NME, 100% of ESBL-positive non-CRE NME, and 98-99% of KPC-positive NME isolates from both countries. Country-specific differences in percent susceptible values for C/T, IMI/REL, meropenem, piperacillin/tazobactam, levofloxacin, and amikacin were more pronounced for Pseudomonas aeruginosa than Enterobacterales. C/T and IMI/REL both inhibited 84% of P. aeruginosa isolates from Greece and 91-92% of isolates from Italy. MBL rates were estimated as 4% of Enterobacterales and 10% of P. aeruginosa isolates from Greece compared to 1% of Enterobacterales and 3% of P. aeruginosa isolates from Italy. KPC rates among Enterobacterales isolates were similar in both countries (7-8%). OXA-48-like enzymes were only identified in Enterobacterales isolates from Italy (1%) while GES carbapenemase genes were only identified in P. aeruginosa isolates from Italy (2%). CONCLUSION: We conclude that C/T and IMI/REL may provide viable treatment options for many patients from Greece and Italy.

2.
J Formos Med Assoc ; 123(3): 400-407, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37735013

RESUMO

BACKGROUND: Imipenem/relebactam (IMR) was approved for patient use in Taiwan in 2023. We evaluated the in vitro susceptibility of recent Gram-negative pathogens collected in Taiwan hospitals to IMR and comparators with a focus on carbapenem-resistant and KPC-carrying non-Morganellaceae Enterobacterales (NME), and carbapenem-resistant Pseudomonas aeruginosa (CRPA). METHODS: From 2018 to 2021, eight hospitals in Taiwan each collected up to 250 consecutive, aerobic or facultative, Gram-negative pathogens per year from patients with bloodstream, intraabdominal, lower respiratory tract, and urinary tract infections. MICs were determined using Clinical Laboratory Standards Institute (CLSI) broth microdilution. Most isolates that were IMR-, imipenem-, or ceftolozane/tazobactam-nonsusceptible were screened for ß-lactamase genes by PCR or whole-genome sequencing. RESULTS: Ninety-eight percent of NME (n = 5063) and 94% of P. aeruginosa (n = 1518) isolates were IMR-susceptible. Percent susceptible values for non-carbapenem ß-lactam comparators, including piperacillin/tazobactam, were 68-79% for NME isolates, while percent susceptible values for all ß-lactam comparators, including meropenem, were 73-81% for P. aeruginosa. IMR retained activity against 93% of multidrug-resistant (MDR) NME and 70% of MDR P. aeruginosa. Sixty-five percent of carbapenem-resistant NME and 81% of KPC-positive NME (n = 80) were IMR-susceptible. IMR inhibited 70% of CRPA (n = 287). Fifty percent of IMR-nonsusceptible NME tested for ß-lactamase carriage had an MBL or OXA-48-like enzyme, whereas most (95%) IMR-nonsusceptible P. aeruginosa examined did not carry acquired ß-lactamase genes. CONCLUSION: Based on our in vitro data, IMR may be a useful option for the treatment of hospitalized patients in Taiwan with infections caused by common Gram-negative pathogens, including carbapenem-resistant NME, KPC-positive NME, and CRPA.


Assuntos
Antibacterianos , Compostos Azabicíclicos , Imipenem , Humanos , Taiwan , Antibacterianos/farmacologia , Imipenem/farmacologia , Carbapenêmicos/farmacologia , Tazobactam , Pseudomonas aeruginosa/genética , beta-Lactamas , beta-Lactamases/genética , Testes de Sensibilidade Microbiana
3.
Antimicrob Agents Chemother ; 67(1): e0134622, 2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36602322

RESUMO

Ceftibuten is an established, oral, third-generation cephalosporin in early clinical development in combination with an oral prodrug of avibactam for the treatment of complicated urinary tract infections, including acute pyelonephritis. We evaluated the in vitro activity of ceftibuten-avibactam against 1,165 Enterobacterales isolates selected from the 2016-2020 ATLAS global surveillance program based upon their ß-lactamase genotype, ß-lactam-susceptible phenotype, species identification, and specimen source (95.8% urine). MICs were determined by CLSI broth microdilution. Avibactam was tested at a fixed concentration of 4 µg/mL. Molecular methods were used to identify ß-lactamase genes. Ceftibuten-avibactam inhibited 90% (MIC90) of ESBL-producing (n = 645), KPC-producing (n = 60), chromosomal AmpC-positive (n = 100), OXA-48-like-producing (n = 50), and acquired AmpC-producing (n = 110) isolates at concentrations of 0.12, 0.5, 1, 2, and 4 µg/mL, respectively. At concentrations of ≤1 and ≤8 µg/mL, ceftibuten-avibactam inhibited 98.4 and 99.2% of ESBL-positive isolates; 96.7 and 100% of KPC-positive isolates; 91.0 and 99.0% of chromosomal AmpC-positive isolates; 86.0 and 96.0% of OXA-48-like-positive isolates; and 85.5 and 91.8% of acquired AmpC-positive isolates. Against ESBL-producing, KPC-producing, chromosomal AmpC-positive, OXA-48-like-producing, and acquired AmpC-producing isolates, ceftibuten-avibactam was 256-, 128-, >64-, >32-, and > 16-fold more potent than ceftibuten alone. The potency of ceftibuten-avibactam was 4-fold greater than ceftazidime-avibactam against ESBL-producing (ceftibuten-avibactam MIC90, 0.12 µg/mL; ceftazidime-avibactam MIC90, 0.5 µg/mL) and KPC-producing (0.5 µg/mL; 2 µg/mL) isolates, equivalent to ceftazidime-avibactam (MIC90, 2 µg/mL) against OXA-48-like-producing isolates, 2-fold less active than ceftazidime-avibactam (1 µg/mL; 0.5 µg/mL) against chromosomal AmpC-positive isolates, and 4-fold less active than ceftazidime-avibactam (4 µg/mL; 1 µg/mL) against acquired AmpC-producing isolates. Continued development of ceftibuten-avibactam appears justified.


Assuntos
Antibacterianos , Gammaproteobacteria , Antibacterianos/farmacologia , Ceftibuteno , Enterobacteriaceae/genética , Ceftazidima/farmacologia , Compostos Azabicíclicos/farmacologia , beta-Lactamases/genética , Combinação de Medicamentos , Testes de Sensibilidade Microbiana
4.
Antimicrob Agents Chemother ; 67(5): e0140622, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37074173

RESUMO

The objective of this study was to describe the frequency of resistance determinants in meropenem-nonsusceptible (MEM-NS) Enterobacterales isolates collected in 2018 and 2019 as a part of the ATLAS global surveillance program. Among a total of 39,368 Enterobacterales isolates collected in 2018 and 2019, 5.7% were MEM-NS (MIC ≥2 µg/mL). Among the different regions, the proportion of MEM-NS isolates ranged from 1.9% (North America) to 8.4% (Asia/Pacific). The majority of MEM-NS isolates collected were of the species Klebsiella pneumoniae (71.5%). Among the MEM-NS Enterobacterales isolates collected, metallo-ß-lactamases (MBL) were identified in 36.7%, KPC in 25.5%, and OXA-48-like in 24.1%. The predominance of resistance mechanisms among MEM-NS isolates varied by region: MBLs were dominant in isolates collected in Africa and Middle East (AfME, 49%) and Asia/Pacific (59.4%), OXA-48-like carbapenemases were predominant in Europe (30%), and KPC in Latin America (51.9%) and North America (53.6%). NDM ß-lactamases accounted for the majority of MBLs identified (88.4%). Of the 38 carbapenemase variants identified, NDM-1 (68.7%), KPC-2 (54.6%), OXA-48 (54.3%), and VIM-1 (76.1%) were the common variants within their respective families. Among the MEM-NS isolates, 7.9% co-carried two carbapenemases. Notably, the proportion of MEM-NS Enterobacterales increased from 4.9% in 2018 to 6.4% in 2019. The results of this study show a continuation of the trend of increasing carbapenem-resistance within clinical Enterobacterales with mechanisms of resistance varying across different regions. The existential threat to public health posed by the continued spread of nearly untreatable pathogens requires a multifaceted approach to prevent the collapse of modern medicine.


Assuntos
Antibacterianos , Proteínas de Bactérias , Humanos , Meropeném/farmacologia , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , beta-Lactamases/genética , Klebsiella pneumoniae/genética , América Latina , Testes de Sensibilidade Microbiana
5.
Antimicrob Agents Chemother ; 67(12): e0034623, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-37971240

RESUMO

Achromobacter spp. and Burkholderia cepacia complex (Bcc) are rare but diverse opportunistic pathogens associated with serious infections, which are often multidrug resistant. This study compared the in vitro antibacterial activity of the siderophore antibiotic cefiderocol against Achromobacter spp. and Bcc isolates with that of other approved antibacterial drugs, including ceftazidime-avibactam, ciprofloxacin, colistin, imipenem-relebactam, and meropenem-vaborbactam. Isolates were collected in the SIDERO multinational surveillance program. Among 334 Achromobacter spp. isolates [76.6% from respiratory tract infections (RTIs)], cefiderocol had minimum inhibitory concentration (MIC)50/90 of 0.06/0.5 µg/mL overall and 0.5/4 µg/mL against 52 (15.6%) carbapenem-non-susceptible (Carb-NS) isolates. Eleven (3.3%) Achromobacter spp. isolates overall and 6 (11.5%) Carb-NS isolates were not susceptible to cefiderocol. Among 425 Bcc isolates (73.4% from RTIs), cefiderocol had MIC50/90 of ≤0.03/0.5 µg/mL overall and ≤0.03/1 µg/mL against 184 (43.3%) Carb-NS isolates. Twenty-two (5.2%) Bcc isolates overall and 13 (7.1%) Carb-NS isolates were not susceptible to cefiderocol. Cumulative MIC distributions showed cefiderocol to be the most active of the agents tested in vitro against both Achromobacter spp. and Bcc. In a neutropenic murine lung infection model and a humanized pharmacokinetic immunocompetent rat lung infection model, cefiderocol showed significant bactericidal activity against two meropenem-resistant Achromobacter xylosoxidans strains compared with untreated controls (P < 0.05) and vehicle-treated controls (P < 0.05), respectively. Meropenem, piperacillin-tazobactam, ceftazidime, and ciprofloxacin comparators showed no significant activity in these models. The results suggest that cefiderocol could be a possible treatment option for RTIs caused by Achromobacter spp. and Bcc.


Assuntos
Achromobacter , Complexo Burkholderia cepacia , Infecções Respiratórias , Ratos , Animais , Camundongos , Cefiderocol , Meropeném/farmacologia , Carbapenêmicos/farmacologia , Cefalosporinas/farmacologia , Farmacorresistência Bacteriana Múltipla , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Ceftazidima/farmacologia , Infecções Respiratórias/tratamento farmacológico , Ciprofloxacina/farmacologia , Testes de Sensibilidade Microbiana
6.
Antimicrob Agents Chemother ; 67(1): e0128122, 2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36541767

RESUMO

Taniborbactam is a novel cyclic boronate ß-lactamase inhibitor in clinical development in combination with cefepime. We assessed the in vitro activity of cefepime-taniborbactam and comparators against a 2018-2020 collection of Enterobacterales (n = 13,731) and Pseudomonas aeruginosa (n = 4,619) isolates cultured from infected patients attending hospitals in 56 countries. MICs were determined by CLSI broth microdilution. Taniborbactam was tested at a fixed concentration of 4 µg/mL. Isolates with cefepime-taniborbactam MICs of ≥16 µg/mL underwent whole-genome sequencing. ß-lactamase genes were identified in meropenem-resistant isolates by PCR/Sanger sequencing. Against Enterobacterales, taniborbactam reduced the cefepime MIC90 value by >64-fold (from >16 to 0.25 µg/mL). At ≤16 µg/mL, cefepime-taniborbactam inhibited 99.7% of all Enterobacterales isolates; >97% of isolates with multidrug-resistant (MDR) and ceftolozane-tazobactam-resistant phenotypes; ≥90% of isolates with meropenem-resistant, difficult-to-treat-resistant (DTR), meropenem-vaborbactam-resistant, and ceftazidime-avibactam-resistant phenotypes; 100% of VIM-positive, AmpC-positive, and KPC-positive isolates; 98.7% of extended-spectrum ß-lactamase (ESBL)-positive; 98.8% of OXA-48-like-positive; and 84.6% of NDM-positive isolates. Against P. aeruginosa, taniborbactam reduced the cefepime MIC90 value by 4-fold (from 32 to 8 µg/mL). At ≤16 µg/mL, cefepime-taniborbactam inhibited 97.4% of all P. aeruginosa isolates; ≥85% of isolates with meropenem-resistant, MDR, and meropenem-vaborbactam-resistant phenotypes; >75% of isolates with DTR, ceftazidime-avibactam-resistant, and ceftolozane-tazobactam-resistant phenotypes; and 87.4% of VIM-positive isolates. Multiple potential mechanisms, including carriage of IMP, certain alterations in PBP3, permeability (porin) defects, and possibly, upregulation of efflux were present in most isolates with cefepime-taniborbactam MICs of ≥16 µg/mL. We conclude that cefepime-taniborbactam exhibited potent in vitro activity against Enterobacterales and P. aeruginosa and inhibited most carbapenem-resistant isolates, including those carrying serine carbapenemases or NDM/VIM metallo-ß-lactamases (MBLs).


Assuntos
Antibacterianos , Farmacorresistência Bacteriana , Cefepima/farmacologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Meropeném/farmacologia , Tazobactam/farmacologia , beta-Lactamases/genética , Pseudomonas aeruginosa , Bactérias Gram-Negativas , Compostos Azabicíclicos/farmacologia , Testes de Sensibilidade Microbiana
7.
J Antimicrob Chemother ; 78(8): 2019-2027, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37390312

RESUMO

OBJECTIVES: To evaluate the in vitro antibacterial activity of cefiderocol, a siderophore cephalosporin against MBL-producing clinical isolates. METHODS: MBL-producing strains were selected from clinical isolates of Enterobacterales, Pseudomonas aeruginosa and Acinetobacter baumannii complex collected in North America and Europe in five consecutive annual multinational SIDERO-WT surveillance studies from 2014 to 2019. MICs of cefiderocol and comparator agents were determined by the broth microdilution method according to the CLSI guideline. RESULTS: A total of 452 MBL-producing strains consisting of 200 Enterobacterales, 227 P. aeruginosa and 25 A. baumannii complex were identified. The highest number of MBL-producing Enterobacterales strains were detected in Greece. MBL-producing strains of both P. aeruginosa and A. baumannii complex were isolated most frequently in Russia. For Enterobacterales, 91.5% or 67.5% of MBL-producing strains had cefiderocol MIC values ≤4 mg/L (CLSI susceptibility breakpoint) or ≤2 mg/L (EUCAST susceptibility breakpoint), respectively. All MIC values of cefiderocol for MBL-producing P. aeruginosa strains were ≤4 mg/L (CLSI susceptibility breakpoint), and 97.4% of them had cefiderocol MIC values ≤2 mg/L (EUCAST susceptibility breakpoint). For A. baumannii complex, 60.0% or 44.0% of MBL-producing strains had cefiderocol MIC values ≤4 mg/L (CLSI susceptibility breakpoint) or ≤2 mg/L (EUCAST pharmacokinetic-pharmacodynamic susceptibility breakpoint), respectively. Against all types of MBL-producing strains, MIC distribution curves of cefiderocol were located in the lowest numerical values, compared with other ß-lactams and ß-lactam/ß-lactamase inhibitor combinations tested and ciprofloxacin. CONCLUSIONS: Although the types of MBL-producing strains isolated by country varied, cefiderocol showed potent in vitro activity against all types of MBL-producing Gram-negative bacteria regardless of the bacterial species.


Assuntos
Antibacterianos , Cefalosporinas , Cefalosporinas/farmacologia , Antibacterianos/farmacologia , Bactérias Gram-Negativas , Inibidores de beta-Lactamases/farmacologia , Europa (Continente) , Pseudomonas aeruginosa , Testes de Sensibilidade Microbiana , Cefiderocol
8.
J Antimicrob Chemother ; 78(7): 1606-1615, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37161662

RESUMO

OBJECTIVES: To assess the global and regional distribution of ESBLs in Enterobacterales and carbapenemases in Enterobacterales and Pseudomonas aeruginosa. METHODS: Antimicrobial susceptibility of isolates collected from ATLAS (2017-2019) was determined per CLSI guidelines. Enterobacterales exhibiting meropenem MICs ≥2 mg/L and/or ceftazidime/avibactam and/or aztreonam/avibactam MICs ≥16 mg/L, Escherichia coli and Klebsiella pneumoniae with aztreonam and/or ceftazidime MICs ≥2 mg/L, and P. aeruginosa with meropenem MICs ≥4 mg/L were screened for ß-lactamases by PCR and sequencing. RESULTS: Globally, ESBL-positive E. coli (23.7%, 4750/20047) and K. pneumoniae (35.1%, 6055/17229) carried predominantly the CTX-M-15 variant (E. coli: 53.9%; K. pneumoniae: 80.0%) with highest incidence in Africa/Middle East (AfME). Among carbapenem-resistant (CR) E. coli (1.1%, 217/20047) and Enterobacter cloacae (3.8%, 259/6866), NDMs were predominant (E. coli in AfME: 62.5%; E. cloacae in Asia Pacific: 59.7%). CR K. pneumoniae (13.3%, 2299/17 229) and P. aeruginosa (20.3%, 4187/20 643) carried predominantly KPC (30.9%) and VIM (14.7%), respectively, with highest frequency in Latin America. Among ESBL-positive Enterobacterales, susceptibility to ceftazidime/avibactam (>90.0%) and amikacin (>85.0%) was higher than to piperacillin/tazobactam (>45.0%) and ciprofloxacin (>7.4%). In CR Enterobacterales, susceptibility to amikacin (>54.0%) and ceftazidime/avibactam (>31.0%) was higher than to ciprofloxacin (>2.7%) and piperacillin/tazobactam (>0.5%). CR P. aeruginosa similarly demonstrated higher susceptibility to amikacin (63.4%) and ceftazidime/avibactam (61.9%) than to ciprofloxacin (26.2%) and piperacillin/tazobactam (25.3%). CONCLUSIONS: Varied distribution of resistance genotypes across regions among ESBL-positive Enterobacterales and CR Enterobacterales and P. aeruginosa provide crucial insights on major resistance mechanisms and trends observed in recent years. Continued surveillance is warranted for monitoring global dissemination and resistance.


Assuntos
Ceftazidima , Pseudomonas aeruginosa , Pseudomonas aeruginosa/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Amicacina , Aztreonam , Meropeném/farmacologia , Escherichia coli/genética , Incidência , Compostos Azabicíclicos , beta-Lactamases/genética , Combinação Piperacilina e Tazobactam , Klebsiella pneumoniae , Combinação de Medicamentos , Ciprofloxacina , Testes de Sensibilidade Microbiana
9.
Eur J Clin Microbiol Infect Dis ; 42(9): 1135-1143, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37526796

RESUMO

This study aimed to report reference method antimicrobial susceptibility results for 24,937 recent (2019-2021) clinical isolates of Enterobacterales from 27 countries in Latin America, Eurasia, Africa/Middle East, and Asia with a focus on the investigational combination aztreonam-avibactam against metallo-ß-lactamase (MBL) isolates. Antimicrobial susceptibility testing was performed by the CLSI broth microdilution methodology. Minimum inhibitory concentrations (MICs) were interpreted using the CLSI (2022) breakpoints for all agents except aztreonam-avibactam (provisional pharmacokinetic/pharmacodynamic susceptible breakpoint, ≤ 8 mg/L) and tigecycline (US-FDA). Molecular testing for ß-lactamase genes was performed on isolates with meropenem MICs ≥ 2 mg/L, ceftazidime-avibactam MICs ≥ 16 mg/L, and/or aztreonam-avibactam MICs ≥ 16 mg/L, and 50% of isolates of Escherichia coli, Klebsiella pneumoniae, Klebsiella oxytoca, Klebsiella variicola, and Proteus mirabilis testing with ceftazidime and/or aztreonam MICs ≥ 2 mg/L. Aztreonam-avibactam inhibited 99.8% of all Enterobacterales at ≤ 8 mg/L (MIC90, 0.25 mg/L) and maintained activity against phenotypically resistant subsets of multidrug-resistant (MDR) (99.5% susceptible), extensively drug-resistant (XDR) (98.7%), and carbapenem-resistant Enterobacterales (CRE) (99.1%) isolates. At ≤ 8 mg/L, aztreonam-avibactam inhibited 100%, 99.6%, 99.6%, and 98.8% of KPC-, OXA-48-like-, ESBL-, and MBL-carrying isolates, respectively. MBL-positive isolates were most prevalent in India (20.5%), Guatemala (13.8%), and Jordan (13.2%). No differences in the activity of aztreonam-avibactam were observed across the global regions evaluated. At a concentration of ≤ 8 mg/L, aztreonam-avibactam inhibited almost all Enterobacterales collected from developing countries, including MBL-producing isolates. The widespread dissemination of MBLs among Enterobacterales highlights the unmet need for new agents such as aztreonam-avibactam for the treatment of CRE infections.


Assuntos
Antibacterianos , Aztreonam , Humanos , Aztreonam/farmacologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , América Latina/epidemiologia , Enterobacteriaceae , Ceftazidima/farmacologia , beta-Lactamases/genética , Ásia/epidemiologia , Oriente Médio , Carbapenêmicos , Combinação de Medicamentos , Testes de Sensibilidade Microbiana
10.
Eur J Clin Microbiol Infect Dis ; 42(3): 365-370, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36670243

RESUMO

Antimicrobial susceptibility was determined for clinical gram-negative isolates from Czech Republic, Hungary, and Poland, where published data for ceftolozane/tazobactam (C/T) and imipenem/relebactam (IMI/REL) is scarce. C/T was active against 94.3% of Enterobacterales, 10-18% higher than the tested cephalosporins and piperacillin/tazobactam. IMI/REL was the most active tested agent against non-Morganellaceae Enterobacterales (99.7% susceptible). C/T was the most active among all studied agents except colistin against Pseudomonas aeruginosa (96.0% susceptible); susceptibility to IMI/REL was 90.7%. C/T maintained activity against 73.7-85.3% of ß-lactam-resistant or multidrug-resistant P. aeruginosa subsets. C/T and IMI/REL could represent important treatment options for patients from these countries.


Assuntos
Infecções por Pseudomonas , Humanos , República Tcheca , Polônia , Hungria , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Cefalosporinas/uso terapêutico , Tazobactam/farmacologia , Tazobactam/uso terapêutico , Pseudomonas aeruginosa , Imipenem/farmacologia , Imipenem/uso terapêutico , Testes de Sensibilidade Microbiana
11.
Antimicrob Agents Chemother ; 66(1): e0130421, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34662183

RESUMO

Ceftibuten/VNRX-7145 is a cephalosporin/boronate ß-lactamase inhibitor combination under development as an oral treatment for complicated urinary tract infections caused by Enterobacterales producing serine ß-lactamases (Ambler class A, C, and D). In vivo, VNRX-7145 (VNRX-5236 etzadroxil) is cleaved to the active inhibitor, VNRX-5236. We assessed the in vitro activity of ceftibuten/VNRX-5236 against 1,066 urinary isolates of Enterobacterales from a 2014-2016 global culture collection. Each isolate tested was preselected to possess a multidrug-resistant (MDR) phenotype that included nonsusceptibility to amoxicillin-clavulanate and resistance to levofloxacin. MICs were determined by CLSI broth microdilution. VNRX-5236 was tested at a fixed concentration of 4 µg/ml. Ceftibuten/VNRX-5236 inhibited 90% of all isolates tested (MIC90) at 2 µg/ml; MIC90s for ESBL- (n = 566), serine carbapenemase- (n = 116), and acquired AmpC-positive (n = 58) isolate subsets were ≤0.25, >32, and 8 µg/ml, respectively. At concentrations of ≤1, ≤2, and ≤4 µg/ml, ceftibuten/VNRX-5236 inhibited 89.1, 91.7, and 93.1% of all isolates tested; 96.5, 97.7, and 98.4% of ESBL-positive isolates; 75.9, 81.9, and 81.9% of serine carbapenemase-positive isolates; and 70.7, 81.0, and 87.9% of acquired AmpC-positive isolates. Ceftibuten/VNRX-5236 at concentrations of ≤1, ≤2, and ≤4 µg/ml inhibited 85-89, 89-91, and 91-92% of isolates that were not susceptible (defined by CLSI and EUCAST breakpoint criteria) to nitrofurantoin, trimethoprim-sulfamethoxazole, and/or fosfomycin, (as part of their MDR phenotype), oral agents commonly prescribed to treat uncomplicated urinary tract infections. The potency of ceftibuten/VNRX-5236 (MIC90, 2 µg/ml) was similar (within one doubling-dilution) to intravenous-only agents ceftazidime-avibactam (MIC90 2 µg/ml) and meropenem-vaborbactam (MIC90 1 µg/ml). Continued investigation of ceftibuten/VNRX-5236 is warranted.


Assuntos
Antibacterianos , Infecções Urinárias , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Compostos Azabicíclicos/farmacologia , Ceftibuteno , Humanos , Testes de Sensibilidade Microbiana , Infecções Urinárias/tratamento farmacológico , Inibidores de beta-Lactamases/farmacologia , beta-Lactamases/genética
12.
Antimicrob Agents Chemother ; 66(2): e0199021, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34807757

RESUMO

We report in vitro susceptibility data from five consecutive annual SIDERO-WT surveillance studies (2014 to 2019) for cefiderocol and comparators tested against Gram-negative clinical isolates from North America and Europe. CLSI broth microdilution was used to determine MICs for Enterobacterales (n = 31,896), Pseudomonas aeruginosa (n = 7,700), Acinetobacter baumannii complex (n = 5,225), Stenotrophomonas maltophilia (n = 2,030), and Burkholderia cepacia complex (n = 425). MICs were interpreted by CLSI-approved clinical breakpoints (February 2021). Cefiderocol inhibited 99.8, 96.7, 91.6, and 97.7% of all Enterobacterales, meropenem-nonsusceptible, ceftazidime-avibactam-nonsusceptible, and ceftolozane-tazobactam-nonsusceptible isolates, respectively, at ≤4 µg/mL (susceptible breakpoint). Cefiderocol inhibited 99.9, 99.8, 100, and 99.8% of all P. aeruginosa, meropenem-nonsusceptible, ceftazidime-avibactam-nonsusceptible, and ceftolozane-tazobactam-nonsusceptible isolates, respectively, at ≤4 µg/mL (susceptible breakpoint). Cefiderocol inhibited 96.0% of all A. baumannii complex isolates and 94.2% of meropenem-nonsusceptible isolates at ≤4 µg/mL (susceptible breakpoint) and 98.6% of S. maltophilia isolates at ≤1 µg/mL (susceptible breakpoint). B. cepacia complex isolates were tested with a MIC50 of ≤0.03 µg/mL and MIC90 of 0.5 µg/mL. Annual cefiderocol percent susceptible rates for Enterobacterales (North America range, 99.6 to 100%/year; Europe range, 99.3 to 99.9%/year) and P. aeruginosa (North America range, 99.8 to 100%; Europe range, 99.9 to 100%) were unchanged from 2014 to 2019. Annual percent susceptible rates for A. baumannii complex demonstrated sporadic, nondirectional differences (North America range, 97.5 to 100%; Europe range, 90.4 to 97.5%); the wider range for Europe (∼7%) was due to isolates from Russia. Annual percent susceptible rates for S. maltophilia showed minor, nondirectional differences (North America range, 96.4 to 100%; Europe range, 95.6 to 100%). We conclude that clinical isolates of Enterobacterales (99.8% susceptible), P. aeruginosa (99.9%), A. baumannii (96.0%), and S. maltophilia (98.6%) collected in North America and Europe from 2014 to 2019 were highly susceptible to cefiderocol.


Assuntos
Antibacterianos , Bactérias Gram-Negativas , Antibacterianos/farmacologia , Cefalosporinas/farmacologia , Farmacorresistência Bacteriana Múltipla , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa , Cefiderocol
13.
Antimicrob Agents Chemother ; 66(2): e0216521, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34930028

RESUMO

Gepotidacin (formerly GSK2140944) is a first-in-class triazaacenaphthylene antibacterial currently in phase III clinical trials. When tested against Gram-negative (n = 333) and Gram-positive (n = 225) anaerobes by agar dilution, gepotidacin inhibited 90% of isolates at concentrations of 4 and 2 µg/mL, respectively. Given gepotidacin's in vitro activity against the anaerobic isolates tested, further study is warranted to better understand the utility of gepotidacin in the treatment of infections caused by clinically relevant anaerobic organisms.


Assuntos
Acenaftenos , Compostos Heterocíclicos com 3 Anéis , Acenaftenos/farmacologia , Antibacterianos/farmacologia , Bactérias Gram-Positivas , Compostos Heterocíclicos com 3 Anéis/farmacologia , Testes de Sensibilidade Microbiana
14.
Antimicrob Agents Chemother ; 66(11): e0093422, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36286518

RESUMO

Ceftibuten-ledaborbactam etzadroxil is a cephalosporin-boronate ß-lactamase inhibitor prodrug combination under development as an oral treatment for complicated urinary tract infections caused by multidrug-resistant (MDR) Enterobacterales producing serine ß-lactamases (Ambler class A, C, and D). In vivo, ledaborbactam etzadroxil (formerly VNRX-7145) is cleaved to the active inhibitor ledaborbactam (formerly VNRX-5236). To more completely define the breadth of ceftibuten-ledaborbactam's activity against important antimicrobial-resistant pathogens, we assessed its in vitro activity against phenotypic and genotypic subsets from a 2018-2020 global culture collection of 3,889 clinical isolates of Enterobacterales, including MDR organisms, extended-spectrum-ß-lactamase (ESBL)-positive organisms, and organisms that are nonsusceptible and resistant to other antimicrobials. MICs were determined by CLSI broth microdilution and interpreted using both CLSI and EUCAST breakpoints. Ledaborbactam was tested at a fixed concentration of 4 µg/mL. ß-Lactamase genes were characterized by PCR followed by Sanger sequencing or whole-genome sequencing for selected ß-lactam-resistant isolate subsets. At ≤1 µg/mL, ceftibuten-ledaborbactam (MIC90, 0.25 µg/mL) inhibited 89.7% of MDR isolates, 98.3% of isolates with a presumptive ESBL-positive phenotype, and 92.6% of trimethoprim-sulfamethoxazole-nonsusceptible, 91.7% of levofloxacin-nonsusceptible, 88.1% of amoxicillin-clavulanate-nonsusceptible, 85.7% of ceftibuten-resistant (MIC >1 µg/mL), and 54.1% of carbapenem-nonsusceptible isolates. Against specific ESBL genotype-positive isolates (AmpC negative, serine carbapenemase negative, and metallo-ß-lactamase negative), ceftibuten-ledaborbactam inhibited 96.3% of CTX-M-9 group (MIC90, 0.25 µg/mL), 91.5% of CTX-M-1 group (MIC90, 0.5 µg/mL), and 88.2% of SHV-positive (MIC90, 2 µg/mL) isolates at ≤1 µg/mL. Against specific serine carbapenemase genotype-positive isolates, ceftibuten-ledaborbactam inhibited 85.9% of KPC-positive (MIC90, 2 µg/mL) and 82.9% of OXA-48-group-positive (MIC90, 2 µg/mL) isolates at ≤1 µg/mL. Continued development of ceftibuten-ledaborbactam appears warranted.


Assuntos
Antibacterianos , beta-Lactamases , Ceftibuteno/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , beta-Lactamases/genética , Testes de Sensibilidade Microbiana , Serina , Compostos Azabicíclicos/farmacologia
15.
Antimicrob Agents Chemother ; 66(5): e0018922, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35491836

RESUMO

Ceftolozane-tazobactam (C/T), imipenem-relebactam (IMR), and ceftazidime-avibactam (CZA) were tested against 2,531 P. aeruginosa strains isolated from patients in the United States from 2018 to 2020 as part of the SMART (Study for Monitoring Antimicrobial Resistance Trends) surveillance program. MICs were determined by CLSI broth microdilution and interpreted using CLSI M100 (2021) breakpoints. Imipenem-, IMR-, or C/T-nonsusceptible isolates were screened for ß-lactamase genes: 96.4% of all isolates and ≥70% of multidrug-resistant (MDR), pan-ß-lactam-nonsusceptible, and difficult-to-treat resistance (DTR) isolates were C/T-susceptible; 52.2% of C/T-nonsusceptible isolates remained susceptible to IMR compared to 38.9% for CZA; and 1.7% of isolates tested were nonsusceptible to both C/T and IMR versus 2.2% of isolates with a C/T-nonsusceptible and CZA-resistant phenotype (a difference of 12 isolates). C/T and IMR modal MICs for pan-ß-lactam-nonsusceptible isolates remained at or below their respective susceptible MIC breakpoints from 2018 to 2020, while the modal MIC for CZA increased 2-fold from 2018 to 2019 and exceeded the CZA-susceptible MIC breakpoint in both 2019 and 2020. Only six of 802 molecularly characterized isolates carried a metallo-ß-lactamase, and two isolates carried a GES carbapenemase. Most P. aeruginosa isolates were C/T-susceptible, including many with MDR, pan-ß-lactam-nonsusceptible, DTR, CZA-resistant, and IMR-nonsusceptible phenotypes. While C/T was the most active antipseudomonal agent, IMR demonstrated greater activity than CZA against isolates nonsusceptible to C/T.


Assuntos
Infecções por Pseudomonas , Pseudomonas aeruginosa , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Compostos Azabicíclicos/farmacologia , Ceftazidima/farmacologia , Cefalosporinas/farmacologia , Combinação de Medicamentos , Hospitais , Humanos , Imipenem/farmacologia , Testes de Sensibilidade Microbiana , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/genética , Tazobactam/farmacologia , Estados Unidos , beta-Lactamases/genética
16.
Clin Infect Dis ; 72(12): 2112-2120, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32246147

RESUMO

BACKGROUND: Multidrug-resistant (MDR) bacteria are frequently defined using the criteria established by Magiorakos et al [Clin Microbiol Infect 2012;18:268-81]. Difficult-to-treat resistance (DTR) [Kadri et al, Clin Infect Dis 2018;67:1803-14] is a novel approach to defining resistance in gram-negative bacilli focusing on treatment-limiting resistance to first-line agents (all ß-lactams and fluoroquinolones). METHODS: Clinical and Laboratory Standards Institute-defined broth microdilution minimum inhibitory concentrations (MICs) were determined for imipenem/relebactam, ceftolozane/tazobactam, and comparators against respiratory, intraabdominal, and urinary isolates of Enterobacterales (n = 10 516) and Pseudomonas aeruginosa (n = 2732) collected in 26 US hospitals in 2015-2017. RESULTS: Among all Enterobacterales, 1.0% of isolates were DTR and 15.6% were MDR; 8.4% of P. aeruginosa isolates were DTR and 32.4% were MDR. MDR rates for Enterobacterales and DTR and MDR rates for P. aeruginosa were significantly higher (P < .05) in isolates collected in intensive care units (ICUs) than in non-ICUs and in respiratory tract isolates than in intraabdominal or urinary tract isolates. In addition, 82.4% of DTR and 92.1% of MDR Enterobacterales and 62.2% of DTR and 82.2% of MDR P. aeruginosa were imipenem/relebactam-susceptible, and 1.5% of DTR and 65.8% of MDR Enterobacterales and 67.5% of DTR and 84.0% of MDR P. aeruginosa were ceftolozane/tazobactam-susceptible. CONCLUSIONS: MDR phenotypes defined using the Magiorakos criteria may overcall treatment-limiting resistance in gram-negative bacilli. In the US, DTR Enterobacterales were infrequent, while MDR Enterobacterales isolates and DTR and MDR P. aeruginosa were common. Imipenem/relebactam (Enterobacterales, P. aeruginosa) and ceftolozane/tazobactam (P. aeruginosa) retained in vitro activity against most DTR and MDR isolates.


Assuntos
Antibacterianos , Infecções por Pseudomonas , Antibacterianos/farmacologia , Compostos Azabicíclicos , Cefalosporinas/farmacologia , Farmacorresistência Bacteriana , Farmacorresistência Bacteriana Múltipla , Humanos , Imipenem/farmacologia , Testes de Sensibilidade Microbiana , Fenótipo , Pseudomonas aeruginosa , Tazobactam/farmacologia , Estados Unidos
17.
Antimicrob Agents Chemother ; 65(7): e0200020, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-33972241

RESUMO

To estimate the incidence of carbapenem-resistant Enterobacterales (CRE), a global collection of 81,781 surveillance isolates of Enterobacterales collected from patients in 39 countries in five geographic regions from 2012 to 2017 was studied. Overall, 3.3% of isolates were meropenem-nonsusceptible (MIC ≥2 µg/ml), ranging from 1.4% (North America) to 5.3% (Latin America) of isolates by region. Klebsiella pneumoniae accounted for the largest number of meropenem-nonsusceptible isolates (76.7%). The majority of meropenem-nonsusceptible Enterobacterales carried KPC-type carbapenemases (47.4%), metallo-ß-lactamases (MBLs; 20.6%) or OXA-48-like ß-lactamases (19.0%). Forty-three carbapenemase sequence variants (8 KPC-type, 4 GES-type, 7 OXA-48-like, 5 NDM-type, 7 IMP-type, and 12 VIM-type) were detected, with KPC-2, KPC-3, OXA-48, NDM-1, IMP-4, and VIM-1 identified as the most common variants of each carbapenemase type. The resistance mechanisms responsible for meropenem-nonsusceptibility varied by region. A total of 67.3% of all carbapenemase-positive isolates identified carried at least one additional plasmid-mediated or intrinsic chromosomally encoded extended-spectrum ß-lactamase, AmpC ß-lactamase, or carbapenemase. The overall percentage of meropenem-nonsusceptible Enterobacterales increased from 2.7% in 2012 to 2014 to 3.8% in 2015 to 2017. This increase could be attributed to the increasing proportion of carbapenemase-positive isolates that was observed, most notably among isolates carrying NDM-type MBLs in Asia/South Pacific, Europe, and Latin America; OXA-48-like carbapenemases in Europe, Middle East/Africa, and Asia/South Pacific; VIM-type MBLs in Europe; and KPC-type carbapenemases in Latin America. Ongoing CRE surveillance combined with a global antimicrobial stewardship strategy, sensitive clinical laboratory detection methods, and adherence to infection control practices will be needed to interrupt the spread of CRE.


Assuntos
Antibacterianos , beta-Lactamases , África , Antibacterianos/farmacologia , Ásia , Proteínas de Bactérias/genética , Carbapenêmicos/farmacologia , Europa (Continente) , Humanos , Meropeném/farmacologia , Testes de Sensibilidade Microbiana , Oriente Médio , América do Norte/epidemiologia , beta-Lactamases/genética
18.
BMC Microbiol ; 21(1): 74, 2021 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-33676406

RESUMO

BACKGROUND: Ceftolozane/tazobactam (C/T) is approved in 70 countries, including the United States, for the treatment of patients with hospital-acquired and ventilator-associated bacterial pneumonia caused by susceptible Gram-negative pathogens. C/T is of particular importance as an agent for the treatment of multidrug-resistant (MDR) Pseudomonas aeruginosa infections. The current study summarizes 2018-2019 data from the United States on lower respiratory tract isolates of Gram-negative bacilli from the SMART global surveillance program. The CLSI reference broth microdilution method was used to determine in vitro susceptibility of C/T and comparators against isolates of P. aeruginosa and Enterobacterales. RESULTS: C/T inhibited 96.0% of P. aeruginosa (n = 1237) at its susceptible MIC breakpoint (≤4 µg/ml), including > 85% of meropenem-nonsusceptible and piperacillin/tazobactam (P/T)-nonsusceptible isolates and 76.2% of MDR isolates. Comparator agents demonstrated lower activity than C/T against P. aeruginosa: meropenem (74.8% susceptible), cefepime (79.2%), ceftazidime (78.5%), P/T (74.4%), and levofloxacin (63.1%). C/T was equally active against ICU (96.0% susceptible) and non-ICU (96.7%) isolates of P. aeruginosa. C/T inhibited 91.8% of Enterobacterales (n = 1938) at its susceptible MIC breakpoint (≤2 µg/ml); 89.5% of isolates were susceptible to cefepime and 88.0% susceptible to P/T. 67.1 and 86.5% of extended-spectrum ß-lactamase (ESBL) screen-positive isolates of Klebsiella pneumoniae (n = 85) and Escherichia coli (n = 74) and 49.6% of MDR Enterobacterales were susceptible to C/T. C/T was equally active against ICU (91.3% susceptible) and non-ICU (92.6%) Enterobacterales isolates. CONCLUSION: Data from the current study support the use of C/T as an important treatment option for lower respiratory tract infections including those caused by MDR P. aeruginosa.


Assuntos
Cefalosporinas/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Tazobactam/farmacologia , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Enterobacteriaceae/efeitos dos fármacos , Humanos , Klebsiella pneumoniae/efeitos dos fármacos , Infecções Respiratórias/microbiologia , Estados Unidos
19.
Antimicrob Agents Chemother ; 64(12)2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-32928739

RESUMO

WCK 5222 (cefepime-zidebactam, 2 g + 1g, every 8 h [q8h]) is in clinical development for the treatment of infections caused by carbapenem-resistant and multidrug-resistant (MDR) Gram-negative bacilli. We determined the in vitro susceptibility of 1,385 clinical isolates of non-carbapenem-susceptible Enterobacterales, MDR Pseudomonas aeruginosa (also non-carbapenem susceptible), Stenotrophomonas maltophilia, and Burkholderia spp. collected worldwide (49 countries) from 2014 to 2016 to cefepime-zidebactam (1:1 ratio), ceftazidime-avibactam, imipenem-relebactam, ceftolozane-tazobactam, and colistin using the CLSI broth microdilution method. Cefepime-zidebactam inhibited 98.5% of non-carbapenem-susceptible Enterobacterales (n = 1,018) at ≤8 µg/ml (provisional cefepime-zidebactam-susceptible MIC breakpoint). Against the subset of metallo-ß-lactamase (MBL)-positive Enterobacterales (n = 214), cefepime-zidebactam inhibited 94.9% of isolates at ≤8 µg/ml. Further, it inhibited 99.6% of MDR P. aeruginosa (n = 262) isolates at ≤32 µg/ml (proposed cefepime-zidebactam-susceptible pharmacokinetic/pharmacodynamic MIC breakpoint), including all MBL-positive isolates (n = 94). Moreover, cefepime-zidebactam was active against the majority of isolates of Enterobacterales (≥95%) and P. aeruginosa (99%) that were not susceptible to ceftazidime-avibactam, ceftolozane-tazobactam, imipenem-relebactam, and colistin. Most isolates (99%) of S. maltophilia (n = 101; MIC50, 8 µg/ml; MIC90, 32 µg/ml) and Burkholderia spp. (n = 4; MIC range, 16 to 32 µg/ml) were also inhibited by cefepime-zidebactam at ≤32 µg/ml. The activity of cefepime-zidebactam against carbapenem-resistant Gram-negative bacteria is ascribed to its ß-lactam enhancer mechanism of action (i.e., zidebactam binding to penicillin binding protein 2 [PBP2] and its universal stability to both serine ß-lactamases and MBLs). The results from this study support the continued development of cefepime-zidebactam as a potential therapy for infections caused by Enterobacterales, P. aeruginosa, and other nonfermentative Gram-negative bacilli where resistance to marketed antimicrobial agents is a limiting factor.


Assuntos
Compostos Azabicíclicos , Carbapenêmicos , Antibacterianos/farmacologia , Compostos Azabicíclicos/farmacologia , Carbapenêmicos/farmacologia , Cefalosporinas , Ciclo-Octanos , Bactérias Gram-Negativas , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa , beta-Lactamases
20.
J Antimicrob Chemother ; 75(5): 1165-1173, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32040168

RESUMO

OBJECTIVES: To determine the spread of ESBLs and carbapenemases in Enterobacterales and Pseudomonas aeruginosa in Europe. METHODS: 45 335 Gram-negative bacilli were collected in 18 European countries as part of the International Network for Optimal Resistance Monitoring (INFORM) global surveillance programme from 2013 to 2017. Antimicrobial susceptibility was determined using broth microdilution, and 9546 isolates were screened for ß-lactamase genes by PCR and sequencing. RESULTS: ESBLs were identified in 35.5% of Klebsiella pneumoniae and 18.5% of Escherichia coli. ESBL carriage was lowest among isolates in Northern/Western Europe and highest in Eastern Europe. CTX-M-15 was the dominant ESBL in all countries except Greece, where SHV-type ESBLs were more common. Carbapenemases (KPC, OXA-48-like, GES, NDM and VIM) were found in 3.4% of Enterobacterales and were most common among K. pneumoniae (10.5% of those collected). Carbapenemase carriage was lowest in Northern/Western and highest in Southern Europe. KPC-positive Enterobacterales were most abundant but the percentages of OXA-48-like-, NDM- and VIM-positive isolates increased over time and were correlated with an increase in meropenem non-susceptibility. Carbapenemases (VIM, IMP, NDM and GES) were also identified in 5.1% of P. aeruginosa and were commonly found in Eastern Europe. Carbapenemase carriage and meropenem non-susceptibility among P. aeruginosa fluctuated over the 5 years studied and were not well correlated. CONCLUSIONS: ESBL and carbapenemase carriage varied by species and European subregion. Meropenem non-susceptibility in European isolates of Enterobacterales can be attributed to carbapenemase carriage and is increasingly caused by MBLs and OXA-48-like carbapenemases. Carbapenemases or other ß-lactamases are not a common cause of meropenem non-susceptibility in P. aeruginosa in Europe.


Assuntos
Antibacterianos , Pseudomonas aeruginosa , Antibacterianos/farmacologia , Proteínas de Bactérias , Europa (Continente) , Europa Oriental , Grécia , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/genética , beta-Lactamases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA