Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Bioessays ; : e2400059, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39073128

RESUMO

Transposable elements (TEs) have emerged as important factors in establishing the cell type-specific gene regulatory networks and evolutionary novelty of embryonic and placental development. Recently, studies on the role of TEs and their dysregulation in cancers have shed light on the transcriptional, transpositional, and regulatory activity of TEs, revealing that the activation of developmental transcriptional programs by TEs may have a role in the dedifferentiation of cancer cells to the progenitor-like cell states. This essay reviews the recent evidence of the cis-regulatory TEs (henceforth crTE) in normal development and malignancy as well as the key transcription factors and regulatory pathways that are implicated in both cell states, and presents existing gaps remaining to be studied, limitations of current technologies, and therapeutic possibilities.

2.
STAR Protoc ; 5(3): 103148, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38909361

RESUMO

Ectopic expression of lineage-specific transcription factors (TFs) of another cell type can induce cell fate reprogramming. However, the heterogeneity of reprogramming cells has been a challenge for data interpretation and model evaluation. Here, we present a protocol to characterize cells expressing defined factors during direct cell reprogramming using a factor-indexing approach based on single-nuclei multiome sequencing (FI-snMultiome-seq). We describe the steps for barcoding TFs, converting human fibroblasts to pancreatic ductal-like cells using defined TFs, and preparing library for FI-snMultiome-seq analysis. For complete details on the use and execution of this protocol, please refer to Fei et al.1.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA