Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Environ Manage ; 328: 116908, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36495824

RESUMO

Traditionally coal has been extensively used as a dominating fossil fuel in a wide range of industries due to its abundance. In India, industries like thermal power plants, cement industries, iron, and steel industries along with many captive power plants consume a huge quantity of coal each year to meet energy demand. Coal combustion releases blackish-grey colored fly ash waste is one of the most imperative sources of radionuclides like Radium (226Ra), Thorium (232Th), Potassium (40K) and Uranium (238U). The estimated industrial fly ash is ∼308.416 Million Tonnes (MT) in 2019, considered as an emerging environmental problem. This study represents the first-ever radionuclide emission from Indian fly ash generated across various major industries. The results reveal that the estimated 226Ra, 232Th, 238U, and 40K radionuclides were estimated to be ∼27.473 TBq, ∼44.351 TBq, ∼41.089 TBq, and ∼111.091 TBq respectively. The potential radionuclide hotspot regions across the nation are identified, which could be used as an important tool to assess its impact on the chronic exposure of millions of residents living near these sources. Cleaner or green energy could be the best alternative to combat the unseen health disaster. More effective and safe utilization of fly ash can minimize the hazardous effect of radionuclides emission.


Assuntos
Cinza de Carvão , Combustíveis Fósseis , Radioisótopos/análise , Carvão Mineral/análise , Centrais Elétricas , Índia
2.
Faraday Discuss ; 226: 502-514, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33244555

RESUMO

Surface ozone is a major pollutant threatening public health, agricultural production and natural ecosystems. While measures to improve air quality in megacities such as Delhi are typically aimed at reducing levels of particulate matter (PM), ozone could become a greater threat if these measures focus on PM alone, as some air pollution mitigation steps can actually lead to an increase in surface ozone. A better understanding of the factors controlling ozone production in Delhi and the impact that PM mitigation measures have on ozone is therefore critical for improving air quality. Here, we combine in situ observations and model analysis to investigate the impact of PM reduction on the non-linear relationship between volatile organic compounds (VOC), nitrogen oxides (NOx) and ozone. In situ measurements of NOx, VOC, and ozone were conducted in Delhi during the APHH-India programme in summer (June) and winter (November) 2018. We observed hourly averaged ozone concentrations in the city of up to 100 ppbv in both seasons. We performed sensitivity simulations with a chemical box model to explore the impacts of PM on the non-linear VOC-NOx-ozone relationship in each season through its effect on aerosol optical depth (AOD). We find that ozone production is limited by VOC in both seasons, and is particularly sensitive to solar radiation in winter. Reducing NOx alone increases ozone, such that a 50% reduction in NOx emissions leads to 10-50% increase in surface ozone. In contrast, reducing VOC emissions can reduce ozone efficiently, such that a 50% reduction in VOC emissions leads to ∼60% reduction in ozone. Reducing PM alone also increases ozone, especially in winter, by reducing its dimming effects on photolysis, such that a 50% reduction in AOD can increase ozone by 25% and it also enhances VOC-limitation. Our results highlight the importance of reducing VOC emissions alongside PM to limit ozone pollution, as well as benefitting control of PM pollution through reducing secondary organic aerosol. This will greatly benefit the health of citizens and the local ecosystem in Delhi, and could have broader application for other megacities characterized by severe PM pollution and VOC-limited ozone production.

3.
J Hazard Mater ; 470: 134103, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38554513

RESUMO

Hazardous pollutants like Mercury (Hg) have emerged as a pressing challenge in recent times where the expanding industrial sector is regarded as the major source in developing country India. In this study, we are trying to identify all possible industrial sectors at district level to quantify Hg emission load across India for the year 2019 using IPCC methodology where the country-specific technological emission factors are used. We have included 5 major sectors out of which emission from coal combustion in thermal power plants accounts for 186.5 t/yr of Hg emission followed by non-ferrous metal production (88.3 t/yr), captive power plants (65.5 t/yr) and fly ash generation from various manufacturing industries (45.9 t/yr). A total of 459.4 t/yr of Hg is released into the ecosystem in 2019 with an uncertainty of ± 48%. This study also estimated that about 233 million people living in and around 10 km periphery of major industrial zones with as many as 17 million people residing near the 10 major hotspots are susceptible to hazardous Hg emissions directly or indirectly. This information would be quite useful in formulating future Hg emission control strategies in India. ENVIRONMENTAL IMPLICATIONS: Present study is the first-of-its-kind quantification of Hg emission load from the Industrial process and many unattended sectors over India, which will not only give an insight into potential hotspots regions across the country but also assess the population exposed to it. It will provide aid in tracking the mercury burden to match the international conventions. The findings suggest that about 233 million people are likely to be exposed to hazardous Hg emissions. It will also enlighten the government, policymakers, stakeholders and people about their mercury footprint and envision protecting the biomes and formulating future control strategies in India.

4.
Inhal Toxicol ; 25(6): 333-40, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23742110

RESUMO

During the "Commonwealth Games" 2010 (CWG-2010) in Delhi, the Indian government has implemented an ambitious project "System of Air quality Forecasting And Research (SAFAR)" for monitoring and forecasting air-quality scenario. Using high-precision spatio-temporal measurements of criteria pollutants from the SAFAR network, the number of cases are estimated for total, cardiovascular and respiratory mortalities and hospital admissions. In a thinly populated airport area, the excess number of cases for total mortality show ∼10 for PM2.5 and 25 for PM10, whereas, ∼110 for PM2.5 and ∼300 for PM10 in most populous Delhi University (DU) area. Cardiovascular mortality in airport area show ∼5 and <10 for PM2.5 and PM10, respectively, but, in DU area show ∼55 for PM2.5 and ∼140 for PM10. In DU locality, respiratory mortality shows ∼7 and ∼20 for PM2.5 and PM10 and, hospital admissions show ∼11 and ∼30 for PM2.5 and PM10, respectively. In airport area, excess cases of respiratory mortality and hospital admission tends to one for exposure to PM2.5 or PM10 levels indicating effective exposure is the key factor for health hazards. As public health gains, low air pollution levels were observed before the CWG due to effective washout by monsoonal rain and during CWG under policy-induced air quality measures could increase the life expectancy as against to post-CWG period. These results are important for the megacities in developing world as the SAFAR project is internationally recognized by the Global Urban Research Meteorology and Environment of the World Meteorological Organization.


Assuntos
Poluentes Atmosféricos/análise , Doenças Cardiovasculares/mortalidade , Hospitalização/estatística & dados numéricos , Material Particulado/análise , Doenças Respiratórias/mortalidade , Exposição Ambiental , Monitoramento Ambiental , Humanos , Índia/epidemiologia
5.
Environ Pollut ; 286: 117165, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33971471

RESUMO

Biomass burning, a recurring global phenomenon is also considered an environmental menace, making headlines every year in India with onset of autumn months. Agriculture is demographically the broadest economic sector and plays a significant role in the overall socio-economic fabric of India. Hence, disposal of crop residue is done mainly by burning leading to deterioration of air quality. Residue burning in parts of India is blamed for changing air quality in nearby cities. The spatial distribution of these emissions has always been a challenge due to various data constraints. We hereby present a comprehensive spatially resolved seasonal high resolution gridded (∼10 km × âˆ¼10 km) emission inventory of major pollutants from crop residue burning source in India for the latest year 2018. The winter months contributes almost around ∼50% of total emission followed by summer (∼48%), which is the prime cause of changing air quality in nearby cities. Among all the crops; rice, wheat, maize and sugarcane accounts ∼90% of total PM10 load in the country. The estimated emission for PM2.5, PM10, BC and OC, CO, NOx, SO2, VOC, CH4 and CO2 are found to 990.68 Gg/yr, 1231.26 Gg/yr, 123.33 Gg/yr, 410.99 Gg/yr, 11208.18 Gg/yr, 484.55 Gg/yr, 144.66 Gg/yr, 1282.95 Gg/yr, 785.56 Gg/yr and 262051.06 Gg/yr respectively. The cropping pattern and its role in different geographic regions are analysed to identify all potential emission hotspots regions scattered across the country. The developed gridded emissions inventory is envisaged to serve as an important input to regional atmospheric chemistry transport model to better quantify its contribution in deteriorating air quality in various regions of India, paving the way to policy makers to better plan the mitigation and control strategies. The developed fundamental tool is likely to be useful for air quality management.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Monitoramento Ambiental , Índia , Material Particulado/análise , Estações do Ano
6.
Urban Clim ; 38: 100883, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34131558

RESUMO

The spread of coronavirus disease of 2019 (COVID-19) pandemic around the globe is affecting people. The majority of Indian urban complexes are reeling under high emissions of deadly fine particulate matter PM2.5 and resulting in poor air quality. These fine particles penetrate deep into the body and fuel inflammation in the lungs and respiratory tract, leading to the risk of having cardiovascular and respiratory problems, including a weak immune system. In the present study, we report the first national-scale study over India, which establishes a strong relationship between the PM2.5 emission load and COVID-19 infections and resulting deaths. We find a significant correlation (R2 = 0.66 & 0.60) between the states as well as districts having varied levels of PM2.5 emissions with corresponding COVID-19 positive cases respectively, and R2 = 0.61 between wavering air quality on a longer time scale and the number of COVID-19 related deaths till 5 November 2020. This study provides practical evidence that cities having pollution hotspot where fossil fuel emissions are dominating are highly susceptible to COVID-19 cases.

7.
SN Appl Sci ; 2(12): 1990, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33204996

RESUMO

Prevention of Coronavirus results in lockdown in India from 24 March 2020 to 31 May 2020. Eastern India, which is having a dense cluster of coal-fired power plants and home to many mines, mineral industries, has not shutdown power plants and coal mines during this lockdown period, though other industrial and vehicular emissions were almost zero. The present study attempts to find the change in various atmospheric pollutants during this lockdown period over an eastern tropical Indian station-Bhubaneswar, which is the first smart city proposed in smart city mission of Government of India. The study analyses hourly concentrations of PM2.5, PM10, NO X , O3, and CO for March-May 2019 and 2020. The study shows a significant increase (rather than decrease) in PM2.5 and PM10, increase in O3 and a decrease in CO and NO X during the lockdown period. Results are advocating the impact of transported pollution over the study area for maintaining the PM2.5 and PM10 values even during the lockdown situation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA