Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Trop Anim Health Prod ; 52(4): 1533-1539, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31813088

RESUMO

The aim of this study was to determine the shortest test duration necessary for the evaluation of feed efficiency traits, i.e., dry matter intake (DMI), average daily gain (ADG), mid-test metabolic body weight, residual feed intake (RFI), feed conversion ratio (DMI/ADG), and feed conversion efficiency (ADG/DMI). A total of 313 Nellore bulls with an initial age of 283 ± 23.6 days were evaluated by automated feed intake measurement. The tests were divided into six durations (15, 29, 43, 57, 71, and 84 days), with at least one body weight recording at the beginning and one at the end of each period. Residual variances were estimated per period and correlation coefficients (Pearson and Spearman) were calculated between the 5 test durations and the 84-day test. The results indicated a minimum test duration of 15 days (two weight recordings without fasting) for the measurement of mid-test metabolic body weight, a minimum of 43 days for automated DMI measurement, and a minimum of 71 days for the determination of ADG, RFI, feed conversion ratio, and feed conversion efficiency. Individual analysis of the DMI records obtained with the GrowSafe® and Intergado® automated feeders showed that a test duration of 57 days is sufficient for measurement of this trait. We therefore recommend a test duration of 71 days after a minimum adaptation period of 21 days for the determination of feed efficiency in growing Nellore cattle, with weight recordings without fasting every 15 days.


Assuntos
Ração Animal/análise , Bovinos/fisiologia , Dieta/veterinária , Comportamento Alimentar/fisiologia , Fenômenos Fisiológicos da Nutrição Animal , Animais , Bovinos/crescimento & desenvolvimento , Feminino , Masculino , Aumento de Peso
2.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38967061

RESUMO

The objectives of the present study were to estimate the heritability for daily methane emission (CH4) and residual daily methane emission (CH4res) in Nellore cattle, as well as to perform genome-wide association studies (GWAS) to identify genomic regions and candidate genes influencing the genetic variation of CH4 and CH4res. Methane emission phenotypes of 743 Nellore animals belonging to 3 breeding programs were evaluated. CH4 was measured using the sulfur hexafluoride (SF6) tracer technique (which involves an SF6 permeation tube introduced into the rumen, and an appropriate apparatus on each animal), and CH4res was obtained as the difference between observed CH4 and CH4 adjusted for dry matter intake. A total of 6,252 genotyped individuals were used for genomic analyses. Data were analyzed with a univariate animal model by the single-step GBLUP method using the average information restricted maximum likelihood (AIREML) algorithm. The effects of single nucleotide polymorphisms (SNPs) were obtained using a single-step GWAS approach. Candidate genes were identified based on genomic windows associated with quantitative trait loci (QTLs) related to the 2 traits. Annotation of QTLs and identification of candidate genes were based on the initial and final coordinates of each genomic window considering the bovine genome ARS-UCD1.2 assembly. Heritability estimates were of moderate to high magnitude, being 0.42 ±â€…0.09 for CH4 and 0.21 ±â€…0.09 for CH4res, indicating that these traits will respond rapidly to genetic selection. GWAS revealed 11 and 15 SNPs that were significantly associated (P < 10-6) with genetic variation of CH4 and CH4res, respectively. QTLs associated with feed efficiency, residual feed intake, body weight, and height overlapped with significant markers for the traits evaluated. Ten candidate genes were present in the regions of significant SNPs; 3 were associated with CH4 and 7 with CH4res. The identified genes are related to different functions such as modulation of the rumen microbiota, fatty acid production, and lipid metabolism. CH4 and CH4res presented sufficient genetic variation and may respond rapidly to selection. Therefore, these traits can be included in animal breeding programs aimed at reducing enteric methane emissions across generations.


Genetic selection designed to reduce the amount of enteric methane emission from livestock is a mitigation strategy to ensure more sustainable production over generations since genetic gains are cumulative. Brazil is a large producer of beef, and the Nellore breed (Bos taurus indicus) plays a very important role in this production. There are a few studies evaluating genetic and genomic aspects of enteric methane emission in Nellore cattle. The objectives of the present study were to estimate the heritability of daily methane emission (CH4) and residual daily methane emission (CH4res) in Nellore cattle, as well as to identify genomic regions and candidate genes associated with genetic variation of these traits. The heritability estimates for CH4 and CH4res were of moderate to high magnitude (0.42 ±â€…0.09 and 0.21 ±â€…0.09, respectively). Genome-wide association analyses revealed new loci associated with methane emission in Nellore cattle on chromosomes 5, 11, 17, and 20, where 10 candidate genes were identified, 3 for CH4 and 7 for CH4res. The 2 traits possess sufficient genetic variability to be included as selection criteria in breeding programs.


Assuntos
Estudo de Associação Genômica Ampla , Metano , Polimorfismo de Nucleotídeo Único , Animais , Bovinos/genética , Metano/metabolismo , Estudo de Associação Genômica Ampla/veterinária , Locos de Características Quantitativas , Masculino , Feminino , Genótipo , Cruzamento , Fenótipo
3.
Transl Anim Sci ; 7(1): txad048, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37256191

RESUMO

A total of 120 Nellore bulls, [initial body weight (BW) = 307 ± 11.6 kg and 12 mo of age] were allocated into 12 collective pens (10 bulls per pen) in a commercial feedlot to evaluate the effects of a specific blend of tannin and saponins on enteric methane (CH4) emissions. The study was a completely randomized design, in which pens were considered the experimental units (N = 6 pens per treatment) and were randomly allocated into one of two treatments: 1) Control (CON), a basal diet with monensin supplementation (25 mg/kg dry matter [DM]; Rumensin, Elanco Animal Health, Greenfield, IN, USA), or 2) Control + a specific blend of tannin and saponins (TAN; 7 g/kg DM; composed of quebracho and chestnut tannin extracts along with carriers from cereals rich in saponins; SilvaFeed BX, Silvateam, San Michele Mondovi, CN, Italy). After the adaptation period (20 d), the experiment was divided into two phases: growing phase (21 to 53 d; total of 33 d) and fattening phase (54 to 139 d; total of 86 d). Enteric methane emissions were estimated using the sulfur hexafluoride (SF6) tracer gas technique. Interactions between treatment and period (growing vs. fattening) were detected for daily CH4 emissions, in which animals fed TAN reduced CH4 emissions by 17.3% during the fattening period compared to bulls fed CON (P = 0.05). In addition, bulls fed TAN had lower CH4 emissions expressed by dry matter intake (DMI) during the fattening period compared to bulls fed CON (P = 0.06). The findings presented herein indicate that a specific blend of tannin and saponins can be used as a strategy to reduce enteric CH4 emissions and its intensity of Nellore bulls finished in feedlot systems under tropical conditions.

4.
Animals (Basel) ; 12(22)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36428423

RESUMO

Feed and water efficiency are important traits to improve beef cattle production's economic and environmental sustainability. This study evaluated residual feed intake (RFI) and residual water intake (RWI) and their relationship with performance, ingestive behavior, and carcass traits in Caracu beef cattle. The data were analyzed using a generalized linear model with least squares means. The ingestive behavior, performance, and carcass traits were influenced by sex (p < 0.05). Males showed higher dry matter intake (DMI), average daily gain (ADG), mid-test metabolic weight (BW0.75), rib eye area, and rump fat thickness than females, besides spending more time drinking and eating. Low RFI animals exhibited higher DMI than high RFI animals. Low RWI animals ingested 3.89 L/d of water further than high RWI animals. The interaction between sex and RWI influenced the DMI, BW0.75, and backfat thickness. The ingestive behavior of low and high RFI animals was similar, although high RWI animals visited a smaller number of drinkers than low RWI animals. Water intake positively affects productive efficiency, and the combined use of RWI and RFI may help improve the selection of more efficient animals contributing to reducing the costs of beef cattle production and improving environmental sustainability.

5.
Animals (Basel) ; 12(21)2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36359122

RESUMO

The inclusion of plant extracts that contain secondary compounds with the potential to modulate rumen fermentation and improve animal performance has gained attention in recent years. The aim of this study was to evaluate the effect of the inclusion of yerba mate extract (Ilex paraguariensis ST. Hilaire) (YME) on the ruminal parameters. Eight castrated cattle were divided into four groups, a control without YME (0%) and three treatment groups with 0.5, 1 and 2% inclusion of YME in the dry matter. The inclusion of YME did not show differences in ruminal methane emissions (CH4), and total apparent digestibility (p = 0.54). Likewise, YME did not modify ruminal pH, but positively affected NH3-N, which decreased linearly as the extract level in the diet increased (p = 0.01). No short chain fatty acids (SCFA) were influenced by YME, except isovaleric acid (p = 0.01), which showed a lower concentration in the inclusion of 2% YME. Our results show that up to 2% YME does not affect digestibility, ruminal fermentation parameters, or the concentration of short-chain fatty acids in the rumen.

6.
PLoS One ; 16(10): e0257964, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34648502

RESUMO

Enteric methane (CH4) emissions are a natural process in ruminants and can result in up to 12% of energy losses. Hence, decreasing enteric CH4 production constitutes an important step towards improving the feed efficiency of Brazilian cattle herds. The aim of this study was to evaluate the relationship between performance, residual feed intake (RFI), and enteric CH4 emission in growing Nellore cattle (Bos indicus). Performance, RFI and CH4 emission data were obtained from 489 animals participating in selection programs (mid-test age and body weight: 414±159 days and 356±135 kg, respectively) that were evaluated in 12 performance tests carried out in individual pens (n = 95) or collective paddocks (n = 394) equipped with electronic feed bunks. The sulfur hexafluoride tracer gas technique was used to measure daily CH4 emissions. The following variables were estimated: CH4 emission rate (g/day), residual methane emission and emission expressed per mid-test body weight, metabolic body weight, dry matter intake (CH4/DMI), average daily gain, and ingested gross energy (CH4/GE). Animals classified as negative RFI (RFI<0), i.e., more efficient animals, consumed less dry matter (P <0.0001) and emitted less g CH4/day (P = 0.0022) than positive RFI animals (RFI>0). Nonetheless, more efficient animals emitted more CH4/DMI and CH4/GE (P < 0.0001), suggesting that the difference in daily intake between animals is a determinant factor for the difference in daily enteric CH4 emissions. In addition, animals classified as negative RFI emitted less CH4 per kg mid-test weight and metabolic weight (P = 0.0096 and P = 0.0033, respectively), i.e., most efficient animals could emit less CH4 per kg of carcass. In conclusion, more efficient animals produced less methane when expressed as g/day and per kg mid-test weight than less efficient animals, suggesting lower emissions per kg of carcass produced. However, it is not possible to state that feed efficiency has a direct effect on enteric CH4 emissions since emissions per kg of consumed dry matter and the percentage of gross energy lost as CH4 are higher for more efficient animals.


Assuntos
Ingestão de Alimentos/fisiologia , Metano/metabolismo , Fenótipo , Desempenho Físico Funcional , Aumento de Peso/fisiologia , Ração Animal , Fenômenos Fisiológicos da Nutrição Animal , Animais , Brasil , Bovinos , Dieta/veterinária , Metabolismo Energético/fisiologia , Comportamento Alimentar/fisiologia , Feminino , Trato Gastrointestinal/metabolismo , Masculino
7.
J Anim Sci ; 98(10)2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32930330

RESUMO

Increasing greenhouse gas (GHG) emissions from anthropogenic activities have contributed to global warming and consequently to climate change. Among all sources of emissions, the agricultural sector accounts for just under a quarter, mainly because of the intensification of food production systems necessary to supply the growing demand of the population. As ruminal fermentation is the largest source of methane emission in the livestock industry, emission by cattle has become the focus of studies. The aim of this study was to evaluate enteric methane emission and emission intensities of Nellore cattle at different ages submitted to levels of intensification of the grazing system. Twenty-four animals per cycle (age of 21.8 and 13.1 mo in cycles 1 and 2, respectively) were randomly distributed across different grazing systems: irrigated pasture with a high stocking rate (IHS), dryland pasture with a high stocking rate (DHS), recovering dryland pasture with a moderate stocking rate (DMS), and degraded pasture with a low stocking rate (DP). Methane emission was measured using the sulfur hexafluoride technique in each season of the cycle. Intensive systems provided higher yields of good-quality forage as well as superior animal performance when compared with DP. Methane yields were different between seasons and cycles. Methane emissions per average daily weight gain and dry matter digestible intake were different between treatments. Differences in the results were observed when they were analyzed per hectare, with the highest gain yield (P = 0.0134), stocking rate, weight gain, carcass production, and total methane emission (P < 0.0001) being found for the intensive systems. There were no differences in emissions per weight gain or carcass production between production systems, while a difference was observed between cycles (P = 0.0189 and P = 0.0255, respectively), resulting in lower emission intensities for younger animals. We conclude that more intensive systems resulted in a higher kilograms production of carcass per hectare; however, animals at 19 mo of age raised in the IHS and DMS systems had a lower emission intensity in kilogram of CO2-eq. per kilogram of carcass. Moderate intensification (DMS) using animals at about 19 mo of age might be an effective strategy to mitigate GHG emissions from Brazilian tropical pastures. Further studies are needed to understand the relationship between increasing productivity and decreasing environmental impacts, especially methane emission from ruminants.


Assuntos
Bovinos/fisiologia , Aquecimento Global , Metano/metabolismo , Animais , Brasil , Bovinos/crescimento & desenvolvimento , Gado , Masculino , Estações do Ano , Aumento de Peso
8.
Animals (Basel) ; 10(2)2020 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-32070066

RESUMO

The present study aimed to investigate whether different lines of a composite breed (5/8 Charolais × 3/8 Zebu), formed at different times, and genetically improved, would result in differences in animal performance, enteric methane emissions, and carcass traits. Forty-six Canchim steers (15 months, 280 ± 33 kg liveweight) from three different lines were used: old, new, and their cross. These three breed lines were considered the treatments (arranged in four randomized blocks based on initial liveweight) and were evaluated under grazing and feedlot conditions in relation to the performance and emission of enteric methane. During the grazing period, the new line was found to be superior to the old only in relation to the average daily liveweight gain (0.692 vs. 0.547 kg/day), and with no differences in relation to the cross line (0.692 vs. 0.620). In the feedlot finishing phase, only the average daily liveweight gain was significantly higher in the new line compared to the cross and old line (1.44 vs. 1.32 and 1.23 kg/day). The new and cross lines demonstrated higher dry matter intake when compared to the old line (10.25 and 10.42 vs. 9.11 kg/day), with the crossline animals demonstrating the best feed conversion. The new line showed higher enteric methane emissions compared to the old line (178 vs. 156 g/day). The line had an effect on the carcass dressing of the animals, with greater fat thickness in carcasses from the new and cross lines than the old line (4.4 and 3.8 vs. 3.2 mm). Canchim cattle selected for improved productive performance characteristics does not guarantee animals with lower methane emissions under grazing conditions; while in feedlots, can lead to increased daily feed consumption, and hence, to higher emissions of methane.

9.
J Anim Sci ; 98(11)2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33125460

RESUMO

This study aimed to estimate genetic parameters, including genomic data, for feeding behavior, feed efficiency, and growth traits in Nellore cattle. The following feeding behavior traits were studied (861 animals with records): time spent at the feed bunk (TF), duration of one feeding event (FD), frequency of visits to the bunk (FF), feeding rate (FR), and dry matter intake (DMI) per visit (DMIv). The feed efficiency traits (1,543 animals with records) included residual feed intake (RFI), residual weight gain (RWG), and feed conversion (FC). The growth traits studied were average daily gain (ADG, n = 1,543 animals) and selection (postweaning) weight (WSel, n = 9,549 animals). The (co)variance components were estimated by the maximum restricted likelihood method, fitting animal models that did (single-step genomic best linear unbiased prediction) or did not include (best linear unbiased prediction) genomic information in two-trait analyses. The direct responses to selection were calculated for the feed efficiency traits, ADG, and WSel, as well as the correlated responses in feed efficiency and growth by direct selection for shorter TF. The estimated heritabilities were 0.51 ± 0.06, 0.35 ± 0.06, 0.27 ± 0.07, 0.34 ± 0.06, and 0.33 ± 0.06 for TF, FD, FF, FR, and DMIv, respectively. In general, TF and FD showed positive genetic correlations with all feed efficiency traits (RFI, RWG, and FC), ADG, DMI, and WSel. Additionally, TF showed high and positive genetic and phenotypic correlations with RFI (0.71 ± 0.10 and 0.46 ± 0.02, respectively) and DMI (0.56 ± 0.09 and 0.48 ± 0.03), and medium to weak genetic correlations with growth (0.32 ± 0.11 with ADG and 0.14 ± 0.09 with WSel). The results suggest that TF is a strong indicator trait of feed efficiency, which exhibits high heritability and a weak positive genetic correlation with growth. In a context of a selection index, the inclusion of TF to select animals for shorter TF may accelerate the genetic gain in feed efficiency by reducing RFI but with zero or slightly negative genetic gain in growth traits.


Assuntos
Ingestão de Alimentos , Comportamento Alimentar , Ração Animal , Animais , Peso Corporal , Bovinos/genética , Ingestão de Alimentos/genética , Fenótipo
10.
Ciênc. rural (Online) ; 51(6): e20200376, 2021. tab
Artigo em Inglês | LILACS-Express | LILACS, VETINDEX | ID: biblio-1286024

RESUMO

ABSTRACT: This study measured milk and solid feed intake in pre- weaning period and feed intake in postweaning period of Nellore calves, and to correlated them with performance traits and ingestive behavior of animals classified as most and least efficient. During pre weaning phase, feed efficiency was evaluated in 51 cow-calf pairs from 21±5 days after calving until weaning. During post-weaning phase, only male calves (n=23) were evaluated. Pre-weaning milk intake of calves was estimated based on cow's milk production. Pre-weaning daily metabolizable energy intake (MEI) of calves was estimated as the sum of MEI from milk and solid diet. There was no difference in ADG between calves with negative and positive pre RFI, with a consequent better feed conversion to more efficient calves. The most efficient calves spent less time at the feed bunk, with a shorter feeding duration and higher rate of intake, compared to the least efficient animals. Correlations between feed intake and metabolic body weight of the animals during pre- and postweaning phases were positive, of medium to high magnitude, and significant, while correlation between ADG values was close to zero. Results suggested that part of the animals ranked based on pre weaning feed intake won't maintain their rank during postweaning phase. In conclusion, calves classified as most efficient during pre-weaning phase have similar weight gain but lower milk intake and MEI than least efficient animals. The estimated pre RFI is weakly correlated with post RFI, showing that RFI is not consistent or repeatable across two periods.


RESUMO: Este estudo teve como objetivo mensurar o consumo de leite e sólidos no período pré-desmama e o consumo alimentar no período pós-desmama, e relacioná-los com características de desempenho e comportamento ingestivo de animais classificados como mais eficientes e menos eficientes. Na fase pré-desmama foram avaliados 51 pares vaca-bezerro da raça Nelore quanto à eficiência alimentar dos 21±5 dias após o parto até a desmama. Na fase pós-desmama, apenas os bezerros machos (n=23) foram avaliados. O consumo de leite dos bezerros na pré-desmama foi estimado pela produção de leite das vacas. O consumo diário de energia metabolizável do bezerro na pré-desmama (CEM), foi estimado pela soma do consumo de energia metabolizável do leite e do consumo diário de energia metabolizável da dieta. Bezerros CARpre negativo não diferiram dos bezerros CARpre positivo quanto ao GMD, resultando em melhor CA dos bezerros mais eficientes. Bezerros mais eficientes ficaram menos tempo no cocho, com menor duração da refeição e com maior taxa de alimentação comparativamente aos animais menos eficientes. As correlações entre o consumo alimentar e peso corporal metabólico dos animais na pré e pós-desmama foram positivas, de média a alta magnitudes e significativas, enquanto que a correlação entre ganho médio diário foi próxima de zero. Os resultados sugerem que parte dos animais classificados pelo consumo alimentar na pré-desmama manterão a classificação na pós-desmama. Na fase pré-desmama bezerros classificados como mais eficientes tem ganho de peso similar, porém com menor consumo de leite e consumo de energia metabolizável do que bezerros menos eficientes. A estimativa do consumo alimentar residual na fase pré-desmama é fracamente relacionada à estimativa do consumo alimentar residual na fase pós-desmama, mostrando que o consumo alimentar residual não é consistente e repetível nos dois períodos.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA