Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Inf Model ; 62(12): 2951-2960, 2022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35679182

RESUMO

Thirty-eight percent of protein structures in the Protein Data Bank contain at least one metal ion. However, not all these metal sites are biologically relevant. Cations present as impurities during sample preparation or in the crystallization buffer can cause the formation of protein-metal complexes that do not exist in vivo. We implemented a deep learning approach to build a classifier able to distinguish between physiological and adventitious zinc-binding sites in the 3D structures of metalloproteins. We trained the classifier using manually annotated sites extracted from the MetalPDB database. Using a 10-fold cross validation procedure, the classifier achieved an accuracy of about 90%. The same neural classifier could predict the physiological relevance of non-heme mononuclear iron sites with an accuracy of nearly 80%, suggesting that the rules learned on zinc sites have general relevance. By quantifying the relative importance of the features describing the input zinc sites from the network perspective and by analyzing the characteristics of the MetalPDB datasets, we inferred some common principles. Physiological sites present a low solvent accessibility of the aminoacids forming coordination bonds with the metal ion (the metal ligands), a relatively large number of residues in the metal environment (≥20), and a distinct pattern of conservation of Cys and His residues in the site. Adventitious sites, on the other hand, tend to have a low number of donor atoms from the polypeptide chain (often one or two). These observations support the evaluation of the physiological relevance of novel metal-binding sites in protein structures.


Assuntos
Metaloproteínas , Sítios de Ligação , Bases de Dados de Proteínas , Metaloproteínas/metabolismo , Metais/química , Redes Neurais de Computação , Zinco/metabolismo
2.
J Craniofac Surg ; 33(2): 665-668, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33867510

RESUMO

INTRODUCTION: The actual role of landmarks labeling before three-dimensional (3D) facial acquisition is still debated. In this study, several measurements were compared among textured labeled (TL), unlabeled (NL), and untextured (NTL) 3D facial models. MATERIALS AND METHODS: The face of 50 subjects was acquired through stereophotogrammetry. Landmark coordinates were extracted from TL, NL, and NTL facial models, and 33 linear and angular measurements were calculated, together with surface area and volume. Accuracy of measurements among TL, NL, and NTL models was assessed through calculation of relative technical error of measurement (rTEM). The intra- and inter-observer errors for each type of facial model were calculated. RESULTS: Intra- and inter-observer error of measurements increased passing from textured to NTL and NL 3D models. Average rTEMs between TL models, and NTL and NL models were 4.5 ±â€Š2.6% and 4.7 ±â€Š2.8%, respectively, almost all measurements being classified as "very good" or "good." Only for orbital height and its inclination, mandibular ramus length, nasal convexity, alar slope angle, and facial divergence, rTEM was classified as "moderate" or "poor." CONCLUSIONS: Accuracy and precision of measurements decrease when landmarks are not previously labeled; attention must be taken when measurements have a low magnitude or involve landmarks requiring palpation.


Assuntos
Imageamento Tridimensional , Fotogrametria , Antropometria , Cefalometria/métodos , Humanos , Imageamento Tridimensional/métodos , Reprodutibilidade dos Testes
3.
J Chem Inf Model ; 61(2): 901-912, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33508935

RESUMO

ZnT8 is a human zinc(II) transporter expressed at the membrane of secretory granules where it contributes to insulin storage importing zinc ions from the cytosol. In the human population, the two most common ZnT8 variants carry an arginine (R325) or a tryptophan (W325) in position 325. The former variant has the most efficient kinetics in zinc transport and has been correlated to a higher risk of developing insulin resistance. On the contrary, the W325 variant is less active and protects against type-2-diabetes. Here, we used molecular dynamics (MD) simulations to investigate the main differences between the R325 and W325 variants in the interaction with zinc(II) ions. Our simulations suggested that the position of the metal ion within the transport site was not the same for the two variants, underlying a different rearrangement of the transmembrane (TM) helices in the channel. The W325 variant featured a peculiar zinc environment not detected in the experimental structures. With respect to conformational dynamics, we observed that the R325 variant was significantly more flexible than W325, with the main role played by the transmembrane domain (TMD) and the C-terminal domain (CTD). This dynamics affected the packing of the TM helices and thus the channel accessibility from the cytosol. The dimer interface that keeps the two TM channels in contact became looser in both variants upon zinc binding to the transport site, suggesting that this may be an important step toward the switch from the inward- to the outward-facing state of the protein.


Assuntos
Simulação de Dinâmica Molecular , Transportador 8 de Zinco/química , Humanos , Insulina
4.
Neurobiol Dis ; 134: 104667, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31682993

RESUMO

The favorable outcome of in vivo and ex vivo gene therapy approaches in several Lysosomal Storage Diseases suggests that these treatment strategies might equally benefit GM2 gangliosidosis. Tay-Sachs and Sandhoff disease (the main forms of GM2 gangliosidosis) result from mutations in either the HEXA or HEXB genes encoding, respectively, the α- or ß-subunits of the lysosomal ß-Hexosaminidase enzyme. In physiological conditions, α- and ß-subunits combine to generate ß-Hexosaminidase A (HexA, αß) and ß-Hexosaminidase B (HexB, ßß). A major impairment to establishing in vivo or ex vivo gene therapy for GM2 gangliosidosis is the need to synthesize the α- and ß-subunits at high levels and with the correct stoichiometric ratio, and to safely deliver the therapeutic products to all affected tissues/organs. Here, we report the generation and in vitro validation of novel bicistronic lentiviral vectors (LVs) encoding for both the murine and human codon optimized Hexa and Hexb genes. We show that these LVs drive the safe and coordinate expression of the α- and ß-subunits, leading to supranormal levels of ß-Hexosaminidase activity with prevalent formation of a functional HexA in SD murine neurons and glia, murine bone marrow-derived hematopoietic stem/progenitor cells (HSPCs), and human SD fibroblasts. The restoration/overexpression of ß-Hexosaminidase leads to the reduction of intracellular GM2 ganglioside storage in transduced and in cross-corrected SD murine neural progeny, indicating that the transgenic enzyme is secreted and functional. Importantly, bicistronic LVs safely and efficiently transduce human neurons/glia and CD34+ HSPCs, which are target and effector cells, respectively, in prospective in vivo and ex vivo GT approaches. We anticipate that these bicistronic LVs may overcome the current requirement of two vectors co-delivering the α- or ß-subunits genes. Careful assessment of the safety and therapeutic potential of these bicistronic LVs in the SD murine model will pave the way to the clinical development of LV-based gene therapy for GM2 gangliosidosis.


Assuntos
Gangliosidoses GM2/metabolismo , Terapia Genética/métodos , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Neurais/metabolismo , Cadeia alfa da beta-Hexosaminidase/metabolismo , Cadeia beta da beta-Hexosaminidase/metabolismo , Animais , Gangliosidoses GM2/genética , Vetores Genéticos , Humanos , Lentivirus , Camundongos , Cadeia alfa da beta-Hexosaminidase/genética , Cadeia beta da beta-Hexosaminidase/genética
5.
Proteins ; 87(12): 1315-1332, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31603581

RESUMO

CASP13 has investigated the impact of sparse NMR data on the accuracy of protein structure prediction. NOESY and 15 N-1 H residual dipolar coupling data, typical of that obtained for 15 N,13 C-enriched, perdeuterated proteins up to about 40 kDa, were simulated for 11 CASP13 targets ranging in size from 80 to 326 residues. For several targets, two prediction groups generated models that are more accurate than those produced using baseline methods. Real NMR data collected for a de novo designed protein were also provided to predictors, including one data set in which only backbone resonance assignments were available. Some NMR-assisted prediction groups also did very well with these data. CASP13 also assessed whether incorporation of sparse NMR data improves the accuracy of protein structure prediction relative to nonassisted regular methods. In most cases, incorporation of sparse, noisy NMR data results in models with higher accuracy. The best NMR-assisted models were also compared with the best regular predictions of any CASP13 group for the same target. For six of 13 targets, the most accurate model provided by any NMR-assisted prediction group was more accurate than the most accurate model provided by any regular prediction group; however, for the remaining seven targets, one or more regular prediction method provided a more accurate model than even the best NMR-assisted model. These results suggest a novel approach for protein structure determination, in which advanced prediction methods are first used to generate structural models, and sparse NMR data is then used to validate and/or refine these models.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Modelos Moleculares , Conformação Proteica , Dobramento de Proteína , Proteínas/química , Algoritmos , Simulação por Computador , Cristalografia por Raios X , Reprodutibilidade dos Testes
6.
Molecules ; 23(1)2018 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-29316712

RESUMO

Cystic fibrosis (CF) is mainly caused by the deletion of Phe 508 (ΔF508) in the cystic fibrosis transmembrane conductance regulator (CFTR) protein that is thus withheld in the endoplasmic reticulum and rapidly degraded by the ubiquitin/proteasome system. New drugs able to rescue ΔF508-CFTR trafficking are eagerly awaited. An integrated bioinformatics and surface plasmon resonance (SPR) approach was here applied to investigate the rescue mechanism(s) of a series of CFTR-ligands including VX809, VX770 and some aminoarylthiazole derivatives (AAT). Computational studies tentatively identified a large binding pocket in the ΔF508-CFTR nucleotide binding domain-1 (NBD1) and predicted all the tested compounds to bind to three sub-regions of this main pocket. Noticeably, the known CFTR chaperone keratin-8 (K8) seems to interact with some residues located in one of these sub-pockets, potentially interfering with the binding of some ligands. SPR results corroborated all these computational findings. Moreover, for all the considered ligands, a statistically significant correlation was determined between their binding capability to ΔF508-NBD1 measured by SPR and the pockets availability measured by computational studies. Taken together, these results demonstrate a strong agreement between the in silico prediction and the SPR-generated binding data, suggesting a path to speed up the identification of new drugs for the treatment of cystic fibrosis.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/química , Tiazóis/química , Sítios de Ligação , Biologia Computacional , Fibrose Cística/tratamento farmacológico , Avaliação Pré-Clínica de Medicamentos , Humanos , Simulação de Dinâmica Molecular , Ligação Proteica , Ressonância de Plasmônio de Superfície
7.
J Chem Inf Model ; 57(9): 2112-2118, 2017 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-28853891

RESUMO

We investigated the kinetics of the release of iron(II) ions from the internal cavity of human H-ferritin as a function of pH. Extensive molecular dynamics simulations of the entire 24-mer ferritin provided atomic-level information on the release mechanism. Double protonation of His residues at pH 4 facilitates the removal of the iron ligands within the C3 channel through the formation of salt bridges, resulting in a significantly lower release energy barrier than pH 9.


Assuntos
Apoferritinas/química , Apoferritinas/metabolismo , Ferro/metabolismo , Humanos , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Simulação de Dinâmica Molecular , Conformação Proteica
8.
J Biomol NMR ; 66(3): 175-185, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27771862

RESUMO

The binding of paramagnetic metal ions to proteins produces a number of different effects on the NMR spectra of the system. In particular, when the magnetic susceptibility of the metal ion is anisotropic, pseudocontact shifts (PCSs) arise and can be easily measured. They constitute very useful restraints for the solution structure determination of metal-binding proteins. In this context, there has been great interest in the use of lanthanide(III) ions to induce PCSs in diamagnetic proteins, e.g. through the replacement native calcium(II) ions. By preparing multiple samples in each of which a different ion of the lanthanide series is introduced, it is possible to obtain multiple independent PCS datasets that can be used synergistically to generate protein structure ensembles (typically called bundles). For typical NMR-based determination of protein structure, it is necessary to perform an energetic refinement of such initial bundles to obtain final structures whose geometric quality is suitable for deposition in the PDB. This can be conveniently done by using restrained molecular dynamics simulations (rMD) in explicit solvent. However, there are no available protocols for rMD using multiple PCS datasets as part of the restraints. In this work, we extended the PCS module of the AMBER MD package to handle multiple datasets and tuned a previously developed protocol for NMR structure refinement to achieve consistent convergence with PCS restraints. Test calculations with real experimental data show that this new implementation delivers the expected improvement of protein geometry, resulting in final structures that are of suitable quality for deposition. Furthermore, we observe that also initial structures generated only with traditional restraints can be successfully refined using traditional and PCS restraints simultaneously.


Assuntos
Íons/química , Elementos da Série dos Lantanídeos/química , Espectroscopia de Ressonância Magnética , Proteínas/química , Espectroscopia de Ressonância Magnética/métodos , Modelos Moleculares , Simulação de Dinâmica Molecular , Conformação Proteica
9.
Front Mol Biosci ; 10: 1121962, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36876042

RESUMO

Determining the three-dimensional structure of proteins in their native functional states has been a longstanding challenge in structural biology. While integrative structural biology has been the most effective way to get a high-accuracy structure of different conformations and mechanistic insights for larger proteins, advances in deep machine-learning algorithms have paved the way to fully computational predictions. In this field, AlphaFold2 (AF2) pioneered ab initio high-accuracy single-chain modeling. Since then, different customizations have expanded the number of conformational states accessible through AF2. Here, we further expanded AF2 with the aim of enriching an ensemble of models with user-defined functional or structural features. We tackled two common protein families for drug discovery, G-protein-coupled receptors (GPCRs) and kinases. Our approach automatically identifies the best templates satisfying the specified features and combines those with genetic information. We also introduced the possibility of shuffling the selected templates to expand the space of solutions. In our benchmark, models showed the intended bias and great accuracy. Our protocol can thus be exploited for modeling user-defined conformational states in an automatic fashion.

10.
J Clin Med ; 12(18)2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37762877

RESUMO

BACKGROUND: PFO (Patent foramen ovale) is a common defect that affects about 25% of the population. Although its presence is asymptomatic in the majority of the cases, the remaining part becomes overt with different symptoms, including cryptogenic stroke. PFO closure is currently a widely available procedure in complex anatomy, with Amplatzer PFO Occluder (APO) being the most commonly used tool. However, the performance of another device, the GORE Septal Occluder (GSO), has not been completely explored with regard to different septal anatomies. METHODS: From March 2012 to June 2020, 118 consecutive patients with an indication of PFO closure were treated using the GSO system, included in a prospective analysis, and followed. After 12 months, every patient underwent transcranial Doppler ultrasound to evaluate the effectiveness of treatment. RESULTS: Of 111 patients evaluated, 107 showed effective PFO closure (96.4%), and 4 showed a residual shunt (3.6%). To better evaluate the device performance, the overall population was sorted into two clusters based on the echocardiographic characteristics. The main difference between groups was for PFO width (4.85 ± 1.8 vs. 2.9 ± 1 mm, p < 0.001) and PFO tunnel length (12.6 ± 3.8 vs. 7.2 ± 2, p < 0.001), allowing complex and simple anatomies to be identified, respectively. Regardless of the aforementioned cluster, the GSO performance required to reach an effective closure was independent of anatomy type and the chosen device size. CONCLUSION: The GSO device showed a high closure rate at 1-year follow-up in patients, with at least one anatomical factor of complexity of PFO irrespective of the level of complexity itself.

11.
IEEE J Biomed Health Inform ; 27(7): 3129-3140, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37058373

RESUMO

Evidence is rapidly accumulating that multifactorial nocturnal monitoring, through the coupling of wearable devices and deep learning, may be disruptive for early diagnosis and assessment of sleep disorders. In this work, optical, differential air-pressure and acceleration signals, acquired by a chest-worn sensor, are elaborated into five somnographic-like signals, which are then used to feed a deep network. This addresses a three-fold classification problem to predict the overall signal quality (normal, corrupted), three breathing-related patterns (normal, apnea, irregular) and three sleep-related patterns (normal, snoring, noise). In order to promote explainability, the developed architecture generates additional information in the form of qualitative (saliency maps) and quantitative (confidence indices) data, which helps to improve the interpretation of the predictions. Twenty healthy subjects enrolled in this study were monitored overnight for approximately ten hours during sleep. Somnographic-like signals were manually labeled according to the three class sets to build the training dataset. Both record- and subject-wise analyses were performed to evaluate the prediction performance and the coherence of the results. The network was accurate (0.96) in distinguishing normal from corrupted signals. Breathing patterns were predicted with higher accuracy (0.93) than sleep patterns (0.76). The prediction of irregular breathing was less accurate (0.88) than that of apnea (0.97). In the sleep pattern set, the distinction between snoring (0.73) and noise events (0.61) was less effective. The confidence index associated with the prediction allowed us to elucidate ambiguous predictions better. The saliency map analysis provided useful insights to relate predictions to the input signal content. While preliminary, this work supported the recent perspective on the use of deep learning to detect particular sleep events in multiple somnographic signals, thus representing a step towards bringing the use of AI-based tools for sleep disorder detection incrementally closer to clinical translation.


Assuntos
Aprendizado Profundo , Dispositivos Eletrônicos Vestíveis , Humanos , Polissonografia , Ronco/diagnóstico , Apneia , Sono
12.
Front Cardiovasc Med ; 9: 861129, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35369311

RESUMO

Aim: The aim of this study was to explore the potential intraprocedural benefits of the Proximal Side Optimization (PSO) technique by Optical Coherence Tomography (OCT). Methods: A case series of 10 consecutive true bifurcation lesions, with severe long pathology of long side branch (SB), were randomly assigned to be treated by standard DK Crush procedure (non-PSO group) as compared to DK Crush in PSO modification (PSO group). The data from OCT investigation before crushing of the SB Drug-Eluting Stent (DES), after crushing, after first kissing balloon inflation (KBI), and after final angiography were compared between the two groups (Public trials registry ISRCTN23355755). Results: All 10 cases were successfully treated by the assigned technique. The two groups were similar in terms of indications for the procedure, bifurcation angle, and stent dimensions. As compared to the non-PSO, the PSO group showed larger proximal SB stent areas (5.8 ± 1.8 vs. 4.5 ± 0.5 mm2; p = 0.02), the larger delta between distal and proximal stent areas before crush (1.5 ± 0.7 vs. 0.6 ± 0.5 mm2; p = 0.004), and the larger Space of Optimal Wiring (SOW) after Crush (5.3 ± 1.8 vs. 2.5 ± 1.1 mm2; p = 0.02). The gaps in scaffolding within the ostial segment of the Side Branch DES were found in two patients from the non-PSO group. Conclusion: The DK Crush in PSO modification results in larger SB DES and SOW areas with better apposition to the vessel wall. As result, the SB DES acquires a funnel shape, which reduces the risk of passage outside the SB stent struts during re-wiring, thus, allowing predictable and secure results.

13.
Structure ; 30(8): 1157-1168.e3, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35597243

RESUMO

Conformational changes are an essential component of functional cycles of many proteins, but their characterization often requires an integrative structural biology approach. Here, we introduce and benchmark ConfChangeMover (CCM), a new method built into the widely used macromolecular modeling suite Rosetta that is tailored to model conformational changes in proteins using sparse experimental data. CCM can rotate and translate secondary structural elements and modify their backbone dihedral angles in regions of interest. We benchmarked CCM on soluble and membrane proteins with simulated Cα-Cα distance restraints and sparse experimental double electron-electron resonance (DEER) restraints, respectively. In both benchmarks, CCM outperformed state-of-the-art Rosetta methods, showing that it can model a diverse array of conformational changes. In addition, the Rosetta framework allows a wide variety of experimental data to be integrated with CCM, thus extending its capability beyond DEER restraints. This method will contribute to the biophysical characterization of protein dynamics.


Assuntos
Proteínas de Membrana , Espectroscopia de Ressonância de Spin Eletrônica , Proteínas de Membrana/química , Conformação Proteica
14.
Elife ; 112022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35238773

RESUMO

Equilibrium fluctuations and triggered conformational changes often underlie the functional cycles of membrane proteins. For example, transporters mediate the passage of molecules across cell membranes by alternating between inward- and outward-facing states, while receptors undergo intracellular structural rearrangements that initiate signaling cascades. Although the conformational plasticity of these proteins has historically posed a challenge for traditional de novo protein structure prediction pipelines, the recent success of AlphaFold2 (AF2) in CASP14 culminated in the modeling of a transporter in multiple conformations to high accuracy. Given that AF2 was designed to predict static structures of proteins, it remains unclear if this result represents an underexplored capability to accurately predict multiple conformations and/or structural heterogeneity. Here, we present an approach to drive AF2 to sample alternative conformations of topologically diverse transporters and G-protein-coupled receptors that are absent from the AF2 training set. Whereas models of most proteins generated using the default AF2 pipeline are conformationally homogeneous and nearly identical to one another, reducing the depth of the input multiple sequence alignments by stochastic subsampling led to the generation of accurate models in multiple conformations. In our benchmark, these conformations spanned the range between two experimental structures of interest, with models at the extremes of these conformational distributions observed to be among the most accurate (average template modeling score of 0.94). These results suggest a straightforward approach to identifying native-like alternative states, while also highlighting the need for the next generation of deep learning algorithms to be designed to predict ensembles of biophysically relevant states.


Assuntos
Furilfuramida , Proteínas de Membrana Transportadoras , Algoritmos , Conformação Proteica , Alinhamento de Sequência
15.
Mol Ther Methods Clin Dev ; 25: 170-189, 2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35434178

RESUMO

Genetic deficiency of ß-N-acetylhexosaminidase (Hex) functionality leads to accumulation of GM2 ganglioside in Tay-Sachs disease and Sandhoff disease (SD), which presently lack approved therapies. Current experimental gene therapy (GT) approaches with adeno-associated viral vectors (AAVs) still pose safety and efficacy issues, supporting the search for alternative therapeutic strategies. Here we leveraged the lentiviral vector (LV)-mediated intracerebral (IC) GT platform to deliver Hex genes to the CNS and combined this strategy with bone marrow transplantation (BMT) to provide a timely, pervasive, and long-lasting source of the Hex enzyme in the CNS and periphery of SD mice. Combined therapy outperformed individual treatments in terms of lifespan extension and normalization of the neuroinflammatory/neurodegenerative phenotypes of SD mice. These benefits correlated with a time-dependent increase in Hex activity and a remarkable reduction in GM2 storage in brain tissues that single treatments failed to achieve. Our results highlight the synergic mode of action of LV-mediated IC GT and BMT, clarify the contribution of treatments to the therapeutic outcome, and inform on the realistic threshold of corrective enzymatic activity. These results have important implications for interpretation of ongoing experimental therapies and for design of more effective treatment strategies for GM2 gangliosidosis.

16.
J Clin Med ; 11(19)2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36233531

RESUMO

Sudden cardiac death (SCD) is a potentially fatal event usually caused by a cardiac arrhythmia, which is often the result of coronary artery disease (CAD). Up to 80% of patients suffering from SCD have concomitant CAD. Arrhythmic complications may occur in patients with acute coronary syndrome (ACS) before admission, during revascularization procedures, and in hospital intensive care monitoring. In addition, about 20% of patients who survive cardiac arrest develop a transmural myocardial infarction (MI). Prevention of ACS can be evaluated in selected patients using cardiac computed tomography angiography (CCTA), while diagnosis can be depicted using electrocardiography (ECG), and complications can be evaluated with cardiac magnetic resonance (CMR) and echocardiography. CCTA can evaluate plaque, burden of disease, stenosis, and adverse plaque characteristics, in patients with chest pain. ECG and echocardiography are the first-line tests for ACS and are affordable and useful for diagnosis. CMR can evaluate function and the presence of complications after ACS, such as development of ventricular thrombus and presence of myocardial tissue characterization abnormalities that can be the substrate of ventricular arrhythmias.

17.
Life (Basel) ; 10(7)2020 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-32664566

RESUMO

Intrinsically Disordered Peptides and Proteins (IDPs) in solution can span a broad range of conformations that often are hard to characterize by both experimental and computational methods. However, obtaining a significant representation of the conformational space is important to understand mechanisms underlying protein functions such as partner recognition. In this work, we investigated the behavior of the Sic1 Kinase-Inhibitor Domain (KID) in solution by Molecular Dynamics (MD) simulations. Our results point out that application of common descriptors of molecular shape such as Solvent Accessible Surface (SAS) area can lead to misleading outcomes. Instead, more appropriate molecular descriptors can be used to define 3D structures. In particular, we exploited Weighted Holistic Invariant Molecular (WHIM) descriptors to get a coarse-grained but accurate definition of the variegated Sic1 KID conformational ensemble. We found that Sic1 is able to form a variable amount of folded structures even in absence of partners. Among them, there were some conformations very close to the structure that Sic1 is supposed to assume in the binding with its physiological complexes. Therefore, our results support the hypothesis that this protein relies on the conformational selection mechanism to recognize the correct molecular partners.

18.
Comput Struct Biotechnol J ; 18: 114-124, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31969972

RESUMO

Protein assemblies are involved in many important biological processes. Solid-state NMR (SSNMR) spectroscopy is a technique suitable for the structural characterization of samples with high molecular weight and thus can be applied to such assemblies. A significant bottleneck in terms of both effort and time required is the manual identification of unambiguous intermolecular contacts. This is particularly challenging for homo-oligomeric complexes, where simple uniform labeling may not be effective. We tackled this challenge by exploiting coevolution analysis to extract information on homo-oligomeric interfaces from NMR-derived ambiguous contacts. After removing the evolutionary couplings (ECs) that are already satisfied by the 3D structure of the monomer, the predicted ECs are matched with the automatically generated list of experimental contacts. This approach provides a selection of potential interface residues that is used directly in monomer-monomer docking calculations. We validated the protocol on tetrameric L-asparaginase II and dimeric Sod1.

19.
J Cardiovasc Pharmacol Ther ; 25(3): 219-225, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31868001

RESUMO

AIM: To evaluate outcomes related to antiplatelet therapy in patients with ST-elevation myocardial infarction (STEMI) admitted to the San Gerardo Hospital in Monza, an extracorporeal membrane oxygenation (ECMO) reference center in the Monza-Brianza area. METHODS: This retrospective study enrolled patients with STEMI hospitalized between 2013 and 2017. RESULTS: This study included 653 patients (mean age: 67.5 years, 71% male). Across the study period, ticagrelor use showed consistent increases, from 22% of patients during 2013 to 85% in 2017. Cardiac arrest prehospitalization occurred in 100 patients (15.3%), either at home (n = 85, 13.0%) or during transfer (n = 15, 2.3%); 46 patients underwent ECMO for refractory cardiac arrest. Rates of 90-day survival (hazard ratio [HR]: 2.4, 95% confidence interval [CI]: 1.3-4.4, P = .004) and ST resolution (odds ratio [OR]: 2.5, 95% CI: 1.6-4.1, P = .000) were higher with ticagrelor than with other antiplatelet agents. When analyzed by each agent, patients on ticagrelor had longer survival (HR: 0.4, 95% CI: 0.2-0.8, P = .008) than patients on clopidogrel and more frequent ST resolution than those on clopidogrel or prasugrel (OR: 0.4, 95% CI: 0.2-0.7, P = .002 and OR: 0.4, 95% CI: 0.2-0.7, P = .006). There was no difference in mortality between ticagrelor and prasugrel. CONCLUSIONS: Changes in the treatment of high-risk patients with STEMI over time are in line with changes in treatment guidelines. In these patients, ticagrelor is associated with significantly improved 90-day mortality compared with clopidogrel.


Assuntos
Clopidogrel/uso terapêutico , Oxigenação por Membrana Extracorpórea , Inibidores da Agregação Plaquetária/uso terapêutico , Infarto do Miocárdio com Supradesnível do Segmento ST/terapia , Ticagrelor/uso terapêutico , Idoso , Idoso de 80 Anos ou mais , Clopidogrel/efeitos adversos , Oxigenação por Membrana Extracorpórea/efeitos adversos , Oxigenação por Membrana Extracorpórea/mortalidade , Feminino , Humanos , Itália , Masculino , Pessoa de Meia-Idade , Inibidores da Agregação Plaquetária/efeitos adversos , Estudos Retrospectivos , Medição de Risco , Fatores de Risco , Infarto do Miocárdio com Supradesnível do Segmento ST/diagnóstico , Infarto do Miocárdio com Supradesnível do Segmento ST/mortalidade , Infarto do Miocárdio com Supradesnível do Segmento ST/fisiopatologia , Ticagrelor/efeitos adversos , Fatores de Tempo , Resultado do Tratamento
20.
Biochim Biophys Acta Gen Subj ; 1863(10): 1560-1567, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31176764

RESUMO

BACKGROUND: YiiP is a bacterial zinc-for-proton antiporter belonging to the cation diffusion facilitator family. The zinc(II) ions are transported across the cell membrane, from the cytosol to the extracellular space. METHODS: We performed atomistic molecular dynamics simulations of the YiiP dimer with zinc(II) ions in solution to elucidate how the metal ions interact with the protein while moving from the cytosol to the transport site. RESULTS: We observed that of the two cavities of the dimer, only one was accessible from the cytosol during transport. Zinc(II) binding to D49 of the transport site triggered a rearrangement of the transmembrane domain that closed the accessible cavity. Finally, we analyzed the free-energy profiles of metal transit in the channel and observed the existence of a high barrier preventing release from the transport site. CONCLUSIONS: The observed dynamics is consistent with the dimer-dimer interface forming a stable scaffold against which the rest of the trans-membrane rearranges. GENERAL SIGNIFICANCE: Zinc(II) transporters are present in all kingdoms of life. The present study highlights structural features that might be of general relevance.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Membrana Transportadoras/química , Zinco/química , Sítios de Ligação , Dimerização , Simulação de Dinâmica Molecular , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA