RESUMO
Treatment of multidrug-resistant or rifampicin-resistant tuberculosis (MDR/RR-TB), although improved in recent years with shorter, more tolerable regimens, remains largely standardized and based on limited drug susceptibility testing (DST). More individualized treatment with expanded DST access is likely to improve patient outcomes. To assess the potential of TB drug resistance prediction based on whole-genome sequencing (WGS) to provide more effective treatment regimens, we applied current South African treatment recommendations to a retrospective cohort of MDR/RR-TB patients from Khayelitsha, Cape Town. Routine DST and clinical data were used to retrospectively categorize patients into a recommended regimen, either a standardized short regimen or a longer individualized regimen. Potential regimen changes were then described with the addition of WGS-derived DST. WGS data were available for 1274 MDR/RR-TB patient treatment episodes across 2008 to 2017. Among 834 patients initially eligible for the shorter regimen, 385 (46%) may have benefited from reduced drug dosage or removing ineffective drugs when WGS data were considered. A further 187 (22%) patients may have benefited from more effective adjusted regimens. Among 440 patients initially eligible for a longer individualized regimen, 153 (35%) could have been switched to the short regimen. Overall, 305 (24%) patients had MDR/RR-TB with second-line TB drug resistance, where the availability of WGS-derived DST would have allowed more effective treatment individualization. These data suggest considerable benefits could accrue from routine access to WGS-derived resistance prediction. Advances in culture-free sequencing and expansion of the reference resistance mutation catalogue will increase the utility of WGS resistance prediction.
Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Estudos de Coortes , Humanos , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/genética , Estudos Retrospectivos , Rifampina/farmacologia , Rifampina/uso terapêutico , África do Sul , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológicoRESUMO
Rifampin monoresistance (RMR; rifampin resistance and isoniazid susceptibility) accounts for 38% of all rifampin-resistant tuberculosis (RR-TB) in South Africa and is increasing. We aimed to compare RMR-TB with multidrug-resistant TB (MDR-TB) in a setting with high TB, RR-TB, and HIV burdens. Patient-level clinical data and stored RR Mycobacterium tuberculosis isolates from 2008 to 2017 with available whole-genome sequencing (WGS) data were used to describe risk factors associated with RMR-TB and to compare RR-conferring mutations between RMR-TB and MDR-TB. A subset of isolates with particular RR-conferring mutations were subjected to semiquantitative rifampin phenotypic drug susceptibility testing. Among 2,041 routinely diagnosed RR-TB patients, 463 (22.7%) had RMR-TB. HIV-positive individuals (adjusted odds ratio [aOR], 1.4; 95% confidence interval [CI], 1.1 to 1.9) and diagnosis between 2013 and 2017 versus between 2008 and 2012 (aOR, 1.3; 95% CI, 1.1 to 1.7) were associated with RMR-TB. Among 1,119 (54.8%) patients with available WGS data showing RR-TB, significant differences in the distribution of rpoB RR-conferring mutations between RMR and MDR isolates were observed. Mutations associated with high-level RR were more commonly found among MDR isolates (811/889 [90.2%] versus 162/230 [70.4%] among RMR isolates; P < 0.0001). In particular, the rpoB L430P mutation, conferring low-level RR, was identified in 32/230 (13.9%) RMR isolates versus 10/889 (1.1%) in MDR isolates (P < 0.0001). Among 10 isolates with an rpoB L430P mutation, 7 were phenotypically susceptible using the critical concentration of 0.5 µg/ml (range, 0.125 to 1 µg/ml). The majority (215/230 [93.5%]) of RMR isolates showed susceptibility to all other TB drugs, highlighting the potential benefits of WGS for simplified treatment. These data suggest that the evolution of RMR-TB differs from MDR-TB with a potential contribution from HIV infection.
Assuntos
Infecções por HIV , Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose , Antituberculosos/farmacologia , Infecções por HIV/tratamento farmacológico , Humanos , Isoniazida , Testes de Sensibilidade Microbiana , Mutação , Mycobacterium tuberculosis/genética , Rifampina , África do Sul , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológicoRESUMO
BACKGROUND: Experimental data show that drug-resistance-conferring mutations are often associated with a decrease in the replicative fitness of bacteria in vitro, and that this fitness cost can be mitigated by compensatory mutations; however, the role of compensatory evolution in clinical settings is less clear. We assessed whether compensatory evolution was associated with increased transmission of rifampicin-resistant tuberculosis in Khayelitsha, Cape Town, South Africa. METHODS: We did a genomic epidemiological study by analysing available M tuberculosis isolates and their associated clinical data from individuals routinely diagnosed with rifampicin-resistant tuberculosis in primary care and hospitals in Khayelitsha, Cape Town, South Africa. Isolates were collected as part of a previous study. All individuals diagnosed with rifampicin-resistant tuberculosis and with linked biobanked specimens were included in this study. We applied whole-genome sequencing, Bayesian reconstruction of transmission trees, and phylogenetic multivariable regression analysis to identify individual and bacterial factors associated with the transmission of rifampicin-resistant M tuberculosis strains. FINDINGS: Between Jan 1, 2008, and Dec 31, 2017, 2161 individuals were diagnosed with multidrug-resistant or rifampicin-resistant tuberculosis in Khayelitsha, Cape Town, South Africa. Whole-genome sequences were available for 1168 (54%) unique individual M tuberculosis isolates. Compensatory evolution was associated with smear-positive pulmonary disease (adjusted odds ratio 1·49, 95% CI 1·08-2·06) and a higher number of drug-resistance-conferring mutations (incidence rate ratio 1·38, 95% CI 1·28-1·48). Compensatory evolution was also associated with increased transmission of rifampicin-resistant disease between individuals (adjusted odds ratio 1·55; 95% CI 1·13-2·12), independent of other patient and bacterial factors. INTERPRETATION: Our findings suggest that compensatory evolution enhances the in vivo fitness of drug-resistant M tuberculosis genotypes, both within and between patients, and that the in vitro replicative fitness of rifampicin-resistant M tuberculosis measured in the laboratory correlates with the bacterial fitness measured in clinical settings. These results emphasise the importance of enhancing surveillance and monitoring efforts to prevent the emergence of highly transmissible clones capable of rapidly accumulating new drug resistance mutations. This concern becomes especially crucial at present, because treatment regimens incorporating novel drugs are being implemented. FUNDING: Funding for this study was provided by a Swiss and South Africa joint research award (grant numbers 310030_188888, CRSII5_177163, and IZLSZ3_170834), the European Research Council (grant number 883582), and a Wellcome Trust fellowship (to HC; reference number 099818/Z/12/Z). ZS-D was funded through a PhD scholarship from the South African National Research Foundation and RMW was funded through the South African Medical Research Council.
Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Humanos , Mycobacterium tuberculosis/genética , Rifampina/farmacologia , Rifampina/uso terapêutico , África do Sul/epidemiologia , Teorema de Bayes , Filogenia , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia , Tuberculose Resistente a Múltiplos Medicamentos/genética , GenômicaRESUMO
BACKGROUND: South Africa has a high burden of rifampicin-resistant tuberculosis (including multidrug-resistant [MDR] tuberculosis), with increasing rifampicin-monoresistant (RMR) tuberculosis over time. Resistance acquisition during first-line tuberculosis treatment could be a key contributor to this burden, and HIV might increase the risk of acquiring rifampicin resistance. We assessed whether HIV during previous treatment was associated with RMR tuberculosis and resistance acquisition among a retrospective cohort of patients with MDR or rifampicin-resistant tuberculosis. METHODS: In this retrospective cohort study, we included all patients routinely diagnosed with MDR or rifampicin-resistant tuberculosis in Khayelitsha, Cape Town, South Africa, between Jan 1, 2008, and Dec 31, 2017. Patient-level data were obtained from a prospective database, complemented by data on previous tuberculosis treatment and HIV from a provincial health data exchange. Stored MDR or rifampicin-resistant tuberculosis isolates from patients underwent whole-genome sequencing (WGS). WGS data were used to infer resistance acquisition versus transmission, by identifying genomically unique isolates (single nucleotide polymorphism threshold of five). Logistic regression analyses were used to assess factors associated with RMR tuberculosis and genomic uniqueness. FINDINGS: The cohort included 2041 patients diagnosed with MDR or rifampicin-resistant tuberculosis between Jan 1, 2008, and Dec 31, 2017; of those, 463 (22·7%) with RMR tuberculosis and 1354 (66·3%) with previous tuberculosis treatment. In previously treated patients, HIV positivity during previous tuberculosis treatment versus HIV negativity (adjusted odds ratio [OR] 2·07, 95% CI 1·35-3·18), and three or more previous tuberculosis treatment episodes versus one (1·96, 1·21-3·17) were associated with RMR tuberculosis. WGS data showing MDR or rifampicin-resistant tuberculosis were available for 1169 patients; 360 (30·8%) isolates were identified as unique. In previously treated patients, RMR tuberculosis versus MDR tuberculosis (adjusted OR 4·96, 3·40-7·23), HIV positivity during previous tuberculosis treatment (1·71, 1·03-2·84), and diagnosis in 2013-17 (1·42, 1·02-1·99) versus 2008-12, were associated with uniqueness. In previously treated patients with RMR tuberculosis, HIV positivity during previous treatment (adjusted OR 5·13, 1·61-16·32) was associated with uniqueness as was female sex (2·50 [1·18-5·26]). INTERPRETATION: These data suggest that HIV contributes to rifampicin-resistance acquisition during first-line tuberculosis treatment and that this might be driving increasing RMR tuberculosis over time. Large-scale prospective cohort studies are required to further quantify this risk. FUNDING: Swiss National Science Foundation, South African National Research Foundation, and Wellcome Trust.