Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
J Med Virol ; 96(3): e29551, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38506236

RESUMO

Respiratory Syncytial Virus (RSV) is an important cause of respiratory infection in humans. Severe cases are common in children ≤2 years old, immunocompromised individuals, and the elderly. In 2020, RSV infection reduced in Rio Grande do Sul (RS), southern Brazil; however, in 2021 resurgence of RSV was observed. This study analyzed epidemiological and genetic features of RSV infection cases reported in 2021 in RS. Nasopharyngeal samples collected from individuals with respiratory infection negative for SARS-CoV-2, Influenza A and B viruses were assessed for the presence of RSV by real time RT-qPCR. RSV-A and RSV-B genomic sequencing and phylogenetic reconstructions were performed for genotyping and clade characterization. Among 21,035 respiratory samples analyzed, 2,947 were positive for RSV, 947 of which were hospitalized patients. Positive cases were detected year-round, with the highest number in June-July (winter). Children <1 year comprised 56.28% (n = 533) of the hospitalized patients infected with RSV, whereas 14.46% (n = 137) were individuals >60 years. Of a total of 361 deaths, 14.68% (n = 53) were RSV positive, mostly patients >60 years old (73.58%, n = 39). Chronic kidney disease, cardiopathy, Down syndrome and neurological diseases were associated with RSV infection. RSV-A was identified in 58.5% (n = 117/200) of the patients, and RSV-B in 41.5% (n = 83/200). Of 95 RSV genomes recovered from SARI cases, 66 were RSV-A GA.2.3.5 genotype, while 29 were RSV-B GB.5.0.5a genotype. This study provides epidemiological and molecular data on RSV cases in RS during the COVID-19 pandemic and highlights that investigation of different respiratory viruses is essential for decision-making and disease prevention and control measures.


Assuntos
COVID-19 , Influenza Humana , Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Infecções Respiratórias , Criança , Humanos , Lactente , Idoso , Pré-Escolar , Pessoa de Meia-Idade , Vírus Sincicial Respiratório Humano/genética , Infecções por Vírus Respiratório Sincicial/epidemiologia , Filogenia , Brasil/epidemiologia , Pandemias , COVID-19/epidemiologia , SARS-CoV-2/genética , Influenza Humana/epidemiologia
2.
J Neurovirol ; 29(5): 577-587, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37501054

RESUMO

Patients affected by COVID-19 present mostly with respiratory symptoms but acute neurological symptoms are also commonly observed. Furthermore, a considerable number of individuals develop persistent and often remitting symptoms months after infection, characterizing the condition called long-COVID. Since the pathophysiology of acute and persistent neurological manifestations is not fully established, we evaluated the expression of different genes in hippocampal slices of aged rats exposed to the serum of a post-COVID (sPC) individual and to the serum of patients infected by SARS-CoV-2 [Zeta (sZeta) and Gamma (sGamma) variants]. The expression of proteins related to inflammatory process, redox homeostasis, mitochondrial quality control and glial reactivity was determined. Our data show that the exposure to sPC, sZeta and sGamma differentially altered the mRNA levels of most inflammatory proteins and reduced those of antioxidant response markers in rat hippocampus. Furthermore, a decrease in the expression of mitochondrial biogenesis genes was induced by all serum samples, whereas a reduction in mitochondrial dynamics was only caused by sPC. Regarding the glial reactivity, S100B expression was modified by sPC and sZeta. These findings demonstrate that changes in the inflammatory response and a reduction of mitochondrial biogenesis and dynamics may contribute to the neurological damage observed in COVID-19 patients.


Assuntos
COVID-19 , Humanos , Animais , Ratos , COVID-19/genética , Doenças Neuroinflamatórias , Síndrome de COVID-19 Pós-Aguda , SARS-CoV-2 , Homeostase , Hipocampo
3.
Mem Inst Oswaldo Cruz ; 118: e220259, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37531506

RESUMO

BACKGROUND: Chikungunya is a mosquito-borne virus that has been causing large outbreaks in the Americas since 2014. In Brazil, Asian-Caribbean (AC) and East-Central-South-African (ECSA) genotypes have been detected and lead to large outbreaks in several Brazilian states. In Rio Grande do Sul (RS), the southernmost state of Brazil, the first cases were reported in 2016. OBJECTIVES AND METHODS: We employed genome sequencing and epidemiological investigation to characterise the Chikungunya fever (CHIKF) burden in RS between 2017-2021. FINDINGS: We detected an increasing CHIKF burden linked to travel associated introductions and communitary transmission of distinct lineages of the ECSA genotype during this period. MAIN CONCLUSIONS: Until 2020, CHIKV introductions were most travel associated and transmission was limited. Then, in 2021, the largest outbreak occurred in the state associated with the introduction of a new ECSA lineage. CHIKV outbreaks are likely to occur in the near future due to abundant competent vectors and a susceptible population, exposing more than 11 million inhabitants to an increasing infection risk.


Assuntos
Febre de Chikungunya , Vírus Chikungunya , Animais , Humanos , Vírus Chikungunya/genética , Brasil/epidemiologia , Viagem , Filogenia , Mosquitos Vetores , Surtos de Doenças , Genótipo
4.
Rev Panam Salud Publica ; 47: e61, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37066129

RESUMO

This study describes the case of a health professional infected first by influenza virus A(H3N2) and then by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 11 days later. Respiratory samples and clinical data were collected from the patient and from close contacts. RNA was extracted from samples and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to investigate the viruses. The patient presented with two different illness events: the first was characterized by fever, chest and body pain, prostration and tiredness, which ceased on the ninth day; RT-qPCR was positive only for influenza virus A(H3N2). Eleven days after onset of the first symptoms, the patient presented with sore throat, nasal congestion, coryza, nasal itching, sneezing and coughing, and a second RT-qPCR test was positive only for SARS-CoV-2; in the second event, symptoms lasted for 11 days. SARS-CoV-2 sequencing identified the Omicron BA.1 lineage. Of the patient's contacts, one was coinfected with influenza A(H3N2) and SARS-CoV-2 lineage BA.1.15 and the other two were infected only with SARS-CoV-2, one also with Omicron BA.1.15 and the other with BA.1.1. Our findings reinforce the importance of testing for different viruses in cases of suspected respiratory viral infection during routine epidemiological surveillance because common clinical manifestations of COVID-19 mimic those of other viruses, such as influenza.


Este estudio describe el caso de un profesional de la salud que contrajo la infección primero por el virus de la gripe A (H3N2) y a continuación por el coronavirus 2 del síndrome respiratorio agudo grave (SARS-CoV-2) 11 días después. Se recogieron muestras respiratorias y datos clínicos del paciente y sus contactos cercanos. Se extrajo ARN de muestras y se utilizó la reacción en cadena de la polimerasa cuantitativa con transcripción inversa (RT-qPCR, por su sigla en inglés) para investigar los virus. El paciente presentó dos procesos infecciosos distintos: el primero se caracterizó por fiebre, dolor corporal y torácico, postración y cansancio, que cesó en el noveno día. La prueba mediante RT-qPCR solo fue positiva en el virus de la gripe A (H3N2). Once días después del inicio de los primeros síntomas, el paciente manifestó dolor de garganta, congestión nasal, catarro, picazón nasal, estornudos y tos. Una segunda prueba mediante RT-qPCR solo fue positiva para el SARS-CoV-2 y durante este segundo proceso los síntomas duraron 11 días. La secuenciación del SARS-CoV-2 identificó el linaje ómicron BA.1. De los contactos del paciente, uno presentaba una coinfección por el virus de la gripe A (H3N2) y el linaje BA.1.15 del SARS-COV-2, y los otros dos presentaban infecciones únicamente por SARS-CoV-2, uno también del linaje ómicron BA.1.15 y el otro de BA.1.1. Estos hallazgos refuerzan la importancia de realizar pruebas para detectar diferentes virus en casos de sospecha de infección viral respiratoria durante la vigilancia epidemiológica de rutina porque las manifestaciones clínicas comunes de COVID-19 son similares a las de otros virus, como en el caso de la gripe.


Este estudo descreve o caso de uma profissional de saúde infectada primeiro pelo vírus influenza A (H3N2) e, 11 dias depois, pelo coronavírus da síndrome respiratória aguda grave 2 (SARS-CoV-2). Amostras respiratórias e dados clínicos foram coletados da paciente e de contatos próximos. RNA foi extraído das amostras, e o método de reação em cadeia da polimerase via transcriptase reversa quantitativa (RT-qPCR) foi utilizado para investigar os vírus. A paciente apresentou dois quadros clínicos distintos. O primeiro foi caracterizado por febre, dor no peito e no corpo, prostração e fadiga, que cessou no nono dia. A RT-qPCR foi positiva apenas para o vírus da influenza A (H3N2). Onze dias após o início dos primeiros sintomas, a paciente apresentou dor de garganta, congestão nasal, coriza, prurido nasal, espirros e tosse. Um segundo teste de RT-qPCR foi positivo apenas para SARS-CoV-2. No segundo evento, os sintomas duraram 11 dias. O sequenciamento do SARS-CoV-2 identificou a cepa Ômicron BA.1. Dentre os contatos da paciente, um teve coinfeção por influenza A (H3N2) e SARS-COV-2 (cepa BA.1.15), e os outros dois foram infectados apenas por SARS-CoV-2 (um também pela cepa Ômicron BA.1.15 e o outro pela BA.1.1). Nossos achados reforçam a importância de testes para a detecção de diferentes vírus em casos de suspeita de infecção viral respiratória durante a vigilância epidemiológica de rotina, visto que as manifestações clínicas comuns da COVID-19 imitam as de outros vírus, como o vírus influenza.

5.
Emerg Infect Dis ; 28(12): 2520-2523, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36178142

RESUMO

We evaluated epidemiologic and molecular characteristics of monkeypox virus (MPXV) infections sampled from 2 healthcare nurses. Five days after collecting samples from an infected patient, the nurses showed typical MPXV manifestations; quantitative PCR and whole-genome sequencing confirmed MPXV infection, most likely transmitted through contact with fomites.


Assuntos
Monkeypox virus , Mpox , Humanos , Monkeypox virus/genética , Mpox/diagnóstico , Mpox/epidemiologia , Brasil/epidemiologia , Pessoal de Saúde
6.
Mem Inst Oswaldo Cruz ; 116: e200517, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33729319

RESUMO

Molecular-typing can help in unraveling epidemiological scenarios and improvement for disease control strategies. A literature review of Mycobacterium tuberculosis transmission in Brazil through genotyping on 56 studies published from 1996-2019 was performed. The clustering rate for mycobacterial interspersed repetitive units - variable tandem repeats (MIRU-VNTR) of 1,613 isolates were: 73%, 33% and 28% based on 12, 15 and 24-loci, respectively; while for RFLP-IS6110 were: 84% among prison population in Rio de Janeiro, 69% among multidrug-resistant isolates in Rio Grande do Sul, and 56.2% in general population in São Paulo. These findings could improve tuberculosis (TB) surveillance and set up a solid basis to build a database of Mycobacterium genomes.


Assuntos
Repetições Minissatélites/genética , Mycobacterium tuberculosis/genética , Polimorfismo de Fragmento de Restrição/genética , Técnicas de Tipagem Bacteriana , Brasil/epidemiologia , Genótipo , Humanos , Epidemiologia Molecular , Mycobacterium tuberculosis/isolamento & purificação , Sequenciamento Completo do Genoma
7.
NAR Genom Bioinform ; 6(2): lqae056, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38800829

RESUMO

ViralFlow v1.0 is a computational workflow developed for viral genomic surveillance. Several key changes turned ViralFlow into a general-purpose reference-based genome assembler for all viruses with an available reference genome. New virus-agnostic modules were implemented to further study nucleotide and amino acid mutations. ViralFlow v1.0 runs on a broad range of computational infrastructures, from laptop computers to high-performance computing (HPC) environments, and generates standard and well-formatted outputs suited for both public health reporting and scientific problem-solving. ViralFlow v1.0 is available at: https://viralflow.github.io/index-en.html.

8.
Antibiotics (Basel) ; 13(6)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38927163

RESUMO

The present study aimed to determine the genetic diversity of isolates of Mycobacterium tuberculosis (Mtb) from presumed drug-resistant tuberculosis patients from several states of Brazil. The isolates had been submitted to conventional drug susceptibility testing for first- and second-line drugs. Multidrug-resistant (MDR-TB) (54.8%) was the most frequent phenotypic resistance profile, in addition to an important high frequency of pre-extensive resistance (p-XDR-TB) (9.2%). Using whole-genome sequencing (WGS), we characterized 298 Mtb isolates from Brazil. Besides the analysis of genotype distribution and possible correlations between molecular and clinical data, we determined the performance of an in-house WGS pipeline with other online pipelines for Mtb lineages and drug resistance profile definitions. Sub-lineage 4.3 (52%) was the most frequent genotype, and the genomic approach revealed a p-XDR-TB level of 22.5%. We detected twenty novel mutations in three resistance genes, and six of these were observed in eight phenotypically resistant isolates. A cluster analysis of 170 isolates showed that 43.5% of the TB patients belonged to 24 genomic clusters, suggesting considerable ongoing transmission of DR-TB, including two interstate transmissions. The in-house WGS pipeline showed the best overall performance in drug resistance prediction, presenting the best accuracy values for five of the nine drugs tested. Significant associations were observed between suffering from fatal disease and genotypic p-XDR-TB (p = 0.03) and either phenotypic (p = 0.006) or genotypic (p = 0.0007) ethambutol resistance. The use of WGS analysis improved our understanding of the population structure of MTBC in Brazil and the genetic and clinical data correlations and demonstrated its utility for surveillance efforts regarding the spread of DR-TB, hopefully helping to avoid the emergence of even more resistant strains and to reduce TB incidence and mortality rates.

9.
J Mol Biol ; 436(11): 168577, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38642883

RESUMO

The Red Queen Hypothesis (RQH), derived from Lewis Carroll's "Through the Looking-Glass", postulates that organisms must continually adapt in response to each other to maintain relative fitness. Within the context of host-pathogen interactions, the RQH implies an evolutionary arms race, wherein viruses evolve to exploit hosts and hosts evolve to resist viral invasion. This study delves into the dynamics of the RQH in the context of virus-cell interactions, specifically focusing on virus receptors and cell receptors. We observed multiple virus-host systems and noted patterns of co-evolution. As viruses evolved receptor-binding proteins to effectively engage with cell receptors, cells countered by altering their receptor genes. This ongoing mutual adaptation cycle has influenced the molecular intricacies of receptor-ligand interactions. Our data supports the RQH as a driving force behind the diversification and specialization of both viral and host cell receptors. Understanding this co-evolutionary dance offers insights into the unpredictability of emerging viral diseases and potential therapeutic interventions. Future research is crucial to dissect the nuanced molecular changes and the broader ecological consequences of this ever-evolving battle. Here, we combine phylogenetic inferences, structural modeling, and molecular dynamics analyses to describe the epidemiological characteristics of major Brazilian DENV strains that circulated from 1990 to 2022 from a combined perspective, thus providing us with a more detailed picture on the dynamics of such interactions over time.


Assuntos
Moléculas de Adesão Celular , Vírus da Dengue , Evolução Molecular , Interações Hospedeiro-Patógeno , Receptores de Superfície Celular , Proteínas do Envelope Viral , Envelope Viral , Humanos , Brasil , Moléculas de Adesão Celular/metabolismo , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/química , Dengue/virologia , Vírus da Dengue/genética , Vírus da Dengue/metabolismo , Interações Hospedeiro-Patógeno/genética , Lectinas Tipo C/metabolismo , Lectinas Tipo C/genética , Lectinas Tipo C/química , Simulação de Dinâmica Molecular , Filogenia , Ligação Proteica , Receptores de Superfície Celular/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/química , Receptores Virais/metabolismo , Receptores Virais/química , Receptores Virais/genética , Envelope Viral/metabolismo , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Proteínas do Envelope Viral/química
10.
medRxiv ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38699354

RESUMO

During the ongoing western equine encephalitis virus (WEEV) outbreak in South America, we described three fatal cases in horses from Rio Grande do Sul, Brazil. We sequenced WEEV strains and identified a novel lineage causing these cases. Continued surveillance and horse immunization are needed to mitigate the WEEV burden.

11.
medRxiv ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38798319

RESUMO

Dengue virus (DENV) is currently causing epidemics of unprecedented scope in endemic settings and expanding to new geographical areas. It is therefore critical to track this virus using genomic surveillance. However, the complex patterns of viral genomic diversity make it challenging to use the existing genotype classification system. Here we propose adding two sub-genotypic levels of virus classification, named major and minor lineages. These lineages have high thresholds for phylogenetic distance and clade size, rendering them stable between phylogenetic studies. We present an assignment tool to show that the proposed lineages are useful for regional, national and sub-national discussions of relevant DENV diversity. Moreover, the proposed lineages are robust to classification using partial genome sequences. We provide a standardized neutral descriptor of DENV diversity with which we can identify and track lineages of potential epidemiological and/or clinical importance. Information about our lineage system, including methods to assign lineages to sequence data and propose new lineages, can be found at: dengue-lineages.org.

12.
Artigo em Inglês | MEDLINE | ID: mdl-36700597

RESUMO

BACKGROUND: Brazil has one of the highest numbers of COVID-19 cases and deaths. Rio Grande do Sul (RS) in southern Brazil is one of the leading states in terms of case numbers. As part of the national public health network, the State Central Laboratory (LACEN-RS) changed its routine in 2020 to focus on the diagnosis of COVID-19. This study evaluated the laboratory surveillance of COVID-19 suspected cases analyzed at the LACEN-RS in 2020. METHODS: Viral detection was performed using RT-qPCR in samples from patients with respiratory infection who met the study criteria. Viral RNA was isolated using commercial manual kits or automated extractors, and SARS-CoV-2 RT-qPCR was performed using the Bio-Manguinhos/Rio de Janeiro, IBMP/Paraná, or Allplex 2019-nCoV assay. In total, 360 representative SARS-CoV-2 samples were sequenced using the Illumina platform. RESULTS: In total, 31,197 of 107,578 (positivity rate = 29%) tested positive for SARS-CoV-2. The number of RT-qPCR tests performed per month followed the COVID-19 epidemic curve observed for the state, with peaks in July-August and December. Females accounted for 63% of the samples, whereas the positivity rate was higher among males (33.1% males vs. 26.5% females). The positivity rate was higher in adults aged 50-79 years compared to the overall positivity rate. The majority of cases were observed in the capital, Porto Alegre, and the metropolitan region. Ten distinct lineages were identified, with B.1.1.28, B.1.1.33, and P.2 being the most frequent. CONCLUSIONS: Here, we describe laboratory surveillance of COVID-19 to identify priorities for epidemiological surveillance actions in RS.


Assuntos
COVID-19 , Adulto , Masculino , Feminino , Humanos , COVID-19/diagnóstico , COVID-19/epidemiologia , SARS-CoV-2/genética , Brasil/epidemiologia , Pandemias , Laboratórios
13.
Vaccines (Basel) ; 11(2)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36851091

RESUMO

With the coexistence of multiple lineages and increased international travel, recombination and gene flow are likely to become increasingly important in the adaptive evolution of SARS-CoV-2. These processes could result in genetic introgression and the incipient parallel evolution of multiple recombinant lineages. However, identifying recombinant lineages is challenging, and the true extent of recombinant evolution in SARS-CoV-2 may be underestimated. This study describes the first SARS-CoV-2 Deltacron recombinant case identified in Brazil. We demonstrate that the recombination breakpoint is at the beginning of the Spike gene. The 5' genome portion (circa 22 kb) resembles the AY.101 (Delta), and the 3' genome portion (circa 8 kb nucleotides) is most similar to the BA.1.1 (Omicron). Furthermore, evolutionary genomic analyses indicate that the new strain emerged after a single recombination event between lineages of diverse geographical locations in December 2021 in South Brazil. This Deltacron, AYBA-RS, is one of the dozens of recombinants described in 2022. The submission of only four sequences in the GISAID database suggests that this lineage had a minor epidemiological impact. However, the recent emergence of this and other Deltacron recombinant lineages (XD, XF, and XS) suggests that gene flow and recombination may play an increasingly important role in the COVID-19 pandemic. We explain the evolutionary and population genetic theory that supports this assertion, concluding that this stresses the need for continued genomic surveillance. This monitoring is vital for countries where multiple variants are present, as well as for countries that receive significant inbound international travel.

14.
Microorganisms ; 11(12)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38138081

RESUMO

Mutations in the SARS-CoV-2 genome can alter the virus' fitness, leading to the emergence of variants of concern (VOC). In Brazil, the Gamma variant dominated the pandemic in the first half of 2021, and from June onwards, the first cases of Delta infection were documented. Here, we investigate the introduction and dispersal of the Delta variant in the RS state by sequencing 1077 SARS-CoV-2-positive samples from June to October 2021. Of these samples, 34.7% were identified as Gamma and 65.3% as Delta. Notably, 99.2% of Delta sequences were clustered within the 21J lineage, forming a significant Brazilian clade. The estimated clock rate was 5.97 × 10-4 substitutions per site per year. The Delta variant was first reported on 17 June in the Vinhedos Basalto microregion and rapidly spread, accounting for over 70% of cases within nine weeks. Despite this, the number of cases and deaths remained stable, possibly due to vaccination, prior infections, and the continued mandatory mask use. In conclusion, our study provides insights into the Delta variant circulating in the RS state, highlighting the importance of genomic surveillance for monitoring viral evolution, even when the impact of new variants may be less severe in a given region.

15.
Virus Evol ; 9(2): vead059, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38288387

RESUMO

Dengue virus serotype 2, genotype Cosmopolitan (DENV-2-GII), is one of the most widespread DENV strains globally. In the USA, DENV-2 epidemics have been dominated by DENV-2 genotype Asian-American (DENV-2-GIII), and the first cases of DENV-2-GII were only described in 2019, in Peru, and in 2021 in Brazil. To gain new information about the circulation of DENV-2-GII in Brazil, we sequenced 237 DENV-2 confirmed cases sampled between March 2021 and March 2023 and revealed that DENV-2-GII is already present in all geographic regions of Brazil. The phylogeographic analysis inferred that DENV-2-GII was introduced at least four times in Brazil, between May 2020 and August 2022, generating multiple clades that spread throughout the country with different success. Despite multiple introductions of DENV-2-GII, analysis of the country-wide laboratory surveillance data showed that the Brazilian dengue epidemic in 2022 was dominated by DENV-1 in most states. We hypothesize that massive circulation of DENV-2-GIII in previous years in Brazil might have created a population immune barrier against symptomatic homotypic reinfections by DENV-2-GII, leading to sustained cryptic circulation in asymptomatic cases and localized outbreaks of this new genotype. In summary, our study stresses the importance of arboviral genomic surveillance to close monitoring and better understanding the potential impact of DENV-2-GII in the coming years.

16.
Front Med (Lausanne) ; 9: 1008600, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36250091

RESUMO

Recombination events have been described in the Coronaviridae family. Since the beginning of the SARS-CoV-2 pandemic, a variable degree of selection pressure has acted upon the virus, generating new strains with increased fitness in terms of viral transmission and antibody scape. Most of the SC2 variants of concern (VOC) detected so far carry a combination of key amino acid changes and indels. Recombination may also reshuffle existing genetic profiles of distinct strains, potentially giving origin to recombinant strains with altered phenotypes. However, co-infection and recombination events are challenging to detect and require in-depth curation of assembled genomes and sequencing reds. Here, we present the molecular characterization of a new SARS-CoV-2 recombinant between BA.1.1 and BA.2.23 Omicron lineages identified in Brazil. We characterized four mutations that had not been previously described in any of the recombinants already identified worldwide and described the likely breaking points. Moreover, through phylogenetic analysis, we showed that the newly named XAG lineage groups in a highly supported monophyletic clade confirmed its common evolutionary history from parental Omicron lineages and other recombinants already described. These observations were only possible thanks to the joint effort of bioinformatics tools auxiliary in genomic surveillance and the manual curation of experienced personnel, demonstrating the importance of genetic, and bioinformatic knowledge in genomics.

17.
Microb Genom ; 8(3)2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35297757

RESUMO

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has infected almost 200 million people worldwide by July 2021 and the pandemic has been characterized by infection waves of viral lineages showing distinct fitness profiles. The simultaneous infection of a single individual by two distinct SARS-CoV-2 lineages may impact COVID-19 disease progression and provides a window of opportunity for viral recombination and the emergence of new lineages with differential phenotype. Several hundred SARS-CoV-2 lineages are currently well phylogenetically defined, but two main factors have precluded major coinfection/codetection and recombination analysis thus far: (i) the low diversity of SARS-CoV-2 lineages during the first year of the pandemic, which limited the identification of lineage defining mutations necessary to distinguish coinfecting/recombining viral lineages; and the (ii) limited availability of raw sequencing data where abundance and distribution of intrasample/intrahost variability can be accessed. Here, we assembled a large sequencing dataset from Brazilian samples covering a period of 18 May 2020 to 30 April 2021 and probed it for unexpected patterns of high intrasample/intrahost variability. This approach enabled us to detect nine cases of SARS-CoV-2 coinfection with well characterized lineage-defining mutations, representing 0.61 % of all samples investigated. In addition, we matched these SARS-CoV-2 coinfections with spatio-temporal epidemiological data confirming its plausibility with the cocirculating lineages at the timeframe investigated. Our data suggests that coinfection with distinct SARS-CoV-2 lineages is a rare phenomenon, although it is certainly a lower bound estimate considering the difficulty to detect coinfections with very similar SARS-CoV-2 lineages and the low number of samples sequenced from the total number of infections.


Assuntos
COVID-19/virologia , Coinfecção/virologia , SARS-CoV-2/genética , Superinfecção/virologia , Brasil , Genoma Viral , Humanos , Mutação , Filogenia , Polimorfismo de Nucleotídeo Único
18.
Infect Genet Evol ; 96: 105107, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34634381

RESUMO

Mycobacterium tuberculosis has a complex cell wall containing mycolic acids (MA), which play an important role in pathogenesis, virulence, and survival by protecting the cell against harsh environments. Studies have shown that genes encoding enzymes involved in MA synthesis are essential to mycobacterial functionality. Here, we used whole-genome sequencing to evaluate mutations in genes related to MA metabolism in M. tuberculosis isolates from pulmonary tuberculosis patients of the Florianópolis Metropolitan Area, Santa Catarina, Brazil, and assessed associations with clinical, epidemiological, and genotypic data. The mutations Rv3057c Asp112Ala (104/151), Rv3720 His70Arg (104/151), and Rv3802c Val50Phe (105/151) were identified in about 69% of the isolates and were related to the LAM lineage. SIT 216/LAM5 (13.2%, 20/151) had the highest frequency and presented the mutations accD2 Lys23Glu, kasA Gly269Ser, mmaA4 Asn165Ser, otsB1 Asp617Asn, Rv3057c Asp112Ala, Rv3720 His70Arg, Rv3802c Val50Phe, and tgs4 Ala216Glu. All SIT 73/T isolates (6.6%, 10/151) showed a characteristic and exclusive gene mutation pattern: amiD Rv3376 3790075G > A, fbpA-aftB 4266941G > A, echA11 Asn220fs, and otsB2 Ser110Arg. SITs 20/LAM1, 64/LAM6, 50/H3, 137/X2, and 119/X1 were also related to specific mutations. SITs from the LAM lineage differed in mutation profile from those of the T, Haarlem, and X lineages. Isolates from patients who had treatment failure showed mutations that do not seem to have a pattern related to this outcome. It was possible to identify a broad repertoire of single-nucleotide polymorphisms in genes related to MA metabolism in M. tuberculosis isolates. This study also described, for the first time, the variability between different SITs/sublineages of Lineage 4 circulating in Florianópolis Metropolitan Area.


Assuntos
Genoma Bacteriano , Mycobacterium tuberculosis/genética , Ácidos Micólicos/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Brasil , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mycobacterium tuberculosis/metabolismo , Tuberculose/microbiologia , Adulto Jovem
19.
Infect Genet Evol ; 96: 105144, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34798321

RESUMO

Genomic surveillance of SARS-CoV-2 is paramount for understanding viral dynamics, contributing to disease control. This study analyzed SARS-CoV-2 genomic diversity in Rio Grande do Sul (RS), Brazil, including the first reported case in each Regional Health Coordination and cases from three epidemic peaks. Ninety SARS-CoV-2 genomes from RS were sequenced and analyzed through comparison with SARS-CoV-2 datasets available in GISAID for phylogenetic inference and mutation analysis. Among the first reported cases, we found the following lineages: B.1 (33.3%), B.1.1.28 (26.7%), B.1.1 (13.3%), B.1.1.33 (10.0%), and A (6.7%), evidencing SARS-CoV-2 introduction by both international origin and community-driven transmission. We found predominance of B.1.1.33 (50.0%) and B.1.1.28 (35.0%) during the first epidemic peak (July-August 2020), emergence of P.2 (55.6%) in the second peak (November-December 2020), and massive spread of P.1 and related sequences (78.4%), such as P.1-like-II, P.1.1 and P.1.2 in the third peak (February-April, 2021). Eighteen novel mutation combinations were found among P.1 genomes, and 22 different spike mutations and/or deletions among P.1 and related sequences. This study shows the dispersion of SARS-CoV-2 lineages in Southern Brazil and describes SARS-CoV-2 diversity during three epidemic peaks, highlighting the spread of P.1 and the high genetic diversity of currently circulating lineages. Genomic monitoring of SARS-CoV-2 is essential to guide health authorities' decisions to control COVID-19 in Brazil.


Assuntos
COVID-19/epidemiologia , COVID-19/virologia , Filogenia , SARS-CoV-2/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Brasil/epidemiologia , COVID-19/transmissão , Criança , Pré-Escolar , Cidades/epidemiologia , Feminino , Genoma Viral , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Mutação , SARS-CoV-2/isolamento & purificação , Glicoproteína da Espícula de Coronavírus/genética , Proteínas Virais/genética , Adulto Jovem
20.
Int J Antimicrob Agents ; 58(4): 106401, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34289403

RESUMO

Genomic-based surveillance on the occurrence of drug resistance and its transmission dynamics has emerged as a powerful tool for the control of tuberculosis (TB). A whole-genome sequencing approach, phenotypic testing and clinical-epidemiological investigation were used to undertake a retrospective population-based study on drug-resistant (DR)-TB in Rio Grande do Sul, the largest state in Southern Brazil. The analysis included 305 resistant Mycobacterium tuberculosis strains sampled statewide from 2011 to 2014, and covered 75.7% of all DR-TB cases identified in this period. Lineage 4 was found to be predominant (99.3%), with high sublineage-level diversity composed mainly of 4.3.4.2 [Latin American and Mediterranean (LAM)/RD174], 4.3.3 (LAM/RD115) and 4.1.2.1 (Haarlem/RD182) sublineages. Genomic diversity was also reflected in resistance of the variants to first-line drugs. A large number of distinct resistance-conferring mutations, including variants that have not been reported previously in any other setting worldwide, and 22 isoniazid-monoresistant strains with mutations described as disputed in the rpoB gene but causing rifampicin resistance generally missed by automated phenotypic tests as BACTEC MGIT. Using a cut-off of five single nucleotide polymorphisms, the estimated recent transmission rate was 55.1%, with 168 strains grouped into 28 genomic clusters. The most worrying fact concerns multi-drug-resistant (MDR) strains, of which 73.4% were clustered. Different resistance profiles and acquisition of novel mutations intraclusters revealed important amplification of resistance in the region. This study described the diversity of M. tuberculosis strains, the basis of drug resistance, and ongoing transmission dynamics across the largest state in Southern Brazil, stressing the urgent need for MDR-TB transmission control state-wide.


Assuntos
Antibióticos Antituberculose/uso terapêutico , Proteínas de Bactérias/genética , RNA Polimerases Dirigidas por DNA/genética , Farmacorresistência Bacteriana Múltipla/genética , Mycobacterium tuberculosis/efeitos dos fármacos , Tuberculose Resistente a Múltiplos Medicamentos/genética , Tuberculose Resistente a Múltiplos Medicamentos/transmissão , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Antituberculosos/uso terapêutico , Brasil/epidemiologia , Perfilação da Expressão Gênica , Genoma Bacteriano/genética , Humanos , Isoniazida/uso terapêutico , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Mycobacterium tuberculosis/genética , Polimorfismo de Nucleotídeo Único/genética , Estudos Retrospectivos , Rifampina/uso terapêutico , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia , Sequenciamento Completo do Genoma , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA