Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Emerg Infect Dis ; 30(7): 1467-1471, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38916721

RESUMO

We detected malaria vector Anopheles stephensi mosquitoes in the Al Hudaydah governorate in Yemen by using DNA sequencing. We report 2 cytochrome c oxidase subunit I haplotypes, 1 previously found in Ethiopia, Somalia, Djibouti, and Yemen. These findings provide insight into invasive An. stephensi mosquitoes in Yemen and their connection to East Africa.


Assuntos
Anopheles , Mosquitos Vetores , Animais , Anopheles/genética , Anopheles/parasitologia , Anopheles/classificação , Iêmen , Mosquitos Vetores/genética , Humanos , Complexo IV da Cadeia de Transporte de Elétrons/genética , Haplótipos , Malária/transmissão , Malária/epidemiologia , Filogenia
2.
Mol Ecol ; 32(21): 5695-5708, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37795951

RESUMO

Anopheles stephensi invasion in the Horn of Africa (HoA) poses a substantial risk of increased malaria disease burden in the region. An understanding of the history of introduction(s), establishment(s) and potential A. stephensi sources in the HoA is needed to predict future expansions and establish where they may be effectively controlled. To this end, we take a landscape genomic approach to assess A. stephensi origins and spread throughout the HoA, information essential for vector control. Specifically, we assayed 2070 genome-wide single nucleotide polymorphisms across 214 samples spanning 13 populations of A. stephensi from Ethiopia and Somaliland collected in 2018 and 2020, respectively. Principal component and genetic ancestry analyses revealed clustering that followed an isolation-by-distance pattern, with genetic divergence among the Ethiopian samples significantly correlating with geographical distance. Additionally, genetic relatedness was observed between the northeastern and east central Ethiopian A. stephensi populations and the Somaliland A. stephensi populations. These results reveal population differentiation and genetic connectivity within HoA A. stephensi populations. Furthermore, based on genetic network analysis, we uncovered that Dire Dawa, the site of a spring 2022 malaria outbreak, was one of the major hubs from which sequential founder events occurred in the rest of the eastern Ethiopian region. These findings can be useful for the selection of sites for heightened control to prevent future malaria outbreaks. Finally, we did not detect significant genotype-environmental associations, potentially due to the recency of their colonization and/or other anthropogenic factors leading to the initial spread and establishment of A. stephensi. Our study highlights how coupling genomic data at landscape levels can shed light into even ongoing invasions.


Assuntos
Anopheles , Malária , Animais , Humanos , Anopheles/genética , Mosquitos Vetores/genética , Redes Reguladoras de Genes , Metagenômica , Malária/epidemiologia , Malária/genética , Genômica , Etiópia
3.
Trends Parasitol ; 40(6): 477-486, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38755024

RESUMO

Anopheles stephensi is an invasive malaria vector in Africa that has been implicated in malaria outbreaks in the Horn of Africa. In 10 years, it has been detected as far east as Djibouti and as far west as Ghana. Early detections were mostly incidental, but now active surveillance in Africa has been updated to include An. stephensi. Morphological identification of An. stephensi from native vectors can be challenging, thus, sequence-based assays have been used to confirm identification during initial detections. Methods of sequence-based identification of An. stephensi have varied across initial detections to date. Here, we summarize initial detections, make suggestions that could provide a standardized approach, and discuss how sequences can inform additional genomic studies beyond species identification.


Assuntos
Anopheles , Mosquitos Vetores , Anopheles/genética , Anopheles/classificação , Animais , Mosquitos Vetores/genética , Espécies Introduzidas , Malária/prevenção & controle , Malária/transmissão , África
4.
Parasit Vectors ; 15(1): 247, 2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35804441

RESUMO

Malaria control in Somaliland depends on the effective identification of potential malaria vectors, particularly those that may be invasive. The malaria vector Anopheles stephensi has been detected in multiple countries in the Horn of Africa (HOA), but data on its geographic distribution and population genetic diversity are incomplete. We implemented a vector surveillance program and performed molecular analysis of Anopheles in three urban areas in Somaliland. Our study confirmed the presence of both the invasive An. stephensi and the long-established HOA malaria vector Anopheles arabiensis. Further analysis of An. stephensi genetic diversity revealed three cytochrome oxidase I (COI) haplotypes, all of which have been observed in other countries in East Africa and one also observed in South Asia. We also detected the knockdown resistance (kdr) L1014F mutation, which is associated with pyrethroid resistance; this finding supports the need for further assessment of the potential for insecticide resistance. The detection of multiple haplotypes previously observed in other regions of East Africa indicates that An. stephensi is an established population in Somaliland and likely shares its origin with other newly identified An. stephensi populations in East Africa. The detection of genetic diversity in An. stephensi in Somaliland provides a basis for future studies on the history of the species in the region and its dispersal throughout East Africa.


Assuntos
Anopheles , Inseticidas , Malária , Animais , Anopheles/genética , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Mosquitos Vetores/genética , Mutação
5.
Infect Genet Evol ; 99: 105235, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35123054

RESUMO

Anopheles stephensi is a malaria vector that has been recently introduced into East Africa, where it threatens to increase malaria disease burden. The use of insecticides, especially pyrethroids, is still one of the primary malaria vector control strategies worldwide. The knockdown resistance (kdr) mutation in the IIS6 transmembrane segment of the voltage-gated sodium channel (vgsc) is one of the main molecular mechanisms of pyrethroid resistance in Anopheles. Extensive pyrethroid resistance in An. stephensi has been previously reported in Ethiopia. Thus, it is important to determine whether or not the kdr mutation is present in An. stephensi populations in Ethiopia to inform vector control strategies. In the present study, the kdr locus was analyzed in An. stephensi collected from ten urban sites (Awash Sebat Kilo, Bati, Dire Dawa, Degehabur, Erer Gota, Godey, Gewane, Jigjiga, Semera, and Kebridehar) situated in Somali, Afar, and Amhara regions, and Dire Dawa Administrative City, to evaluate the frequency and evolution of kdr mutations and the association of the mutation with permethrin resistance phenotypes. Permethrin is one of the pyrethroid insecticides used for vector control in eastern Ethiopia. DNA extractions were performed on adult mosquitoes from CDC light trap collections and those raised from larval and pupal collections. PCR and targeted sequencing were used to analyze the IIS6 transmembrane segment of the vgsc gene. Of 159 An. stephensi specimens analyzed from the population survey, nine (5.7%) carried the kdr mutation (L1014F). An. stephensi with kdr mutations were only observed from Bati, Degehabur, Dire Dawa, Gewane, and Semera. We further selected randomly twenty resistant and twenty susceptible An. stephensi mosquitoes from Dire Dawa post-exposure to permethrin and investigated the role of kdr in pyrethroid resistance by comparing the vgsc gene in the two populations. We found no kdr mutations in the permethrin-resistant mosquitoes. Population genetic analysis of the sequences, including neighboring introns, revealed limited evidence of non-neutral evolution (e.g., selection) at this locus. The low kdr mutation frequency detected and the lack of kdr mutation in the permethrin-resistant mosquitoes suggest the existence of other molecular mechanisms of pyrethroid resistance in eastern Ethiopian An. stephensi.


Assuntos
Anopheles , Inseticidas , Malária , Piretrinas , Animais , Anopheles/genética , Etiópia , Genética Populacional , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Malária/prevenção & controle , Mosquitos Vetores/genética , Mutação , Permetrina , Piretrinas/farmacologia
6.
Parasit Vectors ; 14(1): 602, 2021 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-34895319

RESUMO

BACKGROUND: The recent detection of the South Asian malaria vector Anopheles stephensi in the Horn of Africa (HOA) raises concerns about the impact of this mosquito on malaria transmission in the region. Analysis of An. stephensi genetic diversity and population structure can provide insight into the history of the mosquito in the HOA to improve predictions of future spread. We investigated the genetic diversity of An. stephensi in eastern Ethiopia, where detection suggests a range expansion into this region, in order to understand the history of this invasive population. METHODS: We sequenced the cytochrome oxidase subunit I (COI) and cytochrome B gene (CytB) in 187 An. stephensi collected from 10 sites in Ethiopia in 2018. Population genetic, phylogenetic, and minimum spanning network analyses were conducted for Ethiopian sequences. Molecular identification of blood meal sources was also performed using universal vertebrate CytB sequencing. RESULTS: Six An. stephensi COI-CytB haplotypes were observed, with the highest number of haplotypes in the northeastern sites (Semera, Bati, and Gewana towns) relative to the southeastern sites (Kebridehar, Godey, and Degehabur) in eastern Ethiopia. We observed population differentiation, with the highest differentiation between the northeastern sites compared to central sites (Erer Gota, Dire Dawa, and Awash Sebat Kilo) and the southeastern sites. Phylogenetic and network analysis revealed that the HOA An. stephensi are more genetically similar to An. stephensi from southern Asia than from the Arabian Peninsula. Finally, molecular blood meal analysis revealed evidence of feeding on cows, goats, dogs, and humans, as well as evidence of multiple (mixed) blood meals. CONCLUSION: We show that An. stephensi is genetically diverse in Ethiopia and with evidence of geographical structure. Variation in the level of diversity supports the hypothesis for a more recent introduction of An. stephensi into southeastern Ethiopia relative to the northeastern region. We also find evidence that supports the hypothesis that HOA An. stephensi populations originate from South Asia rather than the Arabian Peninsula. The evidence of both zoophagic and anthropophagic feeding support the need for additional investigation into the potential for livestock movement to play a role in vector spread in this region.


Assuntos
Anopheles/genética , Variação Genética , Malária/transmissão , Mosquitos Vetores/genética , Animais , Citocromos b/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Etiópia , Genética Populacional , Haplótipos , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA