Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Lab Invest ; 102(11): 1236-1244, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35907952

RESUMO

Given the gut microbiome's rise as a potential frontier in cancer pathogenesis and therapy, leveraging microbial analyses in the study of breast tumor progression and treatment could unveil novel interactions between commensal bacteria and disease outcomes. In breast cancer, the Hedgehog (Hh) signaling pathway is a potential target for treatment due to its aberrant activation leading to poorer prognoses and drug resistance. There are limited studies that have investigated the influences of orally administered cancer therapeutics, such as Vismodegib (a pharmacological, clinically used Hh inhibitor) on the gut microbiota. Using a 4T1 mammary carcinoma mouse model and 16 S rRNA sequencing, we longitudinally mapped alterations in immunomodulating gut microbes during mammary tumor development. Next, we identified changes in the abundance of commensal microbiota in response to Vismodegib treatment of 4T1 mammary tumor-bearing mice. In addition to remodeling gut microbiota, Vismodegib treatment elicited an increase in proliferative CD8+ T cells in the colonic immune network, without any remarkable gastrointestinal-associated side effects. To our knowledge, this is the first study to assess longitudinal changes in the gut microbiome during mammary tumor development and progression. Our study also pioneers an investigation of the dynamic effects of an orally delivered Hh inhibitor on the gut microbiome and the gut-associated immune-regulatory adaptive effector CD8+ T cells. These findings inform future comprehensive studies on the consortium of altered microbes that can impact potential systemic immunomodulatory roles of Vismodegib.


Assuntos
Carcinoma , Microbioma Gastrointestinal , Camundongos , Animais , Microbioma Gastrointestinal/fisiologia , Proteínas Hedgehog , Linfócitos T CD8-Positivos , Modelos Animais de Doenças
2.
Nucleic Acids Res ; 48(18): 10342-10352, 2020 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-32894284

RESUMO

Ribosomal DNA (rDNA) consists of highly repeated sequences that are prone to incurring damage. Delays or failure of rDNA double-strand break (DSB) repair are deleterious, and can lead to rDNA transcriptional arrest, chromosomal translocations, genomic losses, and cell death. Here, we show that the zinc-finger transcription factor GLI1, a terminal effector of the Hedgehog (Hh) pathway, is required for the repair of rDNA DSBs. We found that GLI1 is activated in triple-negative breast cancer cells in response to ionizing radiation (IR) and localizes to rDNA sequences in response to both global DSBs generated by IR and site-specific DSBs in rDNA. Inhibiting GLI1 interferes with rDNA DSB repair and impacts RNA polymerase I activity and cell viability. Our findings tie Hh signaling to rDNA repair and this heretofore unknown function may be critically important in proliferating cancer cells.


Assuntos
DNA Ribossômico/genética , Proteínas Hedgehog/genética , RNA Polimerase I/genética , Neoplasias de Mama Triplo Negativas/radioterapia , Proteína GLI1 em Dedos de Zinco/genética , Proteínas de Ciclo Celular/genética , Nucléolo Celular/genética , Nucléolo Celular/efeitos da radiação , Proliferação de Células/efeitos da radiação , Sobrevivência Celular/efeitos da radiação , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Dano ao DNA/efeitos da radiação , Reparo do DNA/efeitos da radiação , DNA Ribossômico/efeitos da radiação , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/efeitos da radiação , Humanos , RNA Polimerase I/efeitos da radiação , Radiação Ionizante , Ribossomos/genética , Ribossomos/efeitos da radiação , Transdução de Sinais/efeitos da radiação , Transcrição Gênica/genética , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia
3.
Lab Invest ; 101(11): 1439-1448, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34267320

RESUMO

The nucleolus of a cell is a critical cellular compartment that is responsible for ribosome biogenesis and plays a central role in tumor progression. Fisetin, a nutraceutical, is a naturally occurring flavonol from the flavonoid group of polyphenols that has anti-cancer effects. Fisetin negatively impacts several signaling pathways that support tumor progression. However, effect of fisetin on the nucleolus and its functions were unknown. We observed that fisetin is able to physically enter the nucleolus. In the nucleolus, RNA polymerase I (RNA Pol I) mediates the biogenesis of ribosomal RNA. Thus, we investigated the impacts of fisetin on the nucleolus. We observed that breast tumor cells treated with fisetin show a 20-30% decreased nucleolar abundance per cell and a 30-60% downregulation of RNA Pol I transcription activity, as well as a 50-70% reduction in nascent rRNA synthesis, depending on the cell line. Our studies show that fisetin negatively influences MAPK/ERK pathway to impair RNA Pol I activity and rRNA biogenesis. Functionally, we demonstrate that fisetin acts synergistically (CI = 0.4) with RNA Pol I inhibitor, BMH-21 and shows a noteworthy negative impact (60% decrease) on lung colonization of breast cancer cells. Overall, our findings highlight the potential of ribosomal RNA (rRNA) biogenesis as a target for secondary prevention and possible treatment of metastatic disease.


Assuntos
Nucléolo Celular/efeitos dos fármacos , Flavonóis/uso terapêutico , Neoplasias Pulmonares/prevenção & controle , RNA Polimerase I/antagonistas & inibidores , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Sinergismo Farmacológico , Flavonas/farmacologia , Flavonas/uso terapêutico , Flavonóis/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Compostos Heterocíclicos de 4 ou mais Anéis/uso terapêutico , Humanos , Neoplasias Pulmonares/secundário , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , RNA Ribossômico/biossíntese
4.
Cell Mol Life Sci ; 76(22): 4511-4524, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31338556

RESUMO

The nucleolus is a sub-nuclear body known primarily for its role in ribosome biogenesis. Increased number and/or size of nucleoli have historically been used by pathologists as a prognostic indicator of cancerous lesions. This increase in nucleolar number and/or size is classically attributed to the increased need for protein synthesis in cancer cells. However, evidences suggest that the nucleolus plays critical roles in many cellular functions in both normal cell biology and disease pathologies, including cancer. As new functions of the nucleolus are elucidated, there is mounting evidence to support the role of the nucleolus in regulating additional cellular functions, particularly response to cellular stressors, maintenance of genome stability, and DNA damage repair, as well as the regulation of gene expression and biogenesis of several ribonucleoproteins. This review highlights the central role of the nucleolus in carcinogenesis and cancer progression and discusses how cancer cells may become "addicted" to nucleolar functions.


Assuntos
Nucléolo Celular/fisiologia , Neoplasias/patologia , Animais , Carcinogênese/patologia , Dano ao DNA/fisiologia , Reparo do DNA/fisiologia , Progressão da Doença , Instabilidade Genômica/fisiologia , Humanos
5.
Lab Invest ; 99(2): 260-270, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30420690

RESUMO

Modification of proteins by O-linked ß-N-acetylglucosamine (O-GlcNAc) promotes tumor cell survival, proliferation, epigenetic changes, angiogenesis, invasion, and metastasis. Here we demonstrate that in conditions of elevated glucose, there is increased expression of key drug resistance proteins (ABCB1, ABCG2, ERCC1, and XRCC1), all of which are regulated by the Hedgehog pathway. In elevated glucose conditions, we determined that the Hedgehog pathway transcription factors, GLI1 and GLI2, are modified by O-GlcNAcylation. This modification functionally enhanced their transcriptional activity. The activity of GLI was enhanced when O-GlcNAcase was inhibited, while inhibiting O-GlcNAc transferase caused a decrease in GLI activity. The metabolic impact of hyperglycemic conditions impinges on maintaining PKM2 in the less active state that facilitates the availability of glycolytic intermediates for biosynthetic pathways. Interestingly, under elevated glucose conditions, PKM2 directly influenced GLI activity. Specifically, abrogating PKM2 expression caused a significant decline in GLI activity and expression of drug resistance proteins. Cumulatively, our results suggest that elevated glucose conditions upregulate chemoresistance through elevated transcriptional activity of the Hedgehog/GLI pathway. Interfering in O-GlcNAcylation of the GLI transcription factors may be a novel target in controlling cancer progression and drug resistance of breast cancer.


Assuntos
Acetilglucosamina/metabolismo , Glucose/metabolismo , Proteínas Hedgehog/metabolismo , N-Acetilglucosaminiltransferases/metabolismo , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Humanos , Hiperglicemia , Proteínas de Membrana/metabolismo , Hormônios Tireóideos/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Ligação a Hormônio da Tireoide
6.
Carcinogenesis ; 39(9): 1165-1175, 2018 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-29893810

RESUMO

The NF2 gene encodes the tumor and metastasis suppressor protein Merlin. Merlin exerts its tumor suppressive role by inhibiting proliferation and inducing contact-growth inhibition and apoptosis. In the current investigation, we determined that loss of Merlin in breast cancer tissues is concordant with the loss of the inhibitory SMAD, SMAD7, of the TGF-ß pathway. This was reflected as dysregulated activation of TGF-ß signaling that co-operatively engaged with effectors of the Hippo pathway (YAP/TAZ/TEAD). As a consequence, the loss of Merlin in breast cancer resulted in a significant metabolic and bioenergetic adaptation of cells characterized by increased aerobic glycolysis and decreased oxygen consumption. Mechanistically, we determined that the co-operative activity of the Hippo and TGF-ß transcription effectors caused upregulation of the long non-coding RNA Urothelial Cancer-Associated 1 (UCA1) that disengaged Merlin's check on STAT3 activity. The consequent upregulation of Hexokinase 2 (HK2) enabled a metabolic shift towards aerobic glycolysis. In fact, Merlin deficiency engendered cellular dependence on this metabolic adaptation, endorsing a critical role for Merlin in regulating cellular metabolism. This is the first report of Merlin functioning as a molecular restraint on cellular metabolism. Thus, breast cancer patients whose tumors demonstrate concordant loss of Merlin and SMAD7 may benefit from an approach of incorporating STAT3 inhibitors.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Glicólise/genética , Neurofibromina 2/genética , Proteínas Serina-Treonina Quinases/genética , Proteína Smad7/genética , Apoptose/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Inibição de Contato/genética , Genes Supressores de Tumor , Hexoquinase/biossíntese , Via de Sinalização Hippo , Humanos , Células MCF-7 , Neurofibromina 2/deficiência , Consumo de Oxigênio/genética , RNA Longo não Codificante/biossíntese , Fator de Transcrição STAT3/metabolismo , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo
7.
Int J Cancer ; 139(3): 491-500, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-26874464

RESUMO

N-myc & STAT Interactor, NMI, is a protein that has mostly been studied for its physical interactions with transcription factors that play critical roles in tumor growth, progression and metastasis. NMI is an inducible protein, thus its intracellular levels and location can vary dramatically, influencing a diverse array of cellular functions in a context-dependent manner. The physical interactions of NMI with its binding partners have been linked to many aspects of tumor biology including DNA damage response, cell death, epithelial-to-mesenchymal transition and stemness. Thus, discovering more details about the function(s) of NMI could reveal key insights into how transcription factors like c-Myc, STATs and BRCA1 are contextually regulated. Although a normal, physiological function of NMI has not yet been discovered, it has potential roles in pathologies ranging from viral infection to cancer. This review provides a timely perspective of the unfolding roles of NMI with specific focus on cancer progression and metastasis.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias/etiologia , Neoplasias/metabolismo , Animais , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Humanos , Metástase Neoplásica , Neoplasias/patologia , Ligação Proteica , Transdução de Sinais
8.
Gastroenterology ; 149(7): 1825-1836.e5, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26302489

RESUMO

BACKGROUND & AIMS: The DnaJ (Hsp40) homolog, subfamily B, member 6 (DNAJB6) is part of a family of proteins that regulates chaperone activities. One of its isoforms, DNAJB6a, contains a nuclear localization signal and regulates ß-catenin signaling during breast cancer development. We investigated the role of DNAJB6 in the pathogenesis of esophageal squamous cell carcinoma (ESCC). METHODS: We performed immunohistochemical analyses of primary ESCC samples and lymph node metastases from a cohort of 160 patients who underwent esophagectomy with no preoperative chemoradiotherapy at Hong Kong Queen Mary Hospital. Data were collected on patient outcomes over a median time of 12.1 ± 2.9 months. Retrospective survival association analyses were performed. Wild-type and mutant forms of DNAJB6a were overexpressed in cancer cell lines (KYSE510, KYSE 30TSI, KYSE140, and KYSE70TS), which were analyzed in proliferation and immunoblot assays, or injected subcutaneously into nude mice. Levels of DNAJB6 were knocked down in ESCC cell lines (KYSE450 and T.Tn), immortalized normal esophageal epithelial cell lines (NE3 and NE083), and other cells with short hairpin RNAs, or by genome engineering. Bimolecular fluorescence complementation was used to study interactions between proteins in living cells. RESULTS: In primary ESCC samples, patients whose tumors had high nuclear levels of DNAJB6 had longer overall survival times (19.2 ± 1.8 months; 95% confidence interval [CI], 15.6-22.8 mo) than patients whose tumors had low nuclear levels of DNAJB6 (12.6 ± 1.4 mo; 95% CI, 9.8-15.4 mo; P = .004, log-rank test). Based on Cox regression analysis, patients whose tumors had high nuclear levels of DNAJB6 had a lower risk of death than patients with low levels (hazard ratio, 0.562; 95% CI, 0.379-0.834; P = .004). Based on log-rank analysis and Cox regression analysis, the combination of the nuclear level of DNAJB6 and the presence of lymph node metastases at diagnosis could be used to stratify patients into groups with good or bad outcomes (P < .0005 for both analyses). There was a negative association between the nuclear level of DNAJB6 and the presence of lymph node metastases (P = .022; Pearson χ(2) test). Cancer cell lines that overexpressed DNAJB6a formed tumors more slowly in nude mice than control cells or cells that expressed a mutant form of DNAJB6a that did not localize to the nucleus. DNAJB6 knockdown in cancer cell lines promoted their growth as xenograft tumors in mice. A motif of histidine, proline, and aspartic acid in the J domain of DNAJB6a was required for its tumor-suppressive effects and signaling via AKT1. Loss of DNAJB6a resulted in up-regulation of AKT signaling in cancer cell lines and immortalized esophageal epithelial cells. Expression of a constitutively active form of AKT1 restored proliferation to tumor cells that overexpressed DNAJB6a, and DNAJB6a formed a complex with AKT1 in living cells. The expression of DNAJB6a reduced the sensitivity of ESCC to AKT inhibitors; the expression level of DNAJB6a affected AKT signaling in multiple cancer cell lines. CONCLUSIONS: Nuclear localization of DNAJB6 is associated with longer survival times of patients with ESCC. DNAJB6a reduces AKT signaling, and DNAJB6 expression in cancer cells reduces their proliferation and growth of xenograft tumors in mice. DNAJB6a might be developed as a biomarker for progression of ESCC.


Assuntos
Carcinoma de Células Escamosas/enzimologia , Núcleo Celular/metabolismo , Proliferação de Células , Neoplasias Esofágicas/enzimologia , Proteínas de Choque Térmico HSP40/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transporte Ativo do Núcleo Celular , Idoso , Animais , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/mortalidade , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/cirurgia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/mortalidade , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/cirurgia , Carcinoma de Células Escamosas do Esôfago , Esofagectomia , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Proteínas de Choque Térmico HSP40/genética , Xenoenxertos , Humanos , Estimativa de Kaplan-Meier , Metástase Linfática , Masculino , Camundongos Nus , Pessoa de Meia-Idade , Chaperonas Moleculares/genética , Mutação , Proteínas do Tecido Nervoso/genética , Modelos de Riscos Proporcionais , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/genética , Interferência de RNA , Estudos Retrospectivos , Fatores de Risco , Transdução de Sinais , Fatores de Tempo , Transfecção , Resultado do Tratamento
9.
J Biol Chem ; 288(17): 11824-33, 2013 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-23508962

RESUMO

The Hedgehog (Hh) pathway is critical in normal development. However, it has been reported to be up-regulated in numerous cancers and implicated in tumorigenicity and metastasis. Classical activation of Hh signaling initiated by Hh ligands results in activation of Smoothened (SMOH) and culminates in the activation of the GLI transcription factors. Classical Hh signaling is autocrine or paracrine (involving interaction between tumor cells and their stroma/microenvironment). The tumor milieu is rich in inflammatory cytokines that can modulate tumor cell behavior. Here, we show for the first time that the Hh pathway can be nonclassically up-regulated by the inflammatory cytokine, osteopontin (OPN). OPN-initiated Akt-GSK3ß signaling mediates the subcellular distribution and activation of GLI1 resulting in the modulation of epithelial mesenchymal plasticity and drug resistance. Interestingly, the SMOH inhibitor cyclopamine was unable to uncouple the effects of OPN on Hh signaling, indicating that OPN nonclassically activates GLI-mediated transcription. Given the fact that OPN is itself transcriptionally activated upon Hh signaling, our current findings highlight the possibility of a feedforward vicious cycle such that the Hh pathway might be turned on nonclassically by stimuli from the tumor milieu. Thus, drugs that target the classical Hh ligand-mediated activation of Hh signaling may be compromised in their ability to interfere with the functioning of the pathway.


Assuntos
Neoplasias da Mama/metabolismo , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Proteínas Hedgehog/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Feminino , Quinase 3 da Glicogênio Sintase/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Proteínas Hedgehog/genética , Humanos , Osteopontina/biossíntese , Osteopontina/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptor Smoothened , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica/genética , Regulação para Cima/genética , Proteína GLI1 em Dedos de Zinco
10.
Mol Cancer ; 13: 200, 2014 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-25174825

RESUMO

BACKGROUND: N-Myc Interactor is an inducible protein whose expression is compromised in advanced stage breast cancer. Downregulation of NMI, a gatekeeper of epithelial phenotype, in breast tumors promotes mesenchymal, invasive and metastatic phenotype of the cancer cells. Thus the mechanisms that regulate expression of NMI are of potential interest for understanding the etiology of breast tumor progression and metastasis. METHOD: Web based prediction algorithms were used to identify miRNAs that potentially target the NMI transcript. Luciferase reporter assays and western blot analysis were used to confirm the ability of miR-29 to target NMI. Quantitive-RT-PCRs were used to examine levels of miR29 and NMI from cell line and patient specimen derived RNA. The functional impact of miR-29 on EMT phenotype was evaluated using transwell migration as well as monitoring 3D matrigel growth morphology. Anti-miRs were used to examine effects of reducing miR-29 levels from cells. Western blots were used to examine changes in GSK3ß phosphorylation status. The impact on molecular attributes of EMT was evaluated using immunocytochemistry, qRT-PCRs as well as Western blot analyses. RESULTS: Invasive, mesenchymal-like breast cancer cell lines showed increased levels of miR-29. Introduction of miR-29 into breast cancer cells (with robust level of NMI) resulted in decreased NMI expression and increased invasion, whereas treatment of cells with high miR-29 and low NMI levels with miR-29 antagonists increased NMI expression and decreased invasion. Assessment of 2D and 3D growth morphologies revealed an EMT promoting effect of miR-29. Analysis of mRNA of NMI and miR-29 from patient derived breast cancer tumors showed a strong, inverse relationship between the expression of NMI and the miR-29. Our studies also revealed that in the absence of NMI, miR-29 expression is upregulated due to unrestricted Wnt/ß-catenin signaling resulting from inactivation of GSK3ß. CONCLUSION: Aberrant miR-29 expression may account for reduced NMI expression in breast tumors and mesenchymal phenotype of cancer cells that promotes invasive growth. Reduction in NMI levels has a feed-forward impact on miR-29 levels.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Algoritmos , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Biologia Computacional/métodos , Transição Epitelial-Mesenquimal , Feminino , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Humanos , Células MCF-7 , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Transdução de Sinais
11.
Int J Cancer ; 135(1): 1-6, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23929208

RESUMO

Hedgehog (Hh) signaling regulates embryonic patterning and organ morphogenesis. It is also involved in regeneration and repair of tissues. Aberrant Hh pathway activation is a feature of many human malignancies. Classical Hh signaling is activated by Hh ligands that can signal in an autocrine or paracrine manner generating a tumor-stromal crosstalk. In contrast to canonical Hh signaling that culminates in the activation of GLI transcription factors, "noncanonical" Hh signaling does not involve GLI transcriptional activity. Several Hh pathway inhibitors have progressed to clinical trials, where the outcomes have not been very encouraging in many solid tumors. Here we discuss the likely role of "nonclassical" Hh-GLI signaling that is activated by growth factors and cytokines from the tumor and/or its microenvironment; these uncouple Hh signaling from the vital regulatory protein Smoothened, and result in the activation of GLI. While efforts are being made to target tumor-intrinsic Hh targets, it is imperative to acknowledge the role of the complex molecular networks and crosstalk between different components of the tumor microenvironment that can result in the emergence of resistance to conventional Hh therapy. These considerations have an important bearing on appreciating the need to mitigate the effects of tumor microenvironment to combat resistance to Hh inhibitors.


Assuntos
Proteínas Hedgehog/genética , Neoplasias/genética , Fatores de Transcrição/genética , Microambiente Tumoral/genética , Proteínas Hedgehog/antagonistas & inibidores , Proteínas Hedgehog/metabolismo , Humanos , Ligantes , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Receptor Smoothened , Fatores de Transcrição/metabolismo , Ativação Transcricional/genética , Proteína GLI1 em Dedos de Zinco
12.
Gynecol Oncol ; 134(1): 112-20, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24736023

RESUMO

Objective. The Wnt/ß-catenin pathway is known to regulate cellular proliferation and plays a role in chemoresistance. Niclosamide, an FDA approved salicyclamide derivative used for the treatment of tapeworm infections, targets the Wnt/ß-catenin pathway. Therefore, the objective of this study was to investigate niclosamide as a potential therapeutic agent for ovarian cancer. Methods. Tumor cells isolated from 34 patients' ascites with primary ovarian cancer were treated with niclosamide (0.1 to 5 µM) ± carboplatin (5 to 150 µM). Cell viability was assessed using the ATP-lite assay. LRP6, Axin 2, Cyclin D1, survivin and cytosolic free ß-catenin levels were determined using Western blot analysis. Tumorspheres were treated, and Wnt transcriptional activity was measured by the TOPflash reporter assay. ALDH and CD133 were analyzed by Flow cytometry and IHC. ALDH1A1 and LRP6 were analyzed by IHC in solid tumor and in ascites before and after treatment with niclosamide. Results. Combination treatment produced increased cytotoxicity compared to single agent treatment in 32/34 patient samples. Western blot analysis showed a decrease in Wnt/ß-catenin pathway proteins and the expression of target genes. A significant reduction of Wnt/ß-catenin signaling was confirmed by TOPflash assay. There was increased staining of ALDH1A1 and LRP6 in ascites compared to solid tumor which decreased after treatment. Conclusion. This study demonstrates that niclosamide is a potent Wnt/ß-catenin inhibitor. Targeting the Wnt/ß-catenin pathway led to decreased cellular proliferation and increased cell death. These findings warrant further research of this drug and other niclosamide analogs as a treatment option for ovarian cancer.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Niclosamida/farmacologia , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos , Antígeno AC133 , Aldeído Desidrogenase/metabolismo , Antígenos CD/biossíntese , Ascite/metabolismo , Ascite/patologia , Carboplatina/administração & dosagem , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Glicoproteínas/biossíntese , Humanos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Niclosamida/administração & dosagem , Neoplasias Ovarianas/patologia , Peptídeos
13.
Cell Death Dis ; 15(5): 322, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719798

RESUMO

Metastatic dissemination from the primary tumor is a complex process that requires crosstalk between tumor cells and the surrounding milieu and involves the interplay between numerous cellular-signaling programs. Epithelial-mesenchymal transition (EMT) remains at the forefront of orchestrating a shift in numerous cellular programs, such as stemness, drug resistance, and apoptosis that allow for successful metastasis. Till date, there is limited success in therapeutically targeting EMT. Utilizing a high throughput screen of FDA-approved compounds, we uncovered a novel role of the topoisomerase inhibitor, Teniposide, in reversing EMT. Here, we demonstrate Teniposide as a potent modulator of the EMT program, specifically through an IRF7-NMI mediated response. Furthermore, Teniposide significantly reduces the expression of the key EMT transcriptional regulator, Zinc Finger E-Box Binding Homeobox 2 (ZEB2). ZEB2 downregulation by Teniposide inhibited RNA polymerase I (Pol I) activity and rRNA biogenesis. Importantly, Teniposide treatment markedly reduced pulmonary colonization of breast cancer cells. We have uncovered a novel role of Teniposide, which when used at a very low concentration, mitigates mesenchymal-like invasive phenotype. Overall, its ability to target EMT and rRNA biogenesis makes Teniposide a viable candidate to be repurposed as a therapeutic option to restrict breast cancer metastases.


Assuntos
Neoplasias da Mama , Regulação para Baixo , Transição Epitelial-Mesenquimal , RNA Polimerase I , Teniposídeo , Homeobox 2 de Ligação a E-box com Dedos de Zinco , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/genética , Feminino , Homeobox 2 de Ligação a E-box com Dedos de Zinco/metabolismo , Homeobox 2 de Ligação a E-box com Dedos de Zinco/genética , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , RNA Polimerase I/metabolismo , Teniposídeo/farmacologia , Animais , Camundongos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos
14.
Exp Cell Res ; 318(10): 1086-93, 2012 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-22504047

RESUMO

HSP40 family member MRJ (DNAJB6) has been in the spot light for its relevance to Huntington's, Parkinson's diseases, limb-girdle muscular dystrophy, placental development, neural stem cells, cell cycle and malignancies such as breast cancer and melanoma. This gene has two spliced variants coding for 2 distinct proteins with significant homology. However, MRJ(L) (large variant) is predominantly localized to the nucleus whereas MRJ(S) (small variant) is predominantly cytoplasmic. Interestingly MRJ(S) translocates to the nucleus in response to heat shock. The classical heat shock proteins respond to crises (stress) by increasing the number of molecules, usually by transcriptional up-regulation. Our studies imply that a quick increase in the molar concentration of MRJ in the nuclear compartment is a novel method by which MRJ responds to stress. We found that MRJ(S) shows NLS (nuclear localization signal) independent nuclear localization in response to heat shock and hypoxia. The specificity of this response is realized due to lack of such response by MRJ(S) when challenged by other stressors, such as some cytokines or UV light. Deletion analysis has allowed us to narrow down on a 20 amino acid stretch at the C-terminal region of MRJ(S) as a potential stress sensing region. Functional studies indicated that constitutive nuclear localization of MRJ(S) promoted attributes of malignancy such as proliferation and invasiveness overall indicating distinct phenotypic characteristics of nuclear MRJ(S).


Assuntos
Transporte Ativo do Núcleo Celular , Proteínas de Choque Térmico HSP40/metabolismo , Resposta ao Choque Térmico , Chaperonas Moleculares/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Sinais de Localização Nuclear/metabolismo , Animais , Células COS , Hipóxia Celular , Movimento Celular , Núcleo Celular/metabolismo , Proliferação de Células , Chlorocebus aethiops , Proteínas de Choque Térmico HSP40/química , Humanos , Chaperonas Moleculares/química , Proteínas do Tecido Nervoso/química , Sinais de Localização Nuclear/química , Isoformas de Proteínas/metabolismo , Estrutura Terciária de Proteína
15.
Biochem J ; 444(3): 573-80, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22455953

RESUMO

DKK1 (dickkopf 1 homologue) is a secreted inhibitor of the Wnt signalling pathway and a critical modulator of tumour promotion and the tumour microenvironment. However, mechanisms regulating DKK1 expression are understudied. DNAJB6 {DnaJ [HSP40 (heat-shock protein 40 kDa)] homologue, subfamily B, member 6} is an HSP40 family member whose expression is compromised during progression of breast cancer and melanoma. Inhibition of the Wnt/ß-catenin signalling pathway by up-regulation of DKK1 is one of the key mechanisms by which DNAJB6 suppresses tumour metastasis and EMT (epithelial-mesenchymal transition). Analysis of the DKK1 promoter to define the cis-site responsible for its up-regulation by DNAJB6 revealed the presence of two binding sites for a transcriptional repressor, MSX1 (muscle segment homeobox 1). Our investigations showed that MSX1 binds the DKK1 promoter and inhibits DKK1 transcription. Interestingly, silencing DNAJB6 resulted in up-regulation of MSX1 concomitant with increased stabilization of ß-catenin. ChIP (chromatin immunoprecipitation) studies revealed that ß-catenin binds the MSX1 promoter and stabilization of ß-catenin elevates MSX1 transcription, indicating that ß-catenin works as a transcription co-activator for MSX1. Functionally, exogenous expression of MSX1 in DNAJB6-expressing cells promotes the mesenchymal phenotype by suppression of DKK1. Thus we have identified a novel regulatory mechanism of DNAJB6-mediated DKK1 transcriptional up-regulation that can influence EMT. DKK1 is a feedback regulator of ß-catenin levels and thus our studies also define an additional negative control of this ß-catenin/DKK1 feedback loop by MSX1, which may potentially contribute to excessive stabilization of ß-catenin.


Assuntos
Proteínas de Choque Térmico HSP40/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Fator de Transcrição MSX1/fisiologia , Chaperonas Moleculares/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Via de Sinalização Wnt/fisiologia , beta Catenina/fisiologia , Animais , Sítios de Ligação/fisiologia , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos Nus , Estabilidade Proteica , Proteínas Wnt/fisiologia
16.
NPJ Precis Oncol ; 7(1): 61, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37380890

RESUMO

Hyperactivated ribosome biosynthesis is attributed to a need for elevated protein synthesis that accommodates cell growth and division, and is characterized by nucleomorphometric alterations and increased nucleolar counts. Ribosome biogenesis is challenged when DNA-damaging treatments such as radiotherapy are utilized. Tumor cells that survive radiotherapy form the basis of recurrence, tumor progression, and metastasis. In order to survive and become metabolically revitalized, tumor cells need to reactivate RNA Polymerase I (RNA Pol I) to synthesize ribosomal RNA, an integral component of ribosomes. In this study, we showed that following radiation therapy, tumor cells from breast cancer patients demonstrate activation of a ribosome biosynthesis signature concurrent with enrichment of a signature of Hedgehog (Hh) activity. We hypothesized that GLI1 activates RNA Pol I in response to irradiation and licenses the emergence of a radioresistant tumor population. Our work establishes a novel role for GLI1 in orchestrating RNA Pol I activity in irradiated breast cancer cells. Furthermore, we present evidence that in these irradiated tumor cells, Treacle ribosome biogenesis factor 1 (TCOF1), a nucleolar protein that is important in ribosome biogenesis, facilitates nucleolar translocation of GLI1. Inhibiting Hh activity and RNA Pol I activity disabled the outgrowth of breast cancer cells in the lungs. As such, ribosome biosynthesis and Hh activity present as actionable signaling mechanisms to enhance the effectiveness of radiotherapy.

17.
Cancer Immunol Res ; 11(5): 687-702, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37058110

RESUMO

The tumor immune microenvironment dynamically evolves to support tumor growth and progression. Immunosuppressive regulatory T cells (Treg) promote tumor growth and metastatic seeding in patients with breast cancer. Deregulation of plasticity between Treg and Th17 cells creates an immune regulatory framework that enables tumor progression. Here, we discovered a functional role for Hedgehog (Hh) signaling in promoting Treg differentiation and immunosuppressive activity, and when Hh activity was inhibited, Tregs adopted a Th17-like phenotype complemented by an enhanced inflammatory profile. Mechanistically, Hh signaling promoted O-GlcNAc modifications of critical Treg and Th17 transcription factors, Foxp3 and STAT3, respectively, that orchestrated this transition. Blocking Hh reprogramed Tregs metabolically, dampened their immunosuppressive activity, and supported their transdifferentiation into inflammatory Th17 cells that enhanced the recruitment of cytotoxic CD8+ T cells into tumors. Our results demonstrate a previously unknown role for Hh signaling in the regulation of Treg differentiation and activity and the switch between Tregs and Th17 cells in the tumor microenvironment.


Assuntos
Neoplasias , Linfócitos T Reguladores , Humanos , Proteínas Hedgehog/metabolismo , Células Th17 , Transdução de Sinais , Neoplasias/metabolismo , Fatores de Transcrição/metabolismo , Microambiente Tumoral
18.
J Biol Chem ; 286(11): 9612-22, 2011 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-21169638

RESUMO

Bone integrity is maintained by a dynamic equilibrium between the activities of bone-forming osteoblasts and bone-resorbing osteoclasts. Osteolytic lesions are a painful consequence of metastasis of breast cancer cells to bone in an overwhelming majority of breast cancer patients. Factors secreted by breast cancer cells propel a cascade of events that trigger osteoclastogenesis and elevated bone resorption. In the present study, we show that the Hedgehog (Hh) ligands secreted by breast cancer cells promote osteoclast differentiation and potentiate the activity of mature osteoclasts. Paracrine Hh signaling induced by breast cancer cells mediates a detrimental chain of events by the up-regulation of osteopontin (OPN), which in turn enhances osteoclastic activity by up-regulating cathepsin K and MMP9. Hh signaling is essential for osteoclasts because blocking the Hh pathway using the pharmacological Hh inhibitor, cyclopamine, results in an overall decrease in osteoclastogenesis and resorptive activity. Our studies suggest that inhibiting Hh signaling interferes with the ability of pre-osteoclasts to respond to the stimulatory effects of the breast cancer cells, indicating that Hh signaling is vital to osteoclast activity.


Assuntos
Neoplasias Ósseas/metabolismo , Neoplasias da Mama/metabolismo , Diferenciação Celular , Proteínas Hedgehog/metabolismo , Osteoclastos/metabolismo , Osteólise/metabolismo , Animais , Neoplasias Ósseas/patologia , Neoplasias Ósseas/secundário , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Osteoclastos/patologia , Osteólise/patologia , Transdução de Sinais
19.
J Biol Chem ; 286(46): 40376-85, 2011 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-21965655

RESUMO

Unlike malignancies of the nervous system, there have been no mutations identified in Merlin in breast cancer. As such, the role of the tumor suppressor, Merlin, has not been investigated in breast cancer. We assessed Merlin expression in breast cancer tissues by immunohistochemistry and by real-time PCR. The expression of Merlin protein (assessed immunohistochemically) was significantly decreased in breast cancer tissues (although the transcript levels were comparable) simultaneous with increased expression of the tumor-promoting protein, osteopontin (OPN). We further demonstrate that the loss of Merlin in breast cancer is brought about, in part, due to OPN-initiated Akt-mediated phosphorylation of Merlin leading to its proteasomal degradation. Restoring expression of Merlin resulted in reduced malignant attributes of breast cancer, characterized by reduced invasion, migration, motility, and impeded tumor (xenograft) growth in immunocompromised mice. The possibility of developing a model using the relationship between OPN and Merlin was tested with a logistic regression model applied to immunohistochemistry data. This identified consistent loss of immunohistochemical expression of Merlin in breast tumor tissues. Thus, we demonstrate for the first time a role for Merlin in impeding breast malignancy, identify a novel mechanism for the loss of Merlin protein in breast cancer, and have developed a discriminatory model using Merlin and OPN expression in breast tumor tissues.


Assuntos
Neoplasias da Mama/metabolismo , Regulação Neoplásica da Expressão Gênica , Modelos Biológicos , Neurofibromina 2/metabolismo , Processamento de Proteína Pós-Traducional , Proteólise , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Movimento Celular , Feminino , Humanos , Camundongos , Camundongos Nus , Invasividade Neoplásica , Transplante de Neoplasias , Neurofibromina 2/genética , Osteopontina/genética , Osteopontina/metabolismo , Fosforilação/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transplante Heterólogo
20.
Lab Invest ; 92(9): 1310-7, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22710984

RESUMO

DNAJB6 is a constitutively expressed member of the HSP40 family. It has been described as a negative regulator of breast tumor progression and a regulator of epithelial phenotype. Expression of DNAJB6 is reported to be compromised with tumor progression. However, factors responsible for its downregulation are still undefined. We used a knowledge-based screen for identifying miRNAs capable of targeting DNAJB6. In this work, we present our findings that hsa-miR-632 (miR-632) targets the coding region of DNAJB6. Invasive and metastatic breast cancer cells express high levels of miR-632 compared with mammary epithelial cells. Analysis of RNA from breast tumor specimens reveals inverse expression patterns of DNAJB6 transcript and miR-632. In response to exogenous miR-632 expression, DNAJB6 protein levels are downregulated and the resultant cell population shows significantly increased invasive ability. Silencing endogenous miR-632 abrogates invasive ability of breast cancer cells and promotes epithelial like characteristics noted by E-cadherin expression with concomitant decrease in mesenchymal markers such as Zeb2 and Slug. Thus, miR-632 is a potentially important epigenetic regulator of DNAJB6, which contributes to the downregulation of DNAJB6 and plays a supportive role in malignant progression.


Assuntos
Neoplasias da Mama/metabolismo , Regulação para Baixo , Proteínas de Choque Térmico HSP40/metabolismo , MicroRNAs/fisiologia , Chaperonas Moleculares/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Sequência de Bases , Sítios de Ligação , Western Blotting , Neoplasias da Mama/patologia , Primers do DNA , Feminino , Humanos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA