Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
BMC Psychiatry ; 16: 68, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26980207

RESUMO

BACKGROUND: Understanding how brain circuit dysfunctions relate to specific symptoms offers promise for developing a brain-based taxonomy for classifying psychopathology, identifying targets for mechanistic studies and ultimately for guiding treatment choice. The goal of the Research Domain Criteria (RDoC) initiative of the National Institute of Mental Health is to accelerate the development of such neurobiological models of mental disorder independent of traditional diagnostic criteria. In our RDoC Anxiety and Depression ("RAD") project we focus trans-diagnostically on the spectrum of depression and anxiety psychopathology. Our aims are a) to use brain imaging to define cohesive dimensions defined by dysfunction of circuits involved in reactivity to and regulation of negatively valenced emotional stimulation and in cognitive control, b) to assess the relationships between these dimension and specific symptoms, behavioral performance and the real world capacity to function socially and at work and c) to assess the stability of brain-symptom-behavior-function relationships over time. METHODS AND DESIGN: Here we present the protocol for the "RAD" project, one of the first RDoC studies to use brain circuit functioning to define new dimensions of psychopathology. The RAD project follows baseline-follow up design. In line with RDoC principles we use a strategy for recruiting all clients who "walk through the door" of a large community mental health clinic as well as the surrounding community. The clinic attends to a broad spectrum of anxiety and mood-related symptoms. Participants are unmedicated and studied at baseline using a standardized battery of functional brain imaging, structural brain imaging and behavioral probes that assay constructs of threat reactivity, threat regulation and cognitive control. The battery also includes self-report measures of anxiety and mood symptoms, and social and occupational functioning. After baseline assessments, therapists in the clinic apply treatment planning as usual. Follow-up assessments are undertaken at 3 months, to establish the reliability of brain-based subgroups over time and to assess whether these subgroups predict real-world functional capacity over time. First enrollment was August 2013, and is ongoing. DISCUSSION: This project is designed to advance knowledge toward a neural circuit taxonomy for mental disorder. Data will be shared via the RDoC database for dissemination to the scientific community. The clinical translational neuroscience goals of the project are to develop brain-behavior profile reports for each individual participant and to refine these reports with therapist feedback. Reporting of results is expected from December 2016 onward. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT02220309 . Registered: August 13, 2014.


Assuntos
Transtornos de Ansiedade/diagnóstico , Transtornos de Ansiedade/fisiopatologia , Encéfalo/fisiopatologia , Transtornos do Humor/diagnóstico , Transtornos do Humor/fisiopatologia , Projetos de Pesquisa , Depressão , Transtorno Depressivo/fisiopatologia , Seguimentos , Humanos , National Institute of Mental Health (U.S.) , Neurociências , Reprodutibilidade dos Testes , Estados Unidos
2.
Brain Cogn ; 81(1): 52-6, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23174428

RESUMO

Recent research has shown superior memory retrieval when participants make a series of horizontal saccadic eye movements between the memory encoding phase and the retrieval phase compared to participants who do not move their eyes or move their eyes vertically. It has been hypothesized that the rapidly alternating activation of the two hemispheres that is associated with the series of left-right eye movements is critical in causing the enhanced retrieval. This hypothesis predicts a beneficial effect on retrieval of alternating left-right stimulation not only of the visuomotor system, but also of the somatosensory system, both of which have a strict contralateral organization. In contrast, this hypothesis does not predict an effect, or a weaker effect, on retrieval of alternating left-right stimulation of the auditory system, which has a much less lateralized organization. Consistent with these predictions, we replicated the horizontal saccade-induced retrieval enhancement (Experiment 1) and showed that a similar retrieval enhancement occurs after alternating left-right tactile stimulation (Experiment 2). Furthermore, retrieval was not enhanced after alternating left-right auditory stimulation compared to simultaneous bilateral auditory stimulation (Experiment 3). We discuss the possibility that alternating bilateral activation of the left and right hemispheres exerts its effects on memory by increasing the functional connectivity between the two hemispheres. We also discuss the findings in the context of clinical practice, in which bilateral eye movements (EMDR) and auditory stimulation are used in the treatment of post-traumatic stress disorder.


Assuntos
Memória/fisiologia , Rememoração Mental/fisiologia , Movimentos Sacádicos/fisiologia , Estimulação Acústica/métodos , Adolescente , Adulto , Dessensibilização e Reprocessamento através dos Movimentos Oculares/métodos , Humanos , Estimulação Luminosa/métodos , Transtornos de Estresse Pós-Traumáticos/fisiopatologia , Adulto Jovem
3.
Biol Psychiatry ; 91(6): 561-571, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-34482948

RESUMO

BACKGROUND: Despite tremendous advances in characterizing human neural circuits that govern emotional and cognitive functions impaired in depression and anxiety, we lack a circuit-based taxonomy for depression and anxiety that captures transdiagnostic heterogeneity and informs clinical decision making. METHODS: We developed and tested a novel system for quantifying 6 brain circuits reproducibly and at the individual patient level. We implemented standardized circuit definitions relative to a healthy reference sample and algorithms to generate circuit clinical scores for the overall circuit and its constituent regions. RESULTS: In new data from primary and generalizability samples of depression and anxiety (N = 250), we demonstrated that overall disconnections within task-free salience and default mode circuits map onto symptoms of anxious avoidance, loss of pleasure, threat dysregulation, and negative emotional biases-core characteristics that transcend diagnoses-and poorer daily function. Regional dysfunctions within task-evoked cognitive control and affective circuits may implicate symptoms of cognitive and valence-congruent emotional functions. Circuit dysfunction scores also distinguished response to antidepressant and behavioral intervention treatments in an independent sample (n = 205). CONCLUSIONS: Our findings articulate circuit dimensions that relate to transdiagnostic symptoms across mood and anxiety disorders. Our novel system offers a foundation for deploying standardized circuit assessments across research groups, trials, and clinics to advance more precise classifications and treatment targets for psychiatry.


Assuntos
Depressão , Psiquiatria , Ansiedade , Transtornos de Ansiedade , Humanos
4.
JAMA Psychiatry ; 75(2): 201-209, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29197929

RESUMO

Importance: The symptoms that define mood, anxiety, and trauma disorders are highly overlapping across disorders and heterogeneous within disorders. It is unknown whether coherent subtypes exist that span multiple diagnoses and are expressed functionally (in underlying cognition and brain function) and clinically (in daily function). The identification of cohesive subtypes would help disentangle the symptom overlap in our current diagnoses and serve as a tool for tailoring treatment choices. Objective: To propose and demonstrate 1 approach for identifying subtypes within a transdiagnostic sample. Design, Setting, and Participants: This cross-sectional study analyzed data from the Brain Research and Integrative Neuroscience Network Foundation Database that had been collected at the University of Sydney and University of Adelaide between 2006 and 2010 and replicated at Stanford University between 2013 and 2017. The study included 420 individuals with a primary diagnosis of major depressive disorder (n = 100), panic disorder (n = 53), posttraumatic stress disorder (n = 47), or no disorder (healthy control participants) (n = 220). Data were analyzed between October 2016 and October 2017. Main Outcomes and Measures: We followed a data-driven approach to achieve the primary study outcome of identifying transdiagnostic subtypes. First, machine learning with a hierarchical clustering algorithm was implemented to classify participants based on self-reported negative mood, anxiety, and stress symptoms. Second, the robustness and generalizability of the subtypes were tested in an independent sample. Third, we assessed whether symptom subtypes were expressed at behavioral and physiological levels of functioning. Fourth, we evaluated the clinically meaningful differences in functional capacity of the subtypes. Findings were interpreted relative to a complementary diagnostic frame of reference. Results: Four hundred twenty participants with a mean (SD) age of 39.8 (14.1) years were included in the final analysis; 256 (61.0%) were female. We identified 6 distinct subtypes characterized by tension (n=81; 19%), anxious arousal (n=55; 13%), general anxiety (n=38; 9%), anhedonia (n=29; 7%), melancholia (n=37; 9%), and normative mood (n=180; 43%), and these subtypes were replicated in an independent sample. Subtypes were expressed through differences in cognitive control (F5,383 = 5.13, P < .001, ηp2 = 0.063), working memory (F5,401 = 3.29, P = .006, ηp2 = 0.039), electroencephalography-recorded ß power in a resting paradigm (F5,357 = 3.84, P = .002, ηp2 = 0.051), electroencephalography-recorded ß power in an emotional paradigm (F5,365 = 3.56, P = .004, ηp2 = 0.047), social functional capacity (F5,414 = 21.33, P < .001, ηp2 = 0.205), and emotional resilience (F5,376 = 15.10, P < .001, ηp2 = 0.171). Conclusions and Relevance: These findings offer a data-driven framework for identifying robust subtypes that signify specific, coherent, meaningful associations between symptoms, behavior, brain function, and observable real-world function, and that cut across DSM-IV-defined diagnoses of major depressive disorder, panic disorder, and posttraumatic stress disorder.


Assuntos
Atividades Cotidianas/classificação , Transtornos de Ansiedade/diagnóstico , Encéfalo/fisiopatologia , Transtorno Depressivo Maior/diagnóstico , Transtorno de Pânico/diagnóstico , Comportamento Social , Transtornos de Estresse Pós-Traumáticos/diagnóstico , Atividades Cotidianas/psicologia , Adulto , Transtornos de Ansiedade/fisiopatologia , Transtornos de Ansiedade/psicologia , Nível de Alerta , Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico , Transtorno do Deficit de Atenção com Hiperatividade/fisiopatologia , Transtorno do Deficit de Atenção com Hiperatividade/psicologia , Ritmo beta/fisiologia , Comorbidade , Estudos Transversais , Transtorno Depressivo Maior/fisiopatologia , Transtorno Depressivo Maior/psicologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Transtornos Neurocognitivos/diagnóstico , Transtornos Neurocognitivos/fisiopatologia , Transtornos Neurocognitivos/psicologia , Transtorno de Pânico/fisiopatologia , Transtorno de Pânico/psicologia , Resiliência Psicológica , Transtornos de Estresse Pós-Traumáticos/fisiopatologia , Transtornos de Estresse Pós-Traumáticos/psicologia , Síndrome
5.
Artigo em Inglês | MEDLINE | ID: mdl-29628067

RESUMO

BACKGROUND: Pathophysiology models of major depression (MD) center on the dysfunction of various cortical areas within the orbital and medial prefrontal cortex. While independent structural and functional abnormalities in these areas are consistent findings in MD, the complex interactions among them and the rest of the cortex remain largely unexplored. METHODS: We used resting-state functional magnetic resonance imaging connectivity to systematically map alterations in the communication between orbital and medial prefrontal cortex fields and the rest of the brain in MD. Functional connectivity (FC) maps from participants with current MD (n = 35), unaffected first-degree relatives (n = 36), and healthy control subjects (n = 38) were subjected to conjunction analyses to distinguish FC markers of MD vulnerability and FC markers of MD disease. RESULTS: FC abnormalities in MD vulnerability were found for dorsal medial wall regions and the anterior insula and concerned altered communication of these areas with the inferior parietal cortex and dorsal posterior cingulate, occipital areas and the brainstem. FC aberrations in current MD included the anterior insula, rostral and dorsal anterior cingulate cortex, and lateral orbitofrontal areas and concerned altered communication with the dorsal striatum, the cerebellum, the precuneus, the anterior prefrontal cortex, somatomotor cortex, dorsolateral prefrontal cortex, and visual areas in the occipital and inferior temporal lobes. CONCLUSIONS: Functionally delineated parcellation maps can be used to identify putative connectivity markers in extended cortical regions such as the orbital and medial prefrontal cortex. The anterior insula and the rostral anterior cingulate cortex play a central role in the pathophysiology of MD, being consistently implicated both in the MD vulnerability and MD disease states.


Assuntos
Córtex Cerebral/fisiopatologia , Transtorno Depressivo Maior/fisiopatologia , Lobo Parietal/fisiopatologia , Córtex Pré-Frontal/fisiopatologia , Adulto , Depressão/fisiopatologia , Feminino , Giro do Cíngulo/fisiopatologia , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Lobo Temporal/fisiopatologia
6.
Brain Struct Funct ; 222(7): 2941-2960, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28255676

RESUMO

The orbital and medial prefrontal cortex (OMPFC) has been implicated in decision-making, reward and emotion processing, and psychopathology, such as depression and obsessive-compulsive disorder. Human and monkey anatomical studies indicate the presence of various cortical subdivisions and suggest that these are organized in two extended networks, a medial and an orbital one. Attempts have been made to replicate these neuroanatomical findings in vivo using MRI techniques for imaging connectivity. These revealed several consistencies, but also many inconsistencies between reported results. Here, we use fMRI resting-state functional connectivity (FC) and data-driven modularity optimization to parcellate the OMPFC to investigate replicability of in vivo parcellation more systematically. By collecting two resting-state data sets per participant, we were able to quantify the reliability of the observed modules and their boundaries. Results show that there was significantly more than chance overlap in modules and their boundaries at the level of individual data sets. Moreover, some of these consistent boundaries significantly co-localized across participants. Hierarchical clustering showed that the whole-brain FC profiles of the OMPFC subregions separate them in two networks, a medial and orbital one, which overlap with the organization proposed by Barbas and Pandya (J Comp Neurol 286:353-375, 1989) and Ongür and Price (Cereb Cortex 10:206-219, 2000). We conclude that in vivo resting-state FC can delineate reliable and neuroanatomically plausible subdivisions that agree with established cytoarchitectonic trends and connectivity patterns, while other subdivisions do not show the same consistency across data sets and studies.


Assuntos
Mapeamento Encefálico , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiologia , Córtex Pré-Frontal/diagnóstico por imagem , Adolescente , Adulto , Análise por Conglomerados , Feminino , Lateralidade Funcional/fisiologia , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Oxigênio/sangue , Descanso , Adulto Jovem
7.
Front Psychiatry ; 2: 4, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21556274

RESUMO

Series of horizontal saccadic eye movements (EMs) are known to improve episodic memory retrieval in healthy adults and to facilitate the processing of traumatic memories in eye movement desensitization and reprocessing (EMDR) therapy. Several authors have proposed that EMs achieve these effects by increasing the functional connectivity of the two brain hemispheres, but direct evidence for this proposal is lacking. The aim of this study was to investigate whether memory enhancement following bilateral EMs is associated with increased interhemispheric coherence in the electroencephalogram (EEG). Fourteen healthy young adults were asked to freely recall lists of studied neutral and emotional words after a series of bilateral EMs and a control procedure. Baseline EEG activity was recorded before and after the EM and control procedures. Phase and amplitude coherence between bilaterally homologous brain areas were calculated for six frequency bands and electrode pairs across the entire scalp. Behavioral analyses showed that participants recalled more emotional (but not neutral) words following the EM procedure than following the control procedure. However, the EEG analyses indicated no evidence that the EMs altered participants' interhemispheric coherence or that improvements in recall were correlated with such changes in coherence. These findings cast doubt on the interhemispheric interaction hypothesis, and therefore may have important implications for future research on the neurobiological mechanism underlying EMDR.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA