Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Nature ; 558(7709): 307-312, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29849141

RESUMO

Cancer immunotherapy based on genetically redirecting T cells has been used successfully to treat B cell malignancies1-3. In this strategy, the T cell genome is modified by integration of viral vectors or transposons encoding chimaeric antigen receptors (CARs) that direct tumour cell killing. However, this approach is often limited by the extent of expansion and persistence of CAR T cells4,5. Here we report mechanistic insights from studies of a patient with chronic lymphocytic leukaemia treated with CAR T cells targeting the CD19 protein. Following infusion of CAR T cells, anti-tumour activity was evident in the peripheral blood, lymph nodes and bone marrow; this activity was accompanied by complete remission. Unexpectedly, at the peak of the response, 94% of CAR T cells originated from a single clone in which lentiviral vector-mediated insertion of the CAR transgene disrupted the methylcytosine dioxygenase TET2 gene. Further analysis revealed a hypomorphic mutation in this patient's second TET2 allele. TET2-disrupted CAR T cells exhibited an epigenetic profile consistent with altered T cell differentiation and, at the peak of expansion, displayed a central memory phenotype. Experimental knockdown of TET2 recapitulated the potency-enhancing effect of TET2 dysfunction in this patient's CAR T cells. These findings suggest that the progeny of a single CAR T cell induced leukaemia remission and that TET2 modification may be useful for improving immunotherapies.


Assuntos
5-Metilcitosina/metabolismo , Antígenos CD19/imunologia , Dioxigenases/genética , Imunoterapia/métodos , Leucemia Linfocítica Crônica de Células B/imunologia , Leucemia Linfocítica Crônica de Células B/terapia , Linfócitos T/imunologia , Linfócitos T/transplante , Transferência Adotiva , Idoso , Alelos , Diferenciação Celular , Ensaios Clínicos como Assunto , Células Clonais/citologia , Células Clonais/imunologia , Dioxigenases/metabolismo , Epigênese Genética , Células HEK293 , Humanos , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/patologia , Masculino , Mutação , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Linfócitos T/citologia , Linfócitos T/metabolismo , Transgenes
2.
Development ; 147(8)2020 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-32341026

RESUMO

The vomeronasal organ (VNO) contains two main types of vomeronasal sensory neurons (VSNs) that express distinct vomeronasal receptor (VR) genes and localize to specific regions of the neuroepithelium. Morphogenic signals are crucial in defining neuronal identity and network formation; however, if and what signals control maturation and homeostasis of VSNs is largely unexplored. Here, we found transforming growth factor ß (TGFß) and bone morphogenetic protein (BMP) signal transduction in postnatal mice, with BMP signaling being restricted to basal VSNs and at the marginal zones of the VNO: the site of neurogenesis. Using different Smad4 conditional knockout mouse models, we disrupted canonical TGFß/BMP signaling in either maturing basal VSNs (bVSNs) or all mature VSNs. Smad4 loss of function in immature bVSNs compromises dendritic knob formation, pheromone induced activation, correct glomeruli formation in the accessory olfactory bulb (AOB) and survival. However, Smad4 loss of function in all mature VSNs only compromises correct glomeruli formation in the posterior AOB. Our results indicate that Smad4-mediated signaling drives the functional maturation and connectivity of basal VSNs.


Assuntos
Axônios/metabolismo , Morfogênese , Bulbo Olfatório/metabolismo , Células Receptoras Sensoriais/metabolismo , Proteína Smad4/metabolismo , Órgão Vomeronasal/metabolismo , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Dendritos/metabolismo , Proteína GAP-43/metabolismo , Deleção de Genes , Integrases/metabolismo , Camundongos Knockout , Odorantes , Terminações Pré-Sinápticas/metabolismo , Transdução de Sinais , Transcriptoma/genética , Fator de Crescimento Transformador beta/metabolismo
3.
BMC Genomics ; 23(1): 2, 2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34979916

RESUMO

BACKGROUND: Because some of its CNS neurons (e.g., retinal ganglion cells after optic nerve crush (ONC)) regenerate axons throughout life, whereas others (e.g., hindbrain neurons after spinal cord injury (SCI)) lose this capacity as tadpoles metamorphose into frogs, the South African claw-toed frog, Xenopus laevis, offers unique opportunities for exploring differences between regenerative and non-regenerative responses to CNS injury within the same organism. An earlier, three-way RNA-seq study (frog ONC eye, tadpole SCI hindbrain, frog SCI hindbrain) identified genes that regulate chromatin accessibility among those that were differentially expressed in regenerative vs non-regenerative CNS [11]. The current study used whole genome bisulfite sequencing (WGBS) of DNA collected from these same animals at the peak period of axon regeneration to study the extent to which DNA methylation could potentially underlie differences in chromatin accessibility between regenerative and non-regenerative CNS. RESULTS: Consistent with the hypothesis that DNA of regenerative CNS is more accessible than that of non-regenerative CNS, DNA from both the regenerative tadpole hindbrain and frog eye was less methylated than that of the non-regenerative frog hindbrain. Also, consistent with observations of CNS injury in mammals, DNA methylation in non-regenerative frog hindbrain decreased after SCI. However, contrary to expectations that the level of DNA methylation would decrease even further with axotomy in regenerative CNS, DNA methylation in these regions instead increased with injury. Injury-induced differences in CpG methylation in regenerative CNS became especially enriched in gene promoter regions, whereas non-CpG methylation differences were more evenly distributed across promoter regions, intergenic, and intragenic regions. In non-regenerative CNS, tissue-related (i.e., regenerative vs. non-regenerative CNS) and injury-induced decreases in promoter region CpG methylation were significantly correlated with increased RNA expression, but the injury-induced, increased CpG methylation seen in regenerative CNS across promoter regions was not, suggesting it was associated with increased rather than decreased chromatin accessibility. This hypothesis received support from observations that in regenerative CNS, many genes exhibiting increased, injury-induced, promoter-associated CpG-methylation also exhibited increased RNA expression and association with histone markers for active promoters and enhancers. DNA immunoprecipitation for 5hmC in optic nerve regeneration found that the promoter-associated increases seen in CpG methylation were distinct from those exhibiting changes in 5hmC. CONCLUSIONS: Although seemingly paradoxical, the increased injury-associated DNA methylation seen in regenerative CNS has many parallels in stem cells and cancer. Thus, these axotomy-induced changes in DNA methylation in regenerative CNS provide evidence for a novel epigenetic state favoring successful over unsuccessful CNS axon regeneration. The datasets described in this study should help lay the foundations for future studies of the molecular and cellular mechanisms involved. The insights gained should, in turn, help point the way to novel therapeutic approaches for treating CNS injury in mammals.


Assuntos
Axônios , Regeneração Nervosa , Animais , Axônios/metabolismo , Sistema Nervoso Central , Metilação de DNA , Regeneração Nervosa/genética , Células Ganglionares da Retina , Xenopus laevis/genética
4.
Nucleic Acids Res ; 48(16): 8848-8869, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32797160

RESUMO

The p53 transcription factor confers its potent tumor suppressor functions primarily through the regulation of a large network of target genes. The recent explosion of next generation sequencing protocols has enabled the study of the p53 gene regulatory network (GRN) and underlying mechanisms at an unprecedented depth and scale, helping us to understand precisely how p53 controls gene regulation. Here, we discuss our current understanding of where and how p53 binds to DNA and chromatin, its pioneer-like role, and how this affects gene regulation. We provide an overview of the p53 GRN and the direct and indirect mechanisms through which p53 affects gene regulation. In particular, we focus on delineating the ubiquitous and cell type-specific network of regulatory elements that p53 engages; reviewing our understanding of how, where, and when p53 binds to DNA and the mechanisms through which these events regulate transcription. Finally, we discuss the evolution of the p53 GRN and how recent work has revealed remarkable differences between vertebrates, which are of particular importance to cancer researchers using mouse models.


Assuntos
Cromatina/metabolismo , DNA/metabolismo , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Proteína Supressora de Tumor p53/fisiologia , Animais , Sítios de Ligação , Linhagem Celular , Humanos , Camundongos , Ligação Proteica , Ratos
5.
Nucleic Acids Res ; 48(8): 4195-4213, 2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32133495

RESUMO

The master tumor suppressor p53 controls transcription of a wide-ranging gene network involved in apoptosis, cell cycle arrest, DNA damage repair, and senescence. Recent studies revealed pervasive binding of p53 to cis-regulatory elements (CREs), which are non-coding segments of DNA that spatially and temporally control transcription through the combinatorial binding of local transcription factors. Although the role of p53 as a strong trans-activator of gene expression is well known, the co-regulatory factors and local sequences acting at p53-bound CREs are comparatively understudied. We designed and executed a massively parallel reporter assay (MPRA) to investigate the effect of transcription factor binding motifs and local sequence context on p53-bound CRE activity. Our data indicate that p53-bound CREs are both positively and negatively affected by alterations in local sequence context and changes to co-regulatory TF motifs. Our data suggest p53 has the flexibility to cooperate with a variety of transcription factors in order to regulate CRE activity. By utilizing different sets of co-factors across CREs, we hypothesize that global p53 activity is guarded against loss of any one regulatory partner, allowing for dynamic and redundant control of p53-mediated transcription.


Assuntos
Elementos Reguladores de Transcrição , Fatores de Transcrição/metabolismo , Ativação Transcricional , Proteína Supressora de Tumor p53/metabolismo , Animais , Linhagem Celular Tumoral , Células Cultivadas , Ciclina G1/genética , Fator 15 de Diferenciação de Crescimento/genética , Humanos , Imidazóis/farmacologia , Camundongos , Motivos de Nucleotídeos , Piperazinas/farmacologia , Transcrição Gênica
6.
Nature ; 525(7568): 206-11, 2015 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-26331536

RESUMO

TP53 (which encodes p53 protein) is the most frequently mutated gene among all human cancers. Prevalent p53 missense mutations abrogate its tumour suppressive function and lead to a 'gain-of-function' (GOF) that promotes cancer. Here we show that p53 GOF mutants bind to and upregulate chromatin regulatory genes, including the methyltransferases MLL1 (also known as KMT2A), MLL2 (also known as KMT2D), and acetyltransferase MOZ (also known as KAT6A or MYST3), resulting in genome-wide increases of histone methylation and acetylation. Analysis of The Cancer Genome Atlas shows specific upregulation of MLL1, MLL2, and MOZ in p53 GOF patient-derived tumours, but not in wild-type p53 or p53 null tumours. Cancer cell proliferation is markedly lowered by genetic knockdown of MLL1 or by pharmacological inhibition of the MLL1 methyltransferase complex. Our study reveals a novel chromatin mechanism underlying the progression of tumours with GOF p53, and suggests new possibilities for designing combinatorial chromatin-based therapies for treating individual cancers driven by prevalent GOF p53 mutations.


Assuntos
Cromatina/genética , Cromatina/metabolismo , Mutação/genética , Neoplasias/genética , Neoplasias/patologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Acetilação , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Cromatina/química , Feminino , Genes Supressores de Tumor , Genoma Humano/genética , Histona Acetiltransferases/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/química , Histonas/metabolismo , Humanos , Masculino , Camundongos , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteína de Leucina Linfoide-Mieloide/metabolismo , Neoplasias/metabolismo , Fenótipo , Ligação Proteica , Processamento de Proteína Pós-Traducional
7.
J Biol Chem ; 294(27): 10720-10736, 2019 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-31113863

RESUMO

Transcriptional activation by p53 provides powerful, organism-wide tumor suppression. We hypothesized that the local chromatin environment, including differential enhancer activities, contributes to various p53-dependent transcriptional activities in different cell types during stress-induced signaling. In this work, using ChIP-sequencing, immunoblotting, quantitative PCR, and computational analyses across various mammalian cell lines, we demonstrate that the p53-induced transcriptome varies by cell type, reflects cell type-specific activities, and is considerably broader than previously anticipated. We found that these molecular events are strongly influenced by p53's engagement with differentially active cell type-specific enhancers and promoters. We also observed that p53 activity depends on the p53 family member tumor protein p63 in epithelial cell types. Notably, we demonstrate that p63 is required for epithelial enhancer identity, including enhancers used by p53 during stress-dependent signaling. Loss of p63, but not p53, caused site-specific depletion of enhancer-associated chromatin modifications, suggesting that p63 functions as an enhancer maintenance factor in epithelial cells. Additionally, a subset of epithelial-specific enhancers depends on the activity of p63 providing a direct link between lineage determination and enhancer structure. These results suggest that a broad, cell-intrinsic mechanism controls p53-dependent cellular stress response through differential regulation of cis-regulatory elements.


Assuntos
Elementos Facilitadores Genéticos , Fatores de Transcrição/metabolismo , Ativação Transcricional , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Sítios de Ligação , Linhagem Celular Tumoral , Cromatina/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Histonas/metabolismo , Humanos , Camundongos , Mutagênese , Regiões Promotoras Genéticas , Ligação Proteica , Fatores de Transcrição/química , Fatores de Transcrição/genética , Proteína Supressora de Tumor p53/química , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/genética
8.
BMC Genomics ; 21(1): 540, 2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-32758133

RESUMO

BACKGROUND: The South African claw-toed frog, Xenopus laevis, is uniquely suited for studying differences between regenerative and non-regenerative responses to CNS injury within the same organism, because some CNS neurons (e.g., retinal ganglion cells after optic nerve crush (ONC)) regenerate axons throughout life, whereas others (e.g., hindbrain neurons after spinal cord injury (SCI)) lose this capacity as tadpoles metamorphose into frogs. Tissues from these CNS regions (frog ONC eye, tadpole SCI hindbrain, frog SCI hindbrain) were used in a three-way RNA-seq study of axotomized CNS axons to identify potential core gene expression programs for successful CNS axon regeneration. RESULTS: Despite tissue-specific changes in expression dominating the injury responses of each tissue, injury-induced changes in gene expression were nonetheless shared between the two axon-regenerative CNS regions that were not shared with the non-regenerative region. These included similar temporal patterns of gene expression and over 300 injury-responsive genes. Many of these genes and their associated cellular functions had previously been associated with injury responses of multiple tissues, both neural and non-neural, from different species, thereby demonstrating deep phylogenetically conserved commonalities between successful CNS axon regeneration and tissue regeneration in general. Further analyses implicated the KEGG adipocytokine signaling pathway, which links leptin with metabolic and gene regulatory pathways, and a novel gene regulatory network with genes regulating chromatin accessibility at its core, as important hubs in the larger network of injury response genes involved in successful CNS axon regeneration. CONCLUSIONS: This study identifies deep, phylogenetically conserved commonalities between CNS axon regeneration and other examples of successful tissue regeneration and provides new targets for studying the molecular underpinnings of successful CNS axon regeneration, as well as a guide for distinguishing pro-regenerative injury-induced changes in gene expression from detrimental ones in mammals.


Assuntos
Axônios , Traumatismos da Medula Espinal , Animais , Perfilação da Expressão Gênica , Regeneração Nervosa/genética , Nervo Óptico , Traumatismos da Medula Espinal/genética , Xenopus laevis/genética
9.
Dev Biol ; 441(1): 67-82, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29928868

RESUMO

The identity of individual neuronal cell types is defined and maintained by the expression of specific combinations of transcriptional regulators that control cell type-specific genetic programs. The epithelium of the vomeronasal organ of mice contains two major types of vomeronasal sensory neurons (VSNs): 1) the apical VSNs which express vomeronasal 1 receptors (V1r) and the G-protein subunit Gαi2 and; 2) the basal VSNs which express vomeronasal 2 receptors (V2r) and the G-protein subunit Gαo. Both cell types originate from a common pool of progenitors and eventually acquire apical or basal identity through largely unknown mechanisms. The transcription factor AP-2ε, encoded by the Tfap2e gene, plays a role in controlling the development of GABAergic interneurons in the main and accessory olfactory bulb (AOB), moreover AP-2ε has been previously described to be expressed in the basal VSNs. Here we show that AP-2ε is expressed in post-mitotic VSNs after they commit to the basal differentiation program. Loss of AP-2ε function resulted in reduced number of basal VSNs and in an increased number of neurons expressing markers of the apical lineage. Our work suggests that AP-2ε, which is expressed in late phases of differentiation, is not needed to initiate the apical-basal differentiation dichotomy but for maintaining the basal VSNs' identity. In AP-2ε mutants we observed a large number of cells that entered the basal program can express apical genes, our data suggest that differentiated VSNs of mice retain a notable level of plasticity.


Assuntos
Neurônios GABAérgicos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Mucosa Nasal/embriologia , Células Receptoras Sensoriais/metabolismo , Fator de Transcrição AP-2/biossíntese , Órgão Vomeronasal/embriologia , Animais , Diferenciação Celular/fisiologia , Camundongos , Camundongos Transgênicos , Mutação , Mucosa Nasal/citologia , Células Receptoras Sensoriais/citologia , Fator de Transcrição AP-2/genética , Órgão Vomeronasal/citologia
10.
Proc Natl Acad Sci U S A ; 113(35): 9822-7, 2016 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-27535933

RESUMO

TP53 (which encodes the p53 protein) is the most frequently mutated gene among all human cancers, whereas tumors that retain the wild-type TP53 gene often use alternative mechanisms to repress the p53 tumor-suppressive function. Testicular teratocarcinoma cells rarely contain mutations in TP53, yet the transcriptional activity of wild-type p53 is compromised, despite its high expression level. Here we report that in the teratocarcinoma cell line NTera2, p53 is subject to lysine methylation at its carboxyl terminus, which has been shown to repress p53's transcriptional activity. We show that reduction of the cognate methyltransferases reactivates p53 and promotes differentiation of the NTera2 cells. Furthermore, reconstitution of methylation-deficient p53 mutants into p53-depleted NTera2 cells results in elevated expression of p53 downstream targets and precocious loss of pluripotent gene expression compared with re-expression of wild-type p53. Our results provide evidence that lysine methylation of endogenous wild-type p53 represses its activity in cancer cells and suggest new therapeutic possibilities of targeting testicular teratocarcinoma.


Assuntos
Regulação Neoplásica da Expressão Gênica , Histona-Lisina N-Metiltransferase/genética , Lisina/metabolismo , Processamento de Proteína Pós-Traducional , Proteína Supressora de Tumor p53/genética , Diferenciação Celular , Linhagem Celular Tumoral , Proliferação de Células , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Masculino , Metilação , Domínios Proteicos , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Teratocarcinoma/genética , Teratocarcinoma/metabolismo , Teratocarcinoma/patologia , Neoplasias Testiculares/genética , Neoplasias Testiculares/metabolismo , Neoplasias Testiculares/patologia , Proteína Supressora de Tumor p53/metabolismo
11.
Genome Res ; 25(2): 179-88, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25391375

RESUMO

Despite overwhelming evidence that transcriptional activation by TP53 is critical for its tumor suppressive activity, the mechanisms by which TP53 engages the genome in the context of chromatin to activate transcription are not well understood. Using a compendium of novel and existing genome-wide data sets, we examined the relationship between TP53 binding and the dynamics of the local chromatin environment. Our analysis revealed three distinct categories of TP53 binding events that differ based on the dynamics of the local chromatin environment. The first class of TP53 binding events occurs near transcriptional start sites (TSS) and is defined by previously characterized promoter-associated chromatin modifications. The second class comprises a large cohort of preestablished, promoter-distal enhancer elements that demonstrates dynamic histone acetylation and transcription upon TP53 binding. The third class of TP53 binding sites is devoid of classic chromatin modifications and, remarkably, fall within regions of inaccessible chromatin, suggesting that TP53 has intrinsic pioneer factor activity and binds within structurally inaccessible regions of chromatin. Intriguingly, these inaccessible TP53 binding sites feature several enhancer-like properties in cell types within the epithelial lineage, indicating that TP53 binding events include a group of "proto-enhancers" that become active enhancers given the appropriate cellular context. These data indicate that TP53, along with TP63, may act as pioneer factors to specify epithelial enhancers. Further, these findings suggest that rather than following a global cell-type invariant stress response program, TP53 may tune its response based on the lineage-specific epigenomic landscape.


Assuntos
Montagem e Desmontagem da Cromatina , Cromatina/metabolismo , Genoma Humano , Proteína Supressora de Tumor p53/metabolismo , Acetilação , Sítios de Ligação , Biologia Computacional , Bases de Dados Genéticas , Elementos Facilitadores Genéticos , Epigênese Genética , Regulação da Expressão Gênica , Histonas/metabolismo , Humanos , Metilação , Especificidade de Órgãos , Ligação Proteica , Fatores de Transcrição/metabolismo , Sítio de Iniciação de Transcrição , Ativação Transcricional
12.
Cell Death Differ ; 31(7): 836-843, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38951700

RESUMO

The extent to which transcription factors read and respond to specific information content within short DNA sequences remains an important question that the tumor suppressor p53 is helping us answer. We discuss recent insights into how local information content at p53 binding sites might control modes of p53 target gene activation and cell fate decisions. Significant prior work has yielded data supporting two potential models of how p53 determines cell fate through its target genes: a selective target gene binding and activation model and a p53 level threshold model. Both of these models largely revolve around an analogy of whether p53 is acting in a "smart" or "dumb" manner. Here, we synthesize recent and past studies on p53 decoding of DNA sequence, chromatin context, and cellular signaling cascades to elicit variable cell fates critical in human development, homeostasis, and disease.


Assuntos
Regulação da Expressão Gênica , Proteína Supressora de Tumor p53 , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Humanos , DNA/metabolismo , Animais , Diferenciação Celular , Cromatina/metabolismo , Ligação Proteica , Transdução de Sinais , Sítios de Ligação
13.
bioRxiv ; 2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38766006

RESUMO

The p53 family of transcription factors regulate numerous organismal processes including the development of skin and limbs, ciliogenesis, and preservation of genetic integrity and tumor suppression. p53 family members control these processes and gene expression networks through engagement with DNA sequences within gene regulatory elements. Whereas p53 binding to its cognate recognition sequence is strongly associated with transcriptional activation, p63 can mediate both activation and repression. How the DNA sequence of p63-bound gene regulatory elements is linked to these varied activities is not yet understood. Here, we use massively parallel reporter assays (MPRA) in a range of cellular and genetic contexts to investigate the influence of DNA sequence on p63-mediated transcription. Most regulatory elements with a p63 response element motif (p63RE) activate transcription, with those sites bound by p63 more frequently or adhering closer to canonical p53 family response element sequences driving higher transcriptional output. The most active regulatory elements are those also capable of binding p53. Elements uniquely bound by p63 have varied activity, with p63RE-mediated repression associated with lower overall GC content in flanking sequences. Comparison of activity across cell lines suggests differential activity of elements may be regulated by a combination of p63 abundance or context-specific cofactors. Finally, changes in p63 isoform expression dramatically alters regulatory element activity, primarily shifting inactive elements towards a strong p63-dependent activity. Our analysis of p63-bound gene regulatory elements provides new insight into how sequence, cellular context, and other transcription factors influence p63-dependent transcription. These studies provide a framework for understanding how p63 genomic binding locally regulates transcription. Additionally, these results can be extended to investigate the influence of sequence content, genomic context, chromatin structure on the interplay between p63 isoforms and p53 family paralogs.

14.
Mol Cell Biol ; 43(8): 426-449, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37533313

RESUMO

The master tumor suppressor p53 regulates multiple cell fate decisions, such as cell cycle arrest and apoptosis, via transcriptional control of a broad gene network. Dysfunction in the p53 network is common in cancer, often through mutations that inactivate p53 or other members of the pathway. Induction of tumor-specific cell death by restoration of p53 activity without off-target effects has gained significant interest in the field. In this study, we explore the gene regulatory mechanisms underlying a putative anticancer strategy involving stimulation of the p53-independent integrated stress response (ISR). Our data demonstrate the p53 and ISR pathways converge to independently regulate common metabolic and proapoptotic genes. We investigated the architecture of multiple gene regulatory elements bound by p53 and the ISR effector ATF4 controlling this shared regulation. We identified additional key transcription factors that control basal and stress-induced regulation of these shared p53 and ATF4 target genes. Thus, our results provide significant new molecular and genetic insight into gene regulatory networks and transcription factors that are the target of numerous antitumor therapies.


Assuntos
Redes Reguladoras de Genes , Proteína Supressora de Tumor p53 , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Regulação da Expressão Gênica , Fatores de Transcrição/metabolismo , Apoptose/genética , Linhagem Celular Tumoral
15.
bioRxiv ; 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-36993734

RESUMO

The master tumor suppressor p53 regulates multiple cell fate decisions, like cell cycle arrest and apoptosis, via transcriptional control of a broad gene network. Dysfunction in the p53 network is common in cancer, often through mutations that inactivate p53 or other members of the pathway. Induction of tumor-specific cell death by restoration of p53 activity without off-target effects has gained significant interest in the field. In this study, we explore the gene regulatory mechanisms underlying a putative anti-cancer strategy involving stimulation of the p53-independent Integrated Stress Response (ISR). Our data demonstrate the p53 and ISR pathways converge to independently regulate common metabolic and pro-apoptotic genes. We investigated the architecture of multiple gene regulatory elements bound by p53 and the ISR effector ATF4 controlling this shared regulation. We identified additional key transcription factors that control basal and stress-induced regulation of these shared p53 and ATF4 target genes. Thus, our results provide significant new molecular and genetic insight into gene regulatory networks and transcription factors that are the target of numerous antitumor therapies.

16.
Dev Cell ; 58(22): 2580-2596.e6, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37673064

RESUMO

Germ cells differentiate into oocytes that launch the next generation upon fertilization. How the highly specialized oocyte acquires this distinct cell fate is poorly understood. During Drosophila oogenesis, H3K9me3 histone methyltransferase SETDB1 translocates from the cytoplasm to the nucleus of germ cells concurrently with oocyte specification. Here, we discovered that nuclear SETDB1 is required for silencing a cohort of differentiation-promoting genes by mediating their heterochromatinization. Intriguingly, SETDB1 is also required for upregulating 18 of the ∼30 nucleoporins (Nups) that compose the nucleopore complex (NPC), promoting NPC formation. NPCs anchor SETDB1-dependent heterochromatin at the nuclear periphery to maintain H3K9me3 and gene silencing in the egg chambers. Aberrant gene expression due to the loss of SETDB1 or Nups results in the loss of oocyte identity, cell death, and sterility. Thus, a feedback loop between heterochromatin and NPCs promotes transcriptional reprogramming at the onset of oocyte specification, which is critical for establishing oocyte identity.


Assuntos
Proteínas de Drosophila , Drosophila , Humanos , Animais , Drosophila/metabolismo , Heterocromatina/metabolismo , Retroalimentação , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Oócitos/metabolismo , Oogênese/genética , Células Germinativas/metabolismo
17.
J Biol Chem ; 286(30): 27011-8, 2011 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-21652698

RESUMO

Botulinum neurotoxin (BoNT) belongs to a large class of toxic proteins that act by enzymatically modifying cytosolic substrates within eukaryotic cells. The process by which a catalytic moiety is transferred across a membrane to enter the cytosol is not understood for any such toxin. BoNT is known to form pH-dependent pores important for the translocation of the catalytic domain into the cytosol. As a first step toward understanding this process, we investigated the mechanism by which the translocation domain of BoNT associates with a model liposome membrane. We report conditions that allow pH-dependent proteoliposome formation and identify a sequence at the translocation domain C terminus that is protected from proteolytic degradation in the context of the proteoliposome. Fluorescence quenching experiments suggest that residues within this sequence move to a hydrophobic environment upon association with liposomes. EPR analyses of spin-labeled mutants reveal major conformational changes in a distinct region of the structure upon association and indicate the formation of an oligomeric membrane-associated intermediate. Together, these data support a model of how BoNT orients with membranes in response to low pH.


Assuntos
Toxinas Botulínicas Tipo A/química , Membranas Artificiais , Modelos Químicos , Multimerização Proteica , Toxinas Botulínicas Tipo A/metabolismo , Citosol/química , Citosol/metabolismo , Concentração de Íons de Hidrogênio , Estrutura Terciária de Proteína , Transporte Proteico/fisiologia
18.
Biochem Biophys Res Commun ; 406(1): 13-9, 2011 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-21277287

RESUMO

The myotonic dystrophy type 2 protein ZNF9/CNBP is a small nucleic acid binding protein proposed to act as a regulator of transcription and translation. The precise functions and activity of this protein are poorly understood. Previous studies suggested that ZNF9 regulates translation and facilitates the process of cap-independent translation through interactions with mRNA and the translating ribosome. To help determine the role played by ZNF9 in the activation of translation initiation, we combined genetic and biochemical analysis of the putative ZNF9 ortholog GIS2, in the budding yeast Saccharomyces cerevisiae. Purification of the Gis2p protein followed by mass spectrometry based-proteomic analysis identified a large number of co-purifying ribosomal subunits and translation factors, strongly suggesting that Gis2p interacts with the protein translation machinery. Polysome profiling and ribosome isolation experiments confirm that Gis2p physically interacts with the translating ribosome. Interestingly, expression of yeast Gis2p in HEK293T cells activates cap-independent translation driven by the 5'UTR of the ODC gene. These data suggest that Gis2 is functionally orthologous to ZNF9 and acts as a cap-independent translation factor.


Assuntos
Biossíntese de Proteínas , Proteínas de Ligação a RNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Regiões 5' não Traduzidas , Sequência de Aminoácidos , Sequência Conservada , Evolução Molecular , Células HEK293 , Humanos , Dados de Sequência Molecular , Transtornos Miotônicos/genética , Transtornos Miotônicos/metabolismo , Distrofia Miotônica , Filogenia , Polirribossomos/metabolismo , Proteínas de Ligação a RNA/classificação , Proteínas de Ligação a RNA/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/classificação , Proteínas de Saccharomyces cerevisiae/genética
19.
Front Cell Dev Biol ; 9: 701986, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34291055

RESUMO

The tumor suppressor p53 and its oncogenic sibling p63 (ΔNp63) direct opposing fates in tumor development. These paralog proteins are transcription factors that elicit their tumor suppressive and oncogenic capacity through the regulation of both shared and unique target genes. Both proteins predominantly function as activators of transcription, leading to a paradigm shift away from ΔNp63 as a dominant negative to p53 activity. The discovery of p53 and p63 as pioneer transcription factors regulating chromatin structure revealed new insights into how these paralogs can both positively and negatively influence each other to direct cell fate. The previous view of a strict rivalry between the siblings needs to be revisited, as p53 and p63 can also work together toward a common goal.

20.
Viruses ; 12(5)2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32380717

RESUMO

The alternative splicing of pre-mRNAs expands a single genetic blueprint to encode multiple, functionally diverse protein isoforms. Viruses have previously been shown to interact with, depend on, and alter host splicing machinery. The consequences, however, incited by viral infection on the global alternative slicing (AS) landscape are under-appreciated. Here, we investigated the transcriptional and alternative splicing profile of neuronal cells infected with a contemporary Puerto Rican Zika virus (ZIKVPR) isolate, an isolate of the prototypical Ugandan ZIKV (ZIKVMR), and dengue virus 2 (DENV2). Our analyses revealed that ZIKVPR induced significantly more differential changes in expressed genes compared to ZIKVMR or DENV2, despite all three viruses showing equivalent infectivity and viral RNA levels. Consistent with the transcriptional profile, ZIKVPR induced a higher number of alternative splicing events compared to ZIKVMR or DENV2, and gene ontology analyses highlighted alternative splicing changes in genes associated with mRNA splicing. In summary, we show that ZIKV affects cellular RNA homeostasis not only at the transcriptional levels but also through the alternative splicing of cellular transcripts. These findings could provide new molecular insights into the neuropathologies associated with this virus.


Assuntos
Processamento Alternativo , Neuroblastoma/virologia , Infecção por Zika virus/genética , Zika virus/fisiologia , Ásia , Linhagem Celular Tumoral , Humanos , Transcrição Gênica , Zika virus/genética , Infecção por Zika virus/metabolismo , Infecção por Zika virus/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA