Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Immunol ; 208(2): 197-202, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-35017208

RESUMO

Minority groups face barriers in accessing quality health care, professional advancement, and representation in immunology research efforts as a result of institutional racism that if unaddressed can perpetuate a lack of diversity. In 2021, the AAI Minority Affairs Committee convened a cross section of academic and industry scientists from underrepresented groups at various stages of their professions to discuss how best to address the toll racism takes on study design and scientific careers. Panelists drew directly from their own experiences as scientists to share perspectives and strategies for countering a lack of representation in clinical research, responding to microaggressions, navigating academic advancement, and providing effective mentorship. The session reinforced the need for minority scientists to take an active role in advocating for diversity, engaging mentors, and taking responsibility to face rather than avoid institutional obstacles. Overall, increased dialogue and institutional awareness of the experience of scientists from underrepresented groups in research remain the best tools to ensure a health equity mindset and advancement of their careers.


Assuntos
Sucesso Acadêmico , Mobilidade Ocupacional , Grupos Minoritários/estatística & dados numéricos , Pesquisadores/estatística & dados numéricos , Racismo Sistêmico/estatística & dados numéricos , Pesquisa Biomédica , Diversidade Cultural , Humanos , Tutoria , Mentores , Microagressão , Minorias Sexuais e de Gênero/estatística & dados numéricos
2.
Sensors (Basel) ; 23(11)2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37300079

RESUMO

Applications of MEMS-based sensing technology are beneficial and versatile. If these electronic sensors integrate efficient processing methods, and if supervisory control and data acquisition (SCADA) software is also required, then mass networked real-time monitoring will be limited by cost, revealing a research gap related to the specific processing of signals. Static and dynamic accelerations are very noisy, and small variations of correctly processed static accelerations can be used as measurements and patterns of the biaxial inclination of many structures. This paper presents a biaxial tilt assessment for buildings based on a parallel training model and real-time measurements using inertial sensors, Wi-Fi Xbee, and Internet connectivity. The specific structural inclinations of the four exterior walls and their severity of rectangular buildings in urban areas with differential soil settlements can be supervised simultaneously in a control center. Two algorithms, combined with a new procedure using successive numeric repetitions designed especially for this work, process the gravitational acceleration signals, improving the final result remarkably. Subsequently, the inclination patterns based on biaxial angles are generated computationally, considering differential settlements and seismic events. The two neural models recognize 18 inclination patterns and their severity using an approach in cascade with a parallel training model for the severity classification. Lastly, the algorithms are integrated into monitoring software with 0.1° resolution, and their performance is verified on a small-scale physical model for laboratory tests. The classifiers had a precision, recall, F1-score, and accuracy greater than 95%.


Assuntos
Algoritmos , Software , Aceleração , Internet , Desenho de Equipamento
3.
Nature ; 519(7543): 366-9, 2015 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-25762141

RESUMO

After stimulation, dendritic cells (DCs) mature and migrate to draining lymph nodes to induce immune responses. As such, autologous DCs generated ex vivo have been pulsed with tumour antigens and injected back into patients as immunotherapy. While DC vaccines have shown limited promise in the treatment of patients with advanced cancers including glioblastoma, the factors dictating DC vaccine efficacy remain poorly understood. Here we show that pre-conditioning the vaccine site with a potent recall antigen such as tetanus/diphtheria (Td) toxoid can significantly improve the lymph node homing and efficacy of tumour-antigen-specific DCs. To assess the effect of vaccine site pre-conditioning in humans, we randomized patients with glioblastoma to pre-conditioning with either mature DCs or Td unilaterally before bilateral vaccination with DCs pulsed with Cytomegalovirus phosphoprotein 65 (pp65) RNA. We and other laboratories have shown that pp65 is expressed in more than 90% of glioblastoma specimens but not in surrounding normal brain, providing an unparalleled opportunity to subvert this viral protein as a tumour-specific target. Patients given Td had enhanced DC migration bilaterally and significantly improved survival. In mice, Td pre-conditioning also enhanced bilateral DC migration and suppressed tumour growth in a manner dependent on the chemokine CCL3. Our clinical studies and corroborating investigations in mice suggest that pre-conditioning with a potent recall antigen may represent a viable strategy to improve anti-tumour immunotherapy.


Assuntos
Vacinas Anticâncer/imunologia , Quimiocina CCL3/imunologia , Células Dendríticas/efeitos dos fármacos , Glioblastoma/imunologia , Glioblastoma/terapia , Toxoide Tetânico/administração & dosagem , Toxoide Tetânico/farmacologia , Animais , Antígenos de Neoplasias/imunologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Vacinas Anticâncer/administração & dosagem , Vacinas Anticâncer/uso terapêutico , Movimento Celular/efeitos dos fármacos , Células Dendríticas/citologia , Células Dendríticas/imunologia , Feminino , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Humanos , Imunoterapia/métodos , Linfonodos/citologia , Linfonodos/efeitos dos fármacos , Linfonodos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Fosfoproteínas/química , Fosfoproteínas/genética , Fosfoproteínas/imunologia , Especificidade por Substrato , Taxa de Sobrevida , Toxoide Tetânico/uso terapêutico , Resultado do Tratamento , Proteínas da Matriz Viral/química , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/imunologia
4.
Immunity ; 35(6): 972-85, 2011 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-22177921

RESUMO

Th17 cells have been described as short lived, but this view is at odds with their capacity to trigger protracted damage to normal and transformed tissues. We report that Th17 cells, despite displaying low expression of CD27 and other phenotypic markers of terminal differentiation, efficiently eradicated tumors and caused autoimmunity, were long lived, and maintained a core molecular signature resembling early memory CD8(+) cells with stem cell-like properties. In addition, we found that Th17 cells had high expression of Tcf7, a direct target of the Wnt and ß-catenin signaling axis, and accumulated ß-catenin, a feature observed in stem cells. In vivo, Th17 cells gave rise to Th1-like effector cell progeny and also self-renewed and persisted as IL-17A-secreting cells. Multipotency was required for Th17 cell-mediated tumor eradication because effector cells deficient in IFN-γ or IL-17A had impaired activity. Thus, Th17 cells are not always short lived and are a less-differentiated subset capable of superior persistence and functionality.


Assuntos
Células-Tronco/metabolismo , Células Th17/imunologia , Animais , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Sobrevivência Celular/genética , Perfilação da Expressão Gênica , Interleucina-17/biossíntese , Camundongos , Camundongos Transgênicos , Neoplasias/imunologia , Células-Tronco/citologia , Subpopulações de Linfócitos T/citologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Células Th1/citologia , Células Th1/imunologia , Células Th17/citologia , Células Th17/metabolismo , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/genética , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo
5.
J Proteome Res ; 18(8): 3032-3041, 2019 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-31267741

RESUMO

Bispecific single chain antibody fragments (bi-scFv) represent an emerging class of biotherapeutics. We recently developed a fully human bi-scFv (EGFRvIII:CD3 bi-scFv) with the goal of redirecting CD3-expressing T cells to recognize and destroy malignant, EGFRvIII-expressing glioma. In mice, we showed that EGFRvIII:CD3 bi-scFv effectively treats orthotopic patient-derived malignant glioma and syngeneic glioblastoma. Here, we developed a targeted assay for pharmacokinetic (PK) analysis of EGFRvIII:CD3 bi-scFv, a necessary step in the drug development process. Using microflow liquid chromatography coupled to a high resolution parallel reaction monitoring mass spectrometry, and data analysis in Skyline, we developed a bottom-up proteomic assay for quantification of EGFRvIII:CD3 bi-scFv in both plasma and whole blood. Importantly, a protein calibrator, along with stable isotope-labeled EGFRvIII:CD3 bi-scFv protein, were used for absolute quantification. A PK analysis in a CD3 humanized mouse revealed that EGFRvIII:CD3 bi-scFv in plasma and whole blood has an initial half-life of ∼8 min and a terminal half-life of ∼2.5 h. Our results establish a sensitive, high-throughput assay for direct quantification of EGFRvIII:CD3 bi-scFv without the need for immunoaffinity enrichment. Moreover, these pharmacokinetic parameters will guide drug optimization and dosing regimens in future IND-enabling and phase I studies of EGFRvIII:CD3 bi-scFv.


Assuntos
Anticorpos Biespecíficos/sangue , Complexo CD3/sangue , Receptores ErbB/sangue , Glioblastoma/sangue , Animais , Anticorpos Biespecíficos/farmacocinética , Anticorpos Biespecíficos/uso terapêutico , Complexo CD3/farmacocinética , Complexo CD3/uso terapêutico , Linhagem Celular Tumoral , Cromatografia Líquida , Receptores ErbB/farmacocinética , Receptores ErbB/uso terapêutico , Glioblastoma/imunologia , Glioblastoma/terapia , Humanos , Espectrometria de Massas , Camundongos , Proteômica/métodos , Linfócitos T/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Cancer Immunol Immunother ; 65(2): 205-11, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26759007

RESUMO

Regulatory B cells that secrete IL-10 (IL-10(+) Bregs) represent a suppressive subset of the B cell compartment with prominent anti-inflammatory capacity, capable of suppressing cellular and humoral responses to cancer and vaccines. B lymphocyte stimulator (BLyS) is a key regulatory molecule in IL-10(+) Breg biology with tightly controlled serum levels. However, BLyS levels can be drastically altered upon chemotherapeutic intervention. We have previously shown that serum BLyS levels are elevated, and directly associated, with increased antigen-specific antibody titers in patients with glioblastoma (GBM) undergoing lymphodepletive temozolomide chemotherapy and vaccination. In this study, we examined corresponding IL-10(+) Breg responses within this patient population and demonstrate that the IL-10(+) Breg compartment remains constant before and after administration of the vaccine, despite elevated BLyS levels in circulation. IL-10(+) Breg frequencies were not associated with serum BLyS levels, and ex vivo stimulation with a physiologically relevant concentration of BLyS did not increase IL-10(+) Breg frequency. However, BLyS stimulation did increase the frequency of the overall B cell compartment and promoted B cell proliferation upon B cell receptor engagement. Therefore, using BLyS as an adjuvant with therapeutic peptide vaccination could promote humoral immunity with no increase in immunosuppressive IL-10(+) Bregs. These results have implications for modulating humoral responses in human peptide vaccine trials in patients with GBM.


Assuntos
Fator Ativador de Células B/sangue , Linfócitos B Reguladores/imunologia , Glioblastoma/sangue , Glioblastoma/imunologia , Contagem de Linfócitos , Anticorpos/sangue , Anticorpos/imunologia , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Linfócitos B Reguladores/metabolismo , Vacinas Anticâncer/administração & dosagem , Vacinas Anticâncer/imunologia , Dacarbazina/análogos & derivados , Dacarbazina/farmacologia , Dacarbazina/uso terapêutico , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/imunologia , Glioblastoma/mortalidade , Glioblastoma/terapia , Humanos , Imunoterapia/métodos , Interleucina-10/metabolismo , Ativação Linfocitária/imunologia , Temozolomida , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/imunologia
7.
Expert Opin Emerg Drugs ; 21(2): 133-45, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27223671

RESUMO

INTRODUCTION: Immunotherapy for brain cancer has evolved dramatically over the past decade, owed in part to our improved understanding of how the immune system interacts with tumors residing within the central nervous system (CNS). Glioblastoma (GBM), the most common primary malignant brain tumor in adults, carries a poor prognosis (<15 months) and only few advances have been made since the FDA's approval of temozolomide (TMZ) in 2005. Importantly, several immunotherapies have now entered patient trials based on promising preclinical data, and recent studies have shed light on how GBM employs a slew of immunosuppressive mechanisms that may be targeted for therapeutic gain. Altogether, accumulating evidence suggests immunotherapy may soon earn its keep as a mainstay of clinical management for GBM. AREAS COVERED: Here, we review cancer vaccines, checkpoint inhibitors, adoptive T-cell immunotherapy, and oncolytic virotherapy. EXPERT OPINION: Checkpoint blockade induces antitumor activity by preventing negative regulation of T-cell activation. This platform, however, depends on an existing frequency of tumor-reactive T cells. GBM tumors are exceptionally equipped to prevent this, occupying low levels of antigen expression and elaborate mechanisms of immunosuppression. Therefore, checkpoint blockade may be most effective when used in combination with a DC vaccine or adoptively transferred tumor-specific T cells generated ex vivo. Both approaches have been shown to induce endogenous immune responses against tumor antigens, providing a rationale for use with checkpoint blockade where both primary and secondary responses may be potentiated.


Assuntos
Neoplasias Encefálicas/terapia , Glioblastoma/terapia , Imunoterapia/métodos , Adulto , Animais , Antígenos de Neoplasias/imunologia , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Vacinas Anticâncer/administração & dosagem , Glioblastoma/imunologia , Glioblastoma/patologia , Humanos , Terapia Viral Oncolítica/métodos , Prognóstico , Linfócitos T/imunologia
8.
Proc Natl Acad Sci U S A ; 110(1): 270-5, 2013 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-23248284

RESUMO

Bispecific antibodies (bscAbs), particularly those of the bispecific T-cell engager (BiTE) subclass, have been shown to effectively redirect T cells against cancer. Previous efforts to target antigens expressed in both tumors and normal tissues have produced significant toxicity, however. Moreover, like other large molecules, bscAbs may be restricted from entry into the "immunologically privileged" CNS. A tumor-specific mutation of the epidermal growth factor receptor, EGFRvIII, is a constitutively activated tyrosine kinase not found in normal tissues but frequently expressed in glioblastomas and many other neoplasms. Because it is localized solely to tumor tissue, EGFRvIII presents an ideal target for immunotherapy. Here we report the preclinical evaluation of an EGFRvIII-targeted BiTE, bscEGFRvIIIxCD3. Our results show that bscEGFRvIIIxCD3 activates T cells to mediate potent and antigen-specific lysis of EGFRvIII-expressing gliomas in vitro (P < 0.001) at exceedingly low concentrations (10 ng/mL) and effector-to-target ratios (2.5:1). Treatment with i.v. bscEGFRvIIIxCD3 yielded extended survival in mice with well-established intracerebral tumors (P < 0.05) and achieved durable complete cure at rates up to 75%. Antitumor efficacy was significantly abrogated on blockade of EGFRvIII binding, demonstrating the need for target antigen specificity both in vitro and in vivo. These results demonstrate that BiTEs can be used to elicit functional antitumor immunity in the CNS, and that peptide blockade of BiTE-mediated activity may greatly enhance the safety profile for antibody-redirected T-cell therapies. Finally, bscEGFRvIIIxCD3 represents a unique advancement in BiTE technology given its exquisite tumor specificity, which enables precise elimination of cancer without the risk of autoimmune toxicity.


Assuntos
Anticorpos Biespecíficos/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Receptores ErbB/imunologia , Glioma/tratamento farmacológico , Imunoterapia/métodos , Animais , Anticorpos Biespecíficos/administração & dosagem , Neoplasias Encefálicas/imunologia , Cromatografia , Eletroforese em Gel de Poliacrilamida , Receptores ErbB/genética , Escherichia coli , Citometria de Fluxo , Glioma/imunologia , Camundongos , Ressonância de Plasmônio de Superfície , Linfócitos T/imunologia , Resultado do Tratamento
9.
Cancer Immunol Immunother ; 62(6): 983-7, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23591978

RESUMO

B lymphocyte stimulator (BLyS) is a cytokine involved in differentiation and survival of follicular B cells along with humoral response potentiation. Lymphopenia is known to precipitate dramatic elevation in serum BLyS; however, the use of this effect to enhance humoral responses following vaccination has not been evaluated. We evaluated BLyS serum levels and antigen-specific antibody titers in 8 patients undergoing therapeutic temozolomide (TMZ)-induced lymphopenia, with concomitant vaccine against a tumor-specific mutation in the epidermal growth factor receptor (EGFRvIII). Our studies demonstrate that TMZ-induced lymphopenia corresponded with spikes in serum BLyS that directly preceded the induction of anti-EGFRvIII antigen-specific antibody titers, in some cases as high as 1:2,000,000. Our data are the first clinical observation of BLyS serum elevation and greatly enhanced humoral immune responses as a consequence of chemotherapy-induced lymphopenia. These observations should be considered for the development of future vaccination strategies in the setting of malignancy.


Assuntos
Antineoplásicos Alquilantes/uso terapêutico , Fator Ativador de Células B/sangue , Vacinas Anticâncer/imunologia , Dacarbazina/análogos & derivados , Glioblastoma/imunologia , Depleção Linfocítica , Anticorpos/sangue , Especificidade de Anticorpos/imunologia , Antineoplásicos Alquilantes/efeitos adversos , Dacarbazina/efeitos adversos , Dacarbazina/uso terapêutico , Glioblastoma/terapia , Humanos , Linfopenia/sangue , Linfopenia/induzido quimicamente , Temozolomida
10.
Blood ; 118(11): 3003-12, 2011 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-21768296

RESUMO

Lymphodepletion augments adoptive cell transfer during antitumor immunotherapy, producing dramatic clinical responses in patients with malignant melanoma. We report that the lymphopenia induced by the chemotherapeutic agent temozolomide (TMZ) enhances vaccine-driven immune responses and significantly reduces malignant growth in an established model of murine tumorigenesis. Unexpectedly, despite the improved antitumor efficacy engendered by TMZ-induced lymphopenia, there was a treatment related increase in the frequency of immunosuppressive regulatory T cells (T(Regs); P = .0006). Monoclonal antibody (mAb)-mediated inhibition of the high-affinity IL-2 receptor α (IL-2Rα/CD25) during immunotherapy in normal mice depleted T(Regs) (73% reduction; P = .0154) but also abolished vaccine-induced immune responses. However, during lymphodepletion, IL-2Rα blockade decreased T(Regs) (93% reduction; P = .0001) without impairing effector T-cell responses, to augment therapeutic antitumor efficacy (66% reduction in tumor growth; P = .0024). Of clinical relevance, we also demonstrate that anti-IL-2Rα mAb administration during recovery from lymphodepletive TMZ in patients with glioblastoma reduced T(Reg) frequency (48% reduction; P = .0061) while permitting vaccine-stimulated antitumor effector cell expansion. To our knowledge, this is the first report of systemic antibody-mediated T(Reg) depletion during lymphopenia and the consequent synergistic enhancement of vaccine-driven cellular responses, as well as the first demonstration that anti-IL-2Rα mAbs function differentially in nonlymphopenic versus lymphopenic contexts.


Assuntos
Anticorpos Monoclonais/farmacologia , Subunidade alfa de Receptor de Interleucina-2/antagonistas & inibidores , Depleção Linfocítica/métodos , Linfopenia/imunologia , Linfócitos T Reguladores/efeitos dos fármacos , Adulto , Animais , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Antineoplásicos Alquilantes/uso terapêutico , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/terapia , Vacinas Anticâncer/uso terapêutico , Células Cultivadas , Terapia Combinada , Dacarbazina/análogos & derivados , Dacarbazina/uso terapêutico , Daclizumabe , Avaliação Pré-Clínica de Medicamentos , Glioblastoma/imunologia , Glioblastoma/terapia , Humanos , Imunoglobulina G/farmacologia , Imunoglobulina G/uso terapêutico , Imunoterapia/métodos , Subunidade alfa de Receptor de Interleucina-2/imunologia , Linfopenia/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pessoa de Meia-Idade , Especificidade por Substrato/efeitos dos fármacos , Especificidade por Substrato/imunologia , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/imunologia , Temozolomida , Adulto Jovem
11.
Bioengineering (Basel) ; 10(5)2023 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-37237657

RESUMO

One problem in the quantitative assessment of biomechanical impairments in Parkinson's disease patients is the need for scalable and adaptable computing systems. This work presents a computational method that can be used for motor evaluations of pronation-supination hand movements, as described in item 3.6 of the Unified Parkinson's Disease Rating Scale (MDS-UPDRS). The presented method can quickly adapt to new expert knowledge and includes new features that use a self-supervised training approach. The work uses wearable sensors for biomechanical measurements. We tested a machine-learning model on a dataset of 228 records with 20 indicators from 57 PD patients and eight healthy control subjects. The test dataset's experimental results show that the method's precision rates for the pronation and supination classification task achieved up to 89% accuracy, and the F1-scores were higher than 88% in most categories. The scores present a root mean squared error of 0.28 when compared to expert clinician scores. The paper provides detailed results for pronation-supination hand movement evaluations using a new analysis method when compared to the other methods mentioned in the literature. Furthermore, the proposal consists of a scalable and adaptable model that includes expert knowledge and affectations not covered in the MDS-UPDRS for a more in-depth evaluation.

12.
J Nephrol ; 36(3): 809-815, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35947357

RESUMO

BACKGROUND: A genome-wide association study (GWAS) in kidney transplant recipients reported the association of two polymorphisms located in the PTPRO gene and upstream of the CCDC67 (DEUP1) gene with increased risk of acute T cell-mediated rejection (TCMR). We aimed at replicating the assessment of mentioned associations and additionally ascertaining the influence of treatment and clinical features of the patients. METHODS: The polymorphisms, PTPRO-rs7976329 and CCDC67-rs10765602 were genotyped by TaqMan chemistry in 641 consecutive kidney transplant recipients. The diagnosis of rejection was confirmed by biopsy and categorized according to the Banff classification. Associations were evaluated by Chi-square test or Fisher's exact test when necessary and multivariate logistic regression. RESULTS: Considering the GWAS study we only replicated the association of the PTPRO-rs7976329*C allele in the Banff grade < II subjects. However, the homozygous mutant genotypes of both polymorphism seemed to increase the risk of TCMR Banff grade < II in the overall cohort and after stratification by Thymoglobulin induction therapy. In the multivariate analysis, we confirmed the association of PTPRO-rs7976329 with TCMR Banff grade < II, independently of the Thymoglobulin induction therapy and of CCDC67-rs10765602 only in the group of patients not receiving Thymoglobulin induction therapy. No association of these polymorphisms with TCMR Banff grade ≥ II was observed in either the overall cohort or in the subgroups stratified by Thymoglobulin therapy. CONCLUSIONS: Our study shows that the increased risk of TCMR related to polymorphisms PTPRO-rs7976329 and CCDC67-rs10765602 previously reported in a GWAS was replicated only in homozygous patients who presented TCMR Banff grade < II and for the minor allele of either polymorphism.


Assuntos
Transplante de Rim , Humanos , Transplante de Rim/efeitos adversos , Linfócitos T , Estudo de Associação Genômica Ampla , Biomarcadores
13.
Front Immunol ; 14: 1085547, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36817432

RESUMO

Chimeric antigen receptor (CAR) T cell therapy in glioblastoma faces many challenges including insufficient CAR T cell abundance and antigen-negative tumor cells evading targeting. Unfortunately, preclinical studies evaluating CAR T cells in glioblastoma focus on tumor models that express a single antigen, use immunocompromised animals, and/or pre-treat with lymphodepleting agents. While lymphodepletion enhances CAR T cell efficacy, it diminishes the endogenous immune system that has the potential for tumor eradication. Here, we engineered CAR T cells to express IL7 and/or Flt3L in 50% EGFRvIII-positive and -negative orthotopic tumors pre-conditioned with non-lymphodepleting irradiation. IL7 and IL7 Flt3L CAR T cells increased intratumoral CAR T cell abundance seven days after treatment. IL7 co-expression with Flt3L modestly increased conventional dendritic cells as well as the CD103+XCR1+ population known to have migratory and antigen cross-presenting capabilities. Treatment with IL7 or IL7 Flt3L CAR T cells improved overall survival to 67% and 50%, respectively, compared to 9% survival with conventional or Flt3L CAR T cells. We concluded that CAR T cells modified to express IL7 enhanced CAR T cell abundance and improved overall survival in EGFRvIII heterogeneous tumors pre-conditioned with non-lymphodepleting irradiation. Potentially IL7 or IL7 Flt3L CAR T cells can provide new opportunities to combine CAR T cells with other immunotherapies for the treatment of glioblastoma.


Assuntos
Glioblastoma , Glioma , Animais , Camundongos , Receptores ErbB , Glioblastoma/terapia , Interleucina-7 , Linfócitos T
14.
Sci Transl Med ; 15(682): eabn5649, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36753564

RESUMO

D2C7-immunotoxin (IT), a dual-specific IT targeting wild-type epidermal growth factor receptor (EGFR) and mutant EGFR variant III (EGFRvIII) proteins, demonstrates encouraging survival outcomes in a subset of patients with glioblastoma. We hypothesized that immunosuppression in glioblastoma limits D2C7-IT efficacy. To improve the response rate and reverse immunosuppression, we combined D2C7-IT tumor cell killing with αCD40 costimulation of antigen-presenting cells. In murine glioma models, a single intratumoral injection of D2C7-IT+αCD40 treatment activated a proinflammatory phenotype in microglia and macrophages, promoted long-term tumor-specific CD8+ T cell immunity, and generated cures. D2C7-IT+αCD40 treatment increased intratumoral Slamf6+CD8+ T cells with a progenitor phenotype and decreased terminally exhausted CD8+ T cells. D2C7-IT+αCD40 treatment stimulated intratumoral CD8+ T cell proliferation and generated cures in glioma-bearing mice despite FTY720-induced peripheral T cell sequestration. Tumor transcriptome profiling established CD40 up-regulation, pattern recognition receptor, cell senescence, and immune response pathway activation as the drivers of D2C7-IT+αCD40 antitumor responses. To determine potential translation, immunohistochemistry staining confirmed CD40 expression in human GBM tissue sections. These promising preclinical data allowed us to initiate a phase 1 study with D2C7-IT+αhCD40 in patients with malignant glioma (NCT04547777) to further evaluate this treatment in humans.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Imunotoxinas , Humanos , Animais , Camundongos , Glioblastoma/patologia , Imunotoxinas/genética , Linfócitos T CD8-Positivos , Imunidade Adaptativa , Receptores ErbB/metabolismo , Linhagem Celular Tumoral , Neoplasias Encefálicas/terapia
15.
Nat Med ; 11(10): 1073-81, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16170322

RESUMO

Antigen-specific T cells circulate freely and accumulate specifically at sites of antigen expression. To enhance the survival and targeting of systemically delivered viral vectors, we exploited the observation that retroviral particles adhere nonspecifically, or 'hitchhike,' to the surface of T cells. Adoptive transfer of antigen-specific T cells, loaded with viruses encoding interleukin (IL)-12 or Herpes Simplex Virus thymidine kinase (HSVtk), cured established metastatic disease where adoptive T-cell transfer alone was not effective. Productive hand off correlated with local heparanase expression either from malignant tumor cells and/or as a result of T-cell activation by antigen, providing high levels of selectivity for viral transfer to metastatic tumors in vivo. Protection, concentration and targeting of viruses by adsorption to cell carriers represent a new technique for systemic delivery of vectors, in fully immunocompetent hosts, for a variety of diseases in which delivery of genes may be therapeutically beneficial.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Técnicas de Transferência de Genes , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Imunoterapia/métodos , Neoplasias/terapia , Animais , Linhagem Celular Tumoral , Humanos , Camundongos , Camundongos Transgênicos , Neoplasias/genética , Neoplasias/imunologia , Especificidade de Órgãos , Retroviridae/genética , Retroviridae/fisiologia , Sensibilidade e Especificidade
16.
Proc Natl Acad Sci U S A ; 106(41): 17469-74, 2009 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-19805141

RESUMO

Effector cells derived from central memory CD8(+) T cells were reported to engraft and survive better than those derived from effector memory populations, suggesting that they are superior for use in adoptive immunotherapy studies. However, previous studies did not evaluate the relative efficacy of effector cells derived from naïve T cells. We sought to investigate the efficacy of tumor-specific effector cells derived from naïve or central memory T-cell subsets using transgenic or retrovirally transduced T cells engineered to express a tumor-specific T-cell receptor. We found that naïve, rather than central memory T cells, gave rise to an effector population that mediated superior antitumor immunity upon adoptive transfer. Effector cells developed from naïve T cells lost the expression of CD62L more rapidly than those derived from central memory T cells, but did not acquire the expression of KLRG-1, a marker for terminal differentiation and replicative senescence. Consistent with this KLRG-1(-) phenotype, naïve-derived cells were capable of a greater proliferative burst and had enhanced cytokine production after adoptive transfer. These results indicate that insertion of genes that confer antitumor specificity into naïve rather than central memory CD8(+) T cells may allow superior efficacy upon adoptive transfer.


Assuntos
Transferência Adotiva , Linfócitos T CD8-Positivos/imunologia , Memória Imunológica , Imunoterapia Adotiva/métodos , Neoplasias/imunologia , Animais , Animais Geneticamente Modificados , Autoantígenos/imunologia , Humanos , Imunofenotipagem , Neoplasias Experimentais/imunologia , Primatas/imunologia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Taxa de Sobrevida
17.
Sci Adv ; 8(29): eabm7833, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35857833

RESUMO

Subunit vaccines inducing antibodies against tumor-specific antigens have yet to be clinically successful. Here, we use a supramolecular α-helical peptide nanofiber approach to design epitope-specific vaccines raising simultaneous B cell, CD8+ T cell, and CD4+ T cell responses against combinations of selected epitopes and show that the concurrent induction of these responses generates strong antitumor effects in mice, with significant improvements over antibody or CD8+ T cell-based vaccines alone, in both prophylactic and therapeutic subcutaneous melanoma models. Nanofiber vaccine-induced antibodies mediated in vitro tumoricidal antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP). The addition of immune checkpoint and phagocytosis checkpoint blockade antibodies further improved the therapeutic effect of the nanofiber vaccines against murine melanoma. These findings highlight the potential clinical benefit of vaccine-induced antibody responses for tumor treatments, provided that they are accompanied by simultaneous CD8+ and CD4+ responses, and they illustrate a multiepitope cancer vaccine design approach using supramolecular nanomaterials.


Assuntos
Vacinas Anticâncer , Melanoma , Nanofibras , Animais , Epitopos , Imunidade Celular , Camundongos , Peptídeos
18.
Nat Commun ; 13(1): 6483, 2022 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-36309495

RESUMO

Glioblastoma (GBM) is notorious for its immunosuppressive tumor microenvironment (TME) and is refractory to immune checkpoint blockade (ICB). Here, we identify calmodulin-dependent kinase kinase 2 (CaMKK2) as a driver of ICB resistance. CaMKK2 is highly expressed in pro-tumor cells and is associated with worsened survival in patients with GBM. Host CaMKK2, specifically, reduces survival and promotes ICB resistance. Multimodal profiling of the TME reveals that CaMKK2 is associated with several ICB resistance-associated immune phenotypes. CaMKK2 promotes exhaustion in CD8+ T cells and reduces the expansion of effector CD4+ T cells, additionally limiting their tumor penetrance. CaMKK2 also maintains myeloid cells in a disease-associated microglia-like phenotype. Lastly, neuronal CaMKK2 is required for maintaining the ICB resistance-associated myeloid phenotype, is deleterious to survival, and promotes ICB resistance. Our findings reveal CaMKK2 as a contributor to ICB resistance and identify neurons as a driver of immunotherapeutic resistance in GBM.


Assuntos
Glioblastoma , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Linfócitos T CD8-Positivos , Microambiente Tumoral , Terapia de Imunossupressão , Neurônios/patologia , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/genética
19.
Sci Transl Med ; 14(640): eabn2231, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35417192

RESUMO

Oncolytic viruses (OVs) encoding a variety of transgenes have been evaluated as therapeutic tools to increase the efficacy of chimeric antigen receptor (CAR)-modified T cells in the solid tumor microenvironment (TME). Here, using systemically delivered OVs and CAR T cells in immunocompetent mouse models, we have defined a mechanism by which OVs can potentiate CAR T cell efficacy against solid tumor models of melanoma and glioma. We show that stimulation of the native T cell receptor (TCR) with viral or virally encoded epitopes gives rise to enhanced proliferation, CAR-directed antitumor function, and distinct memory phenotypes. In vivo expansion of dual-specific (DS) CAR T cells was leveraged by in vitro preloading with oncolytic vesicular stomatitis virus (VSV) or reovirus, allowing for a further in vivo expansion and reactivation of T cells by homologous boosting. This treatment led to prolonged survival of mice with subcutaneous melanoma and intracranial glioma tumors. Human CD19 CAR T cells could also be expanded in vitro with TCR reactivity against viral or virally encoded antigens and was associated with greater CAR-directed cytokine production. Our data highlight the utility of combining OV and CAR T cell therapy and show that stimulation of the native TCR can be exploited to enhance CAR T cell activity and efficacy in mice.


Assuntos
Glioma , Melanoma , Terapia Viral Oncolítica , Vírus Oncolíticos , Receptores de Antígenos Quiméricos , Animais , Glioma/terapia , Imunoterapia Adotiva , Melanoma/terapia , Camundongos , Vírus Oncolíticos/fisiologia , Receptores de Antígenos de Linfócitos T , Linfócitos T , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Blood ; 114(3): 596-9, 2009 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-19471017

RESUMO

Interleukin-17 (IL-17)-secreting CD8(+) T cells have been described, but they have not been thoroughly studied and they do not have a known role in cancer immunotherapy. We skewed CD8(+) T cells to secrete IL-17 through priming in Th17-polarizing conditions. IL-17-producing CD8(+) T cells demonstrated reduced expression of Eomes and diminished cytolytic differentiation in vitro. However, after adoptive transfer, these cells converted to interferon-gamma-producing effector cells and mediated regression of large, established tumors. This improved antitumor immunity was associated with increased expression of IL-7R-alpha, decreased expression of killer cell lectin-like receptor G1, and enhanced persistence of the transferred cells. This report is the first description of a cancer therapy with IL-17-secreting CD8(+) T cells. These findings have implications for the improvement of CD8(+) T cell-based adoptive immunotherapy.


Assuntos
Linfócitos T CD8-Positivos/metabolismo , Imunoterapia Adotiva/métodos , Interleucina-17/metabolismo , Neoplasias Experimentais/terapia , Animais , Linfócitos T CD8-Positivos/transplante , Linhagem Celular Tumoral , Interferon gama/biossíntese , Interleucina-17/biossíntese , Camundongos , Camundongos Transgênicos , Neoplasias Experimentais/imunologia , Receptores de Interleucina-7/biossíntese , Receptores Semelhantes a Lectina de Células NK/biossíntese , Subpopulações de Linfócitos T , Linfócitos T Citotóxicos/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA