Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 24(9)2019 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-31075959

RESUMO

The recycled paper and board industry needs to improve the quality of their products to meet customer demands. The refining process and strength additives are commonly used to increase mechanical properties. Interfiber bonding can also be improved using cellulose nanofibers (CNF). A circular economy approach in the industrial implementation of CNF can be addressed through the in situ production of CNF using side cellulose streams of the process as raw material, avoiding transportation costs and reducing industrial wastes. Furthermore, CNF fit for use can be produced for specific industrial applications.This study evaluates the feasibility of using two types of recycled fibers, simulating the broke streams of two paper machines producing newsprint and liner for cartonboard, to produce in situ CNF for direct application on the original pulps, old newsprint (ONP), and old corrugated container (OCC), and to reinforce the final products. The CNF were obtained by 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO)-mediated oxidation and homogenization at 600 bar. Handsheets were prepared with disintegrated recycled pulp and different amounts of CNF using a conventional three-component retention system. Results show that 3 wt.% of CNF produced with 10 mmol of NaClO per gram of dry pulp improve tensile index of ONP ~30%. For OCC, the same treatment and CNF dose increase tensile index above 60%. In both cases, CNF cause a deterioration of drainage, but this effect is effectively counteracted by optimising the retention system.


Assuntos
Celulose/síntese química , Nanofibras/química , Papel , Reciclagem , Óxidos N-Cíclicos/química , Oxirredução , Resistência à Tração
2.
Int J Biol Macromol ; 261(Pt 2): 129612, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38272426

RESUMO

The industrial use of TEMPO-mediated oxidation (TMO) reaction to produce highly fibrillated cellulose nanofibrils has been hindered by high catalyst costs, long reaction times and high reaction volumes. The hypothesis that cellulose concentration during TMO process is key to increase the process of efficiency has been confirmed. The novelty of this research is the proof-of-concept for a significant enhancement of the TMO reaction by kneading the cellulose to work in concentrations above 120 g/L. Results show that the increase of the cellulose concentration in the TMO reaction, from the traditional 10 g/L to 120 g/L, increase not only the production for the same reaction volume (1200 %) but also the pulp recovery (up to 94 %). Moreover, the oxidation time can be reduced from 42 min to only 4 min while properties of both the oxidized pulps and the final nanocellulose are similar. On the other hand, the use of buffers in the TMO reaction allows us to keep the pH constant without using NaOH, and to improve the selectivity of the carboxyl groups production. The proposed process also minimizes the final environmental impact.


Assuntos
Celulose , Nanofibras , Celulose/química , Nanofibras/química , Óxidos N-Cíclicos/química , Oxirredução
3.
Carbohydr Polym ; 319: 121168, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37567710

RESUMO

The potential of TEMPO (2,2,6,6-tetramethyl-1-piperidinyloxy)-mediated oxidation (TMO) to produce cellulose nanofibrils (CNFs) is hindered using costly and environmentally harmful catalysts, limiting its large-scale implementation. To promote sustainability, the TMO medium should be reused but there is a lack of knowledge on this process. The novelty of this research is the identification of the key parameters that affect the recirculation of the TMO medium, and their impact on the quality of the oxidized pulps and CNF products. Contrary to previous hypothesis, results show that the accumulation of salts is not a key parameter; instead, the pulp consistency during oxidation plays a vital role since concentrations higher than 10 g/L led to better CNF quality. Thus, reusing 75 % of the reaction medium, when high pulp consistency is used, does not alter the CNF properties. By reusing the reaction medium up to six times, the catalyst dose is dramatically reduced by >90 % for TEMPO and 80 % for NaBr, compared to the conventional process (0.1 mmol of TEMPO/g and 1 mmol of NaBr/g without medium reuse). Additionally, the high consistency oxidation enables a reduction of >80 % in the reaction time and effluent, and thus a threefold increase in CNF production.

4.
Nanomaterials (Basel) ; 13(13)2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37446447

RESUMO

To extend the application of cost-effective high-yield pulps in packaging, strength and barrier properties are improved by advanced-strength additives or by hot-pressing. The aim of this study is to assess the synergic effects between the two approaches by using nanocellulose as a bulk additive, and by hot-pressing technology. Due to the synergic effect, dry strength increases by 118% while individual improvements are 31% by nanocellulose and 92% by hot-pressing. This effect is higher for mechanical fibrillated cellulose. After hot-pressing, all papers retain more than 22% of their dry strength. Hot-pressing greatly increases the paper's ability to withstand compressive forces applied in short periods of time by 84%, with a further 30% increase due to the synergic effect of the fibrillated nanocellulose. Hot-pressing and the fibrillated cellulose greatly decrease air permeability (80% and 68%, respectively) for refining pretreated samples, due to the increased fiber flexibility, which increase up to 90% using the combined effect. The tear index increases with the addition of nanocellulose, but this effect is lost after hot-pressing. In general, fibrillation degree has a small effect which means that low- cost nanocellulose could be used in hot-pressed papers, providing products with a good strength and barrier capacity.

5.
Nanomaterials (Basel) ; 13(18)2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37764564

RESUMO

The cost-effective implementation of nanofibrillated cellulose (CNF) at industrial scale requires optimizing the quality of the nanofibers according to their final application. Therefore, a portfolio of CNFs with different qualities is necessary, as well as further knowledge about how to obtain each of the main qualities. This paper presents the influence of various production techniques on the morphological characteristics and properties of CNFs produced from a mixture of recycled fibers. Five different pretreatments have been investigated: a mechanical pretreatment (PFI refining), two enzymatic hydrolysis strategies, and TEMPO-mediated oxidation under two different NaClO concentrations. For each pretreatment, five high-pressure homogenization (HPH) conditions have been considered. Our results show that the pretreatment determines the yield and the potential of HPH to enhance fibrillation and, therefore, the final CNF properties. These results enable one to select the most effective production method with the highest yield of produced CNFs from recovered paper for the desired CNF quality in diverse applications.

6.
Int J Biol Macromol ; 248: 125886, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37481180

RESUMO

The use of cellulose micro/nanofibrils (CMNFs) as reinforcement paper additive at industrial scale is delayed due to inconsistent results, suggesting a lack of proper consideration of some key parameters. The high influence of fibrillated nanocellulose dispersion has been recently identified as a key parameter for paper bulk reinforcement but it has not been studied for surface coating applications yet. This paper studies the effect of CMNF dispersion degree prior to their addition and during mixing with starch on the reinforcement of paper by coating. Results show that this effect depends on the type of CMNFs since it is related to the surface interactions. For a given formulation, a correlation is observed between the CMNF dispersion and the CMNF/starch mixing agitation with the rheology of the coating formulation which highly affects the paper properties. The optimal dispersion degree is different for each nanocellulose, but the best mechanical properties were always achieved at the lowest viscosity of the coating formulation. In general, the initial state of the nanocellulose 3D network, influences the mixing and smooth application of the coating and affects the reinforcement effect. Therefore, the CMNF industrial implementation in coating formulations will be facilitated by the on-line control of formulations prior to their surface application.


Assuntos
Celulose , Indústrias , Reologia , Amido , Viscosidade
7.
Nanomaterials (Basel) ; 12(5)2022 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-35269278

RESUMO

The dispersion degree of cellulose micro and nanofibrils (CMFs/CNFs) in water suspensions is key to understand and optimize their effectiveness in several applications. In this study, we proposed a method, based on gel point (Øg), to calculate both aspect ratio and dispersion degree. This methodology was validated through the morphological characterization of CMFs/CNFs by Transmission Electronic Microscopy. The influence of dispersion degree on the reinforcement of recycled cardboard has also been evaluated by stirring CMF/CNF suspensions at different speeds. Results show that as stirring speed increases, Øg decreased to a minimum value, in which the aspect ratio is maximum. Then, Øg increased again. Suspensions with lower Øg, in the intermediate region of agitation present very good dispersion behavior with an open and spongy network structure, in which nanofibril clusters are totally dispersed. Higher stirring speeds shorten the nanofibrils and the networks collapse. Results show that the dispersion of the nanocellulose at the minimum Øg before their addition to the pulp, produces higher mechanical properties, even higher than when CNFs and pulp are agitated together. This method allows for the determination of the CMF/CNF dispersion, to maximize their behavior as strength agents. This knowledge would be crucial to understand why some industrial trials did not give satisfactory results.

8.
Int J Biol Macromol ; 205: 220-230, 2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35182566

RESUMO

Current knowledge on the properties of different types of cellulose nanofibers (CNFs) is fragmented. Properties variation is very extensive, depending on raw materials, effectiveness of the treatments to extract the cellulose fraction from the lignocellulosic biomass, pretreatments to facilitate cellulose fibrillation and final mechanical process to separate the microfibrils. Literature offers multiple parameters to characterize the CNFs prepared by different routes. However, there is a lack of an extensive guide to compare the CNFs. In this study, we perform a critical comparison of rheological, compositional, and morphological features of CNFs, produced from the most representative types of woody plants, hardwood and softwood, using different types and intensities of pretreatments, including enzymatic, chemical and mechanical ones, and varying the severity of mechanical treatment focusing on the relationship between macroscopic and microscopic parameters. This structured information will be exceedingly useful to select the most appropriate CNF for a certain application based on the most relevant parameters in each case.


Assuntos
Nanofibras , Biomassa , Celulose/química , Fenômenos Mecânicos , Nanofibras/química , Reologia
9.
Polymers (Basel) ; 14(16)2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-36015682

RESUMO

Cellulose nanofibers (CNF) are sustainable nanomaterials, obtained by the mechanical disintegration of cellulose, whose properties make them an interesting adsorbent material due to their high specific area and active groups. CNF are easily functionalized to optimize the performance for different uses. The hypothesis of this work is that hydrophobization can be used to improve their ability as adsorbents. Therefore, hydrophobic CNF was applied to adsorb hexavalent chromium from wastewater. CNF was synthetized by TEMPO-mediated oxidation, followed by mechanical disintegration. Hydrophobization was performed using methyl trimetoxysilane (MTMS) as a hydrophobic coating agent. The adsorption treatment of hexavalent chromium with hydrophobic CNF was optimized by studying the influence of contact time, MTMS dosage (0-3 mmol·g-1 CNF), initial pH of the wastewater (3-9), initial chromium concentration (0.10-50 mg·L-1), and adsorbent dosage (250-1000 mg CNF·L-1). Furthermore, the corresponding adsorption mechanism was identified. Complete adsorption of hexavalent chromium was achieved with CNF hydrophobized with 1.5 mmol MTMS·g-1 CNF with the faster adsorption kinetic, which proved the initial hypothesis that hydrophobic CNF improves the adsorption capacity of hydrophilic CNF. The optimal adsorption conditions were pH 3 and the adsorbent dosage was over 500 mg·L-1. The maximum removal was found for the initial concentrations of hexavalent chromium below 1 mg·L-1 and a maximum adsorption capacity of 70.38 mg·g-1 was achieved. The kinetic study revealed that pseudo-second order kinetics was the best fitting model at a low concentration while the intraparticle diffusion model fit better for higher concentrations, describing a multi-step mechanism of hexavalent chromium onto the adsorbent surface. The Freundlich isotherm was the best adjustment model.

10.
Nanomaterials (Basel) ; 12(24)2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36558352

RESUMO

Vegetable supply in the world is more than double than vegetable intake, which supposes a significant waste of vegetables, in addition to the agricultural residues produced. As sensitive food products, the reasons for this waste vary from the use of only a part of the vegetable due to its different properties to the product appearance and market image. An alternative high-added-value application for these wastes rich in cellulose could be the reduction in size to produce lignocellulose micro- and nanofibrils (LCMNF). In this sense, a direct treatment of greengrocery waste (leek, lettuce, and artichoke) to produce LCMNFs without the extraction of cellulose has been studied, obtaining highly concentrated suspensions, without using chemicals. After drying the wastes, these suspensions were produced by milling and blending at high shear followed by several passes in the high-pressure homogenizer (up to six passes). The presence of more extractives and shorter fiber lengths allowed the obtention of 5-5.5% leek LCMNF suspensions and 3.5-4% lettuce LCMNF suspensions, whereas for artichoke, only suspensions of under 1% were obtained. The main novelty of the work was the obtention of a high concentration of micro- and nanofiber suspension from the total waste without any pretreatment. These high concentrations are not obtained from other raw materials (wood or annual plants) due to the clogging of the homogenizer, requiring the dilution of the sample up to 1% or the use of chemical pretreatments.

11.
Int J Biol Macromol ; 178: 325-343, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33652051

RESUMO

Public perception of polymers has been drastically changed with the improved plastic management at the end of their life. However, it is widely recognised the need of developing biodegradable polymers, as an alternative to traditional petrochemical polymers. Chitosan (CH), a biodegradable biopolymer with excellent physiological and structural properties, together with its immunostimulatory and antibacterial activity, is a good candidate to replace other polymers, mainly in biomedical applications. However, CH has also several drawbacks, which can be solved by chemical modifications to improve some of its characteristics such as solubility, biological activity, and mechanical properties. Many chemical modifications have been studied in the last decade to improve the properties of CH. This review focussed on a critical analysis of the state of the art of chemical modifications by cross-linking and graft polymerization, between CH or CH derivatives and other biodegradable polymers (polysaccharides or proteins, obtained from microorganisms, synthetized from biomonomers, or from petrochemical products). Both techniques offer the option of including a wide variety of functional groups into the CH chain. Thus, enhanced and new properties can be obtained in accordance with the requirements for different applications, such as the release of drugs, the improvement of antimicrobial properties of fabrics, the removal of dyes, or as scaffolds to develop bone tissues.


Assuntos
Antibacterianos , Plásticos Biodegradáveis , Osso e Ossos/metabolismo , Quitosana , Engenharia Tecidual , Alicerces Teciduais/química , Animais , Antibacterianos/química , Antibacterianos/uso terapêutico , Plásticos Biodegradáveis/química , Plásticos Biodegradáveis/uso terapêutico , Quitosana/química , Quitosana/uso terapêutico , Humanos
12.
Int J Biol Macromol ; 187: 789-799, 2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34352317

RESUMO

The transition of nanocellulose production from laboratory to industrial scale requires robust monitoring systems that keeps a quality control along the production chain. The present work aims at providing a deeper insight on the main factors affecting the rheological behavior of (ligno)cellulose micro/nanofibers (LCMNFs) and cellulose micro/nanofibers (CMNFs) and how they could correlate with their characteristics. To this end, 20 types of LCMNFs and CMNFs were produced combining mechanical refining and high-pressure homogenization from different raw materials. Aspect ratio and bending capacity of the fibrils played a key role on increasing the viscosity of the suspensions by instigating the formation of entangled structures. Surface charge, reflected by the cationic demand, played opposing effects on the viscosity by reducing the fibrils' contact due to repulsive forces. The suspensions also showed increasing shear-thinning behavior with fibrillation degree, which was attributed to increased surface charge and higher water retention capacity, enabling the fibrils to slide past each other more easily when subjected to flow conditions. The present work elucidates the existing relationships between LCMNF/CMNF properties and their rheological behavior, considering fibrillation intensity and the initial raw material characteristics, in view of the potential of rheological measurements as an industrial scalable characterization technology.


Assuntos
Celulose/química , Lignanas/química , Nanofibras , Picea/química , Pinus/química , Celulose/isolamento & purificação , Lignanas/isolamento & purificação , Reologia , Especificidade da Espécie , Propriedades de Superfície , Viscosidade , Água/química
13.
Nanomaterials (Basel) ; 11(8)2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34443907

RESUMO

The present paper proposes a novel approach for the morphological characterization of cellulose nano and microfibers suspensions (CMF/CNFs) based on the analysis of eroded CMF/CNF microscopy images. This approach offers a detailed morphological characterization and quantification of the micro and nanofibers networks present in the product, which allows the mode of fibrillation associated to the different CMF/CNF extraction conditions to be discerned. This information is needed to control CMF/CNF quality during industrial production. Five cellulose raw materials, from wood and non-wood sources, were subjected to mechanical, enzymatic, and (2,2,6,6-Tetramethylpiperidin-1-yl)oxyl (TEMPO)-mediated oxidative pre-treatments followed by different homogenization sequences to obtain products of different morphologies. Skeleton analysis of microscopy images provided in-depth morphological information of CMF/CNFs that, complemented with aspect ratio information, estimated from gel point data, allowed the quantification of: (i) fibers peeling after mechanical pretreatment; (ii) fibers shortening induced by enzymes, and (iii) CMF/CNF entanglement from TEMPO-mediated oxidation. Being mostly based on optical microscopy and image analysis, the present method is easy to implement at industrial scale as a tool to monitor and control CMF/CNF quality and homogeneity.

14.
Sci Rep ; 10(1): 3778, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-32123213

RESUMO

Recycling cycles cause a decrease in mechanical paper properties due to cellulose fiber degradation. The use of cellulose micro/nanofibers (CMF/CNF) to reinforce paper strength has been well studied, although it has been found to have negative effects on drainage. However, the application of CMF/CNF as paper reinforcement is affected by the nanocellulose type. Thus in this study mechanical and chemical treatments in CNF production were compared. Old corrugated container (OCC) pulp used to produce recycled cartonboard was reinforced with 1) CMF from never-dried northern bleached softwood kraft pulp (NBSK) highly refined in a 16-inch low consistency refiner at 1200 rpm and 25 kW of net power; and 2) CNF from NBSK pulp treated by TEMPO-mediated oxidation and homogenization at 600 bars. CMF/CNF and OCC were pulped at the same time and handsheets formed with cationic starch (CS) as retention system. Mechanical, drainage and flocculation properties were evaluated and compared. Data were also compared with other sources of TEMPO CNF. Results show an improvement in mechanical properties, drainage and flocculation when OCC is reinforced with CMF obtained with LCR. Therefore, high fibrillation was not necessary to improve mechanical paper or cardboard properties.

15.
Carbohydr Polym ; 227: 115340, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31590859

RESUMO

The characterization of nanocellulose fibres (NC) length is a difficult and indirect measurement which relies on aspect ratio calculation and fibre diameter analysis. The aspect ratio can be directly calculated from the gel point, a parameter obtained from sedimentation experiments. The gel point has been used with macroscopic fibres and microfibrillated cellulose, that easily sediment by gravity. However, this methodology has not yield consistent results with highly charged nanofibres nor with fibres with sediment layer difficult to observe. In this study, the gel point methodology is modified: 1) dying the fibres with Crystal Violet to enable the visualization of the fibrils sedimentation line without affecting the fibre network; and 2) by optimizing the sedimentation time to ensure complete settling. The two types of fibrils characterized -low and high fibrillated NC (LF-NC, HF-NC)- behave differently due to the slower sedimentation of HF-NC. The time to reach a stable sedimented layer increases with the level of fibre fibrillation, the charge and the decrease of fibre dimension. Reproducible gel point can be measured after 2 days for LF-NC; however, 8 days are required for HF-NC. The modified methodology was validated by quantifying the influence of pH and salt concentration. As expected, low pHs and the addition of CaCl2 coagulate HF-NC into flocs which increase the ratio: final over initial fibres height (Hs/Ho); this decreases significantly the gel point, as a lower amount of HF-NC are required to interconnect all fibres. This modified method is a valuable tool for the accurate dimensional characterisation of highly charged and low diameter cellulose nanofibres.


Assuntos
Celulose/química , Nanoestruturas/química , Cloreto de Cálcio/química , Floculação , Géis , Concentração de Íons de Hidrogênio , Transição de Fase
16.
Nanomaterials (Basel) ; 8(11)2018 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-30380728

RESUMO

Cellulose and chitin are the most abundant polymeric materials in nature, capable of replacing conventional synthetic polymers. From them, cellulose nano/microfibers (CNFs/CMFs) and chitosan are obtained. Both polymers have been used separately in graft copolymerization but there are not many studies on the use of cellulose and chitosan together as copolymers and the reaction mechanism is unknown. In this work, the reaction mechanism to produce nano/microcellulose-graft-chitosan polymer has been studied. Recycled cellulose pulp was used, with and without a 2,2,6,6-tetramethylpiperidin-1-oxyl-radical (TEMPO)-mediated oxidation pretreatment, to produce CNFs and CMFs, respectively. For chitosan, a low-molecular weight product dissolved in an acetic acid solution was prepared. Grafted polymers were synthesized using a microwave digester. Results showed that TEMPO-mediated oxidation as the cellulose pretreatment is a key factor to obtain the grafted polymer CNF-g-CH. A reaction mechanism has been proposed where the amino group of chitosan attacks the carboxylic group of oxidized cellulose, since non-oxidized CMFs do not achieve the desired grafting. 13C NMR spectra, elemental analysis and SEM images validated the proposed mechanism. Finally, CNF-g-CH was used as a promising material to remove water-based inks and dyes from wastewater.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA