Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Biol Sci ; 291(2018): 20232522, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38444337

RESUMO

Pesticides have well-documented negative consequences to control crop pests, and natural predators are alternatives and can provide an ecosystem service as biological control agents. However, there remains considerable uncertainty regarding whether such biological control can be a widely applicable solution, especially given ongoing climatic variation and climate change. Here, we performed a meta-analysis focused on field studies with natural predators to explore broadly whether and how predators might control pests and in turn increase yield. We also contrasted across studies pest suppression by a single and multiple predators and how climate influence biological control. Predators reduced pest populations by 73% on average, and increased crop yield by 25% on average. Surprisingly, the impact of predators did not depend on whether there were many or a single predator species. Precipitation seasonality was a key climatic influence on biological control: as seasonality increased, the impact of predators on pest populations increased. Taken together, the positive contribution of predators in controlling pests and increasing yield, and the consistency of such responses in the face of precipitation variability, suggest that biocontrol has the potential to be an important part of pest management and increasing food supplies as the planet precipitation patterns become increasingly variable.


Assuntos
Ecossistema , Praguicidas , Mudança Climática , Incerteza
2.
J Anim Ecol ; 92(2): 232-236, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36751040

RESUMO

This joint Special Feature focuses on the contributions and potential of natural history collections to address global change questions.


Assuntos
Biodiversidade , Museus , Animais
3.
J Anim Ecol ; 92(10): 2052-2066, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37649274

RESUMO

Understanding the role of thermal tolerances in determining species distributions is important for assessing species responses to climate change. Two hypotheses linking physiology with species distributions have been put forward-the climatic variability hypothesis and the climatic extreme hypothesis. The climatic variability hypothesis predicts the selection of individuals with broad thermal tolerance in more variable climatic conditions and the climatic extreme hypothesis predicts the selection of individuals with extreme thermal tolerance values under extreme climatic conditions. However, no study has tested the predictions of these hypotheses simultaneously for several taxonomic groups along elevational gradients. Here, we related experimentally measured critical thermal maxima, critical thermal minima and thermal tolerance breadths for 15,187 individuals belonging to 116 species of ants, beetles, grasshoppers, and spiders from mountain ranges in central and northern Pakistan to the limits and breadths of their geographic and temperature range. Across all species and taxonomic groups, we found strong relationships between thermal traits and elevational distributions both in terms of geography and temperature. The relationships were robust when repeating the analyses for ants, grasshoppers, and spiders but not for beetles. These results indicate a strong role of physiology in determining elevational distributions of arthropods in Southern Asia. Overall, we found strong support for the climatic variability hypothesis and the climatic extreme hypothesis. A close association between species' distributional limits and their thermal tolerances suggest that in case of a failure to adapt or acclimate to novel climatic conditions, species may be under pressure to track their preferred climatic conditions, potentially facing serious consequences under current and future climate change.

4.
Nature ; 542(7639): 91-95, 2017 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-28117440

RESUMO

Temperature is a primary driver of the distribution of biodiversity as well as of ecosystem boundaries. Declining temperature with increasing elevation in montane systems has long been recognized as a major factor shaping plant community biodiversity, metabolic processes, and ecosystem dynamics. Elevational gradients, as thermoclines, also enable prediction of long-term ecological responses to climate warming. One of the most striking manifestations of increasing elevation is the abrupt transitions from forest to treeless alpine tundra. However, whether there are globally consistent above- and belowground responses to these transitions remains an open question. To disentangle the direct and indirect effects of temperature on ecosystem properties, here we evaluate replicate treeline ecotones in seven temperate regions of the world. We find that declining temperatures with increasing elevation did not affect tree leaf nutrient concentrations, but did reduce ground-layer community-weighted plant nitrogen, leading to the strong stoichiometric convergence of ground-layer plant community nitrogen to phosphorus ratios across all regions. Further, elevation-driven changes in plant nutrients were associated with changes in soil organic matter content and quality (carbon to nitrogen ratios) and microbial properties. Combined, our identification of direct and indirect temperature controls over plant communities and soil properties in seven contrasting regions suggests that future warming may disrupt the functional properties of montane ecosystems, particularly where plant community reorganization outpaces treeline advance.


Assuntos
Altitude , Florestas , Temperatura , Árvores/metabolismo , Biodiversidade , Carbono/metabolismo , Nitrogênio/metabolismo , Fósforo/metabolismo , Folhas de Planta/metabolismo , Solo/química , Microbiologia do Solo , Tundra
5.
Proc Biol Sci ; 289(1968): 20211899, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35135345

RESUMO

Biologists have long been fascinated by the processes that give rise to phenotypic complexity of organisms, yet whether there exist geographical hotspots of phenotypic complexity remains poorly explored. Phenotypic complexity can be readily observed in ant colonies, which are superorganisms with morphologically differentiated queen and worker castes analogous to the germline and soma of multicellular organisms. Several ant species have evolved 'worker polymorphism', where workers in a single colony show quantifiable differences in size and head-to-body scaling. Here, we use 256 754 occurrence points from 8990 ant species to investigate the geography of worker polymorphism. We show that arid regions of the world are the hotspots of superorganism complexity. Tropical savannahs and deserts, which are typically species-poor relative to tropical or even temperate forests, harbour the highest densities of polymorphic ants. We discuss the possible adaptive advantages that worker polymorphism provides in arid environments. Our work may provide a window into the environmental conditions that promote the emergence of highly complex phenotypes.


Assuntos
Formigas , Animais , Formigas/genética , Clima Desértico , Neurônios , Fenótipo
6.
J Anim Ecol ; 91(10): 2125-2134, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35974677

RESUMO

The direct and indirect effects of climate change can affect, and are mediated by, changes in animal behaviour. However, we often lack sufficient empirical data to assess how large-scale disturbances affect the behaviour of individuals, which scales up to influence communities. Here, we investigate these patterns by focusing on the foraging behaviour of butterflyfishes, prominent coral-feeding fishes on coral reefs, before and after a mass coral bleaching event in Iriomote, Japan. In response to 65% coral mortality, coral-feeding fishes broadened their diets, showing a significant weakening of dietary preferences across species. Multiple species reduced their consumption of bleaching-sensitive Acropora corals, while expanding their diets to consume a variety of other coral genera. This resulted in decreased dietary overlap among butterflyfishes. Behavioural changes in response to bleaching may increase resilience of coral reef fishes in the short term. However, coral mortality has reduced populations of coral-feeders world-wide, indicating the changes in feeding behaviour we document here may not be sufficient to ensure long-term resilience of butterflyfishes on coral reefs.


Assuntos
Antozoários , Animais , Antozoários/fisiologia , Mudança Climática , Recifes de Corais , Dieta/veterinária , Peixes/fisiologia
7.
Biol Lett ; 18(3): 20220016, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35232272

RESUMO

Plants have evolved a variety of approaches to attract pollinators, including enriching their nectar with essential nutrients. Because sodium is an essential nutrient for pollinators, and sodium concentration in nectar can vary both within and among species, we explored whether experimentally enriching floral nectar with sodium in five plant species would influence pollinator visitation and diversity. We found that the number of visits by pollinators increased on plants with sodium-enriched nectar, regardless of plant species, relative to plants receiving control nectar. Similarly, the number of species visiting plants with sodium-enriched nectar was twice that of controls. Our findings suggest that sodium in floral nectar may play an important but unappreciated role in the ecology and evolution of plant-pollinator mutualisms.


Assuntos
Néctar de Plantas , Polinização , Ecologia , Flores , Plantas , Sódio
8.
Biol Lett ; 17(10): 20210240, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34665990

RESUMO

We combined participatory science data and museum records to understand long-term changes in occupancy for 29 ant species in Denmark over 119 years. Bayesian occupancy modelling indicated change in occupancy for 15 species: five increased, four declined and six showed fluctuating trends. We consider how trends may have been influenced by life-history and habitat changes. Our results build on an emerging picture that biodiversity change in insects is more complex than implied by the simple insect decline narrative.


Assuntos
Formigas , Animais , Teorema de Bayes , Biodiversidade , Ecossistema
9.
Proc Natl Acad Sci U S A ; 115(16): 4051-4056, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29666319

RESUMO

The structure and function of alpine grassland ecosystems, including their extensive soil carbon stocks, are largely shaped by temperature. The Tibetan Plateau in particular has experienced significant warming over the past 50 y, and this warming trend is projected to intensify in the future. Such climate change will likely alter plant species composition and net primary production (NPP). Here we combined 32 y of observations and monitoring with a manipulative experiment of temperature and precipitation to explore the effects of changing climate on plant community structure and ecosystem function. First, long-term climate warming from 1983 to 2014, which occurred without systematic changes in precipitation, led to higher grass abundance and lower sedge abundance, but did not affect aboveground NPP. Second, an experimental warming experiment conducted over 4 y had no effects on any aspect of NPP, whereas drought manipulation (reducing precipitation by 50%), shifted NPP allocation belowground without affecting total NPP. Third, both experimental warming and drought treatments, supported by a meta-analysis at nine sites across the plateau, increased grass abundance at the expense of biomass of sedges and forbs. This shift in functional group composition led to deeper root systems, which may have enabled plant communities to acquire more water and thus stabilize ecosystem primary production even with a changing climate. Overall, our study demonstrates that shifting plant species composition in response to climate change may have stabilized primary production in this high-elevation ecosystem, but it also caused a shift from aboveground to belowground productivity.


Assuntos
Sequestro de Carbono , Mudança Climática , Ecossistema , Pradaria , Dispersão Vegetal , Tundra , Biomassa , Carbono/metabolismo , China , Conservação dos Recursos Naturais/legislação & jurisprudência , Conservação dos Recursos Naturais/estatística & dados numéricos , Secas , Monitoramento Ambiental , Atividades Humanas , Humanos , Umidade , Estudos Longitudinais , Estudos Observacionais como Assunto , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Poaceae/crescimento & desenvolvimento , Poaceae/metabolismo , Especificidade da Espécie , Temperatura , Tibet
10.
Ecol Lett ; 23(4): 701-710, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32052555

RESUMO

Satellite data indicate significant advancement in alpine spring phenology over decades of climate warming, but corresponding field evidence is scarce. It is also unknown whether this advancement results from an earlier shift of phenological events, or enhancement of plant growth under unchanged phenological pattern. By analyzing a 35-year dataset of seasonal biomass dynamics of a Tibetan alpine grassland, we show that climate change promoted both earlier phenology and faster growth, without changing annual biomass production. Biomass production increased in spring due to a warming-induced earlier onset of plant growth, but decreased in autumn due mainly to increased water stress. Plants grew faster but the fast-growing period shortened during the mid-growing season. These findings provide the first in situ evidence of long-term changes in growth patterns in alpine grassland plant communities, and suggest that earlier phenology and faster growth will jointly contribute to plant growth in a warming climate.


Assuntos
Mudança Climática , Pradaria , Biomassa , Ecossistema , Desenvolvimento Vegetal , Estações do Ano , Temperatura
11.
Glob Chang Biol ; 26(9): 4880-4893, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32663906

RESUMO

Understanding the likely future impacts of biological invasions is crucial yet highly challenging given the multiple relevant environmental, socio-economic and societal contexts and drivers. In the absence of quantitative models, methods based on expert knowledge are the best option for assessing future invasion trajectories. Here, we present an expert assessment of the drivers of potential alien species impacts under contrasting scenarios and socioecological contexts through the mid-21st century. Based on responses from 36 experts in biological invasions, moderate (20%-30%) increases in invasions, compared to the current conditions, are expected to cause major impacts on biodiversity in most socioecological contexts. Three main drivers of biological invasions-transport, climate change and socio-economic change-were predicted to significantly affect future impacts of alien species on biodiversity even under a best-case scenario. Other drivers (e.g. human demography and migration in tropical and subtropical regions) were also of high importance in specific global contexts (e.g. for individual taxonomic groups or biomes). We show that some best-case scenarios can substantially reduce potential future impacts of biological invasions. However, rapid and comprehensive actions are necessary to use this potential and achieve the goals of the Post-2020 Framework of the Convention on Biological Diversity.


Assuntos
Biodiversidade , Espécies Introduzidas , Mudança Climática , Ecossistema , Previsões , Humanos
12.
J Anim Ecol ; 89(5): 1286-1294, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32115723

RESUMO

We investigate where bottom-up and top-down control regulates ecological communities as a mechanism linking ecological gradients to the geography of consumer abundance and biomass. We use standardized surveys of 54 North American grasslands to test alternate hypotheses predicting 100-fold shifts in the biomass of four common grassland arthropod taxa-Auchenorrhyncha, sucking herbivores, Acrididae, chewing herbivores, Tettigoniidae, omnivores, and Araneae, predators. Bottom-up models predict that consumer biomass tracks plant quantity (e.g. productivity and standing biomass) and quality (nutrient content) and that ectotherm access to food increases with temperature. Each of the focal trophic groups responded differently to these drivers: the biomass of sucking herbivores and omnivores increased with plant biomass; that of chewing herbivores tracked plant quality; and predator biomass did not depend on plant quality, plant quantity or temperature. The Exploitation Ecosystem Hypothesis is a top-down hypothesis that predicts a shift from resource limitation of herbivores when plant production is low, to predator limitation when plant production is high. In grasslands where spider biomass was low, herbivore biomass increased with plant biomass, whereas bottom-up structuring was not evident when spiders were abundant. Furthermore, neither predator biomass nor trophic position (via stable isotope analysis) increased with plant biomass, suggesting predators themselves are top-down limited. Stable isotope analysis revealed that trophic position of the chewing herbivore and omnivore increased significantly with plant biomass, suggesting these groups increased scavenging and meat consumption in grasslands with higher carbohydrate availability. Taken together, our snapshot sampling documents gradients of food web structure across 54 grasslands, consistent with multiple hypotheses of bottom-up and top-down regulation.


Assuntos
Artrópodes , Animais , Biomassa , Ecossistema , Cadeia Alimentar , Pradaria , Herbivoria
13.
Ecology ; 100(3): e02600, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30726560

RESUMO

Sodium (Na) has a unique role in food webs as a nutrient primarily limiting for plant consumers, but not other trophic levels. Environmental Na levels vary with proximity to coasts, local geomorphology, climate, and with anthropogenic inputs (e.g., road salt). We tested two key predictions across 54 grasslands in North America: Na shortfall commonly limits herbivore abundance, and the magnitude of this limitation varies inversely with environmental Na supplies. We tested them with a distributed pulse experiment and evaluated the relative importance of Na limitation to other classic drivers of climate, macronutrient levels, and plant productivity. Herbivore abundance increased by 45% with Na addition. Moreover, the magnitude of increase on Na addition plots decreased with increasing levels of plant Na, indicating Na satiation at sites with high Na concentrations in plant tissue. Our results demonstrate that invertebrate primary consumers are often Na limited and track local Na availability, with implications for the geography of invertebrate abundance and herbivory.


Assuntos
Cadeia Alimentar , Pradaria , Animais , Herbivoria , América do Norte , Sódio
14.
Am Nat ; 191(5): 553-565, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29693443

RESUMO

In 1967, Dan Janzen published "Why Mountain Passes Are Higher in the Tropics" in The American Naturalist. Janzen's seminal article has captured the attention of generations of biologists and continues to inspire theoretical and empirical work. The underlying assumptions and derived predictions are broadly synthetic and widely applicable. Consequently, Janzen's "seasonality hypothesis" has proven relevant to physiology, climate change, ecology, and evolution. To celebrate the fiftieth anniversary of this highly influential article, we highlight the past, present, and future of this work and include a unique historical perspective from Janzen himself.


Assuntos
Aclimatação , Altitude , Ecologia/história , Estações do Ano , Clima Tropical , Animais , Costa Rica , Ecossistema , Especiação Genética , Geografia , História do Século XX , Humanos
15.
Ecology ; 99(9): 2113-2121, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29989154

RESUMO

As ecosystems warm, ectotherm consumer activity should also change. Here we use principles from metabolic and thermal ecology to explore how seasonal and diel temperature change shapes a prairie ant community's foraging rate and its demand for two fundamental resources: salt and sugar. From April through October 2016 we ran transects of vials filled with solutions of 0.5% NaCl and 1% sucrose. We first confirm a basic prediction rarely tested: the discovery rate of both food resources accelerated with soil temperature, but this increase was typically capped at midday due to extreme surface temperatures. We then tested the novel prediction that sodium demand accelerates with temperature, premised on a key thermal difference between sugar and sodium: sugar is stored in cells, while salt is pumped out of cells proportional to metabolic rate, and hence temperature. We found strong support for the resulting prediction that recruitment to NaCl baits accelerates with temperature more steeply than recruitment to 1% sucrose baits. A follow up experiment in 2017 verified that temperature-dependent recruitment to sucrose concentrations of 20% (mimicking rich extrafloral nectaries), while noisy, was still only half as temperature dependent as recruitment recorded for 0.5% NaCl. These results demonstrate how ecosystem warming accelerates then curtails the work done by a community of ectotherms, and how the demand and use of fundamental nutrients can be differentially temperature dependent.


Assuntos
Formigas , Animais , Ecologia , Ecossistema , Pradaria , Temperatura
16.
Glob Chang Biol ; 24(2): 563-579, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29112781

RESUMO

Rapid climatic changes and increasing human influence at high elevations around the world will have profound impacts on mountain biodiversity. However, forecasts from statistical models (e.g. species distribution models) rarely consider that plant community changes could substantially lag behind climatic changes, hindering our ability to make temporally realistic projections for the coming century. Indeed, the magnitudes of lags, and the relative importance of the different factors giving rise to them, remain poorly understood. We review evidence for three types of lag: "dispersal lags" affecting plant species' spread along elevational gradients, "establishment lags" following their arrival in recipient communities, and "extinction lags" of resident species. Variation in lags is explained by variation among species in physiological and demographic responses, by effects of altered biotic interactions, and by aspects of the physical environment. Of these, altered biotic interactions could contribute substantially to establishment and extinction lags, yet impacts of biotic interactions on range dynamics are poorly understood. We develop a mechanistic community model to illustrate how species turnover in future communities might lag behind simple expectations based on species' range shifts with unlimited dispersal. The model shows a combined contribution of altered biotic interactions and dispersal lags to plant community turnover along an elevational gradient following climate warming. Our review and simulation support the view that accounting for disequilibrium range dynamics will be essential for realistic forecasts of patterns of biodiversity under climate change, with implications for the conservation of mountain species and the ecosystem functions they provide.


Assuntos
Biodiversidade , Mudança Climática , Plantas/classificação , Altitude
17.
Glob Chang Biol ; 24(10): 4614-4625, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29851235

RESUMO

The relationship between levels of dominance and species richness is highly contentious, especially in ant communities. The dominance-impoverishment rule states that high levels of dominance only occur in species-poor communities, but there appear to be many cases of high levels of dominance in highly diverse communities. The extent to which dominant species limit local richness through competitive exclusion remains unclear, but such exclusion appears more apparent for non-native rather than native dominant species. Here we perform the first global analysis of the relationship between behavioral dominance and species richness. We used data from 1,293 local assemblages of ground-dwelling ants distributed across five continents to document the generality of the dominance-impoverishment rule, and to identify the biotic and abiotic conditions under which it does and does not apply. We found that the behavioral dominance-diversity relationship varies greatly, and depends on whether dominant species are native or non-native, whether dominance is considered as occurrence or relative abundance, and on variation in mean annual temperature. There were declines in diversity with increasing dominance in invaded communities, but diversity increased with increasing dominance in native communities. These patterns occur along the global temperature gradient. However, positive and negative relationships are strongest in the hottest sites. We also found that climate regulates the degree of behavioral dominance, but differently from how it shapes species richness. Our findings imply that, despite strong competitive interactions among ants, competitive exclusion is not a major driver of local richness in native ant communities. Although the dominance-impoverishment rule applies to invaded communities, we propose an alternative dominance-diversification rule for native communities.


Assuntos
Formigas/fisiologia , Biodiversidade , Animais , Clima , Ecossistema
18.
Ecol Lett ; 20(3): 385-394, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28156041

RESUMO

Whether species interactions are static or change over time has wide-reaching ecological and evolutionary consequences. However, species interaction networks are typically constructed from temporally aggregated interaction data, thereby implicitly assuming that interactions are fixed. This approach has advanced our understanding of communities, but it obscures the timescale at which interactions form (or dissolve) and the drivers and consequences of such dynamics. We address this knowledge gap by quantifying the within-season turnover of plant-pollinator interactions from weekly censuses across 3 years in a subalpine ecosystem. Week-to-week turnover of interactions (1) was high, (2) followed a consistent seasonal progression in all years of study and (3) was dominated by interaction rewiring (the reassembly of interactions among species). Simulation models revealed that species' phenologies and relative abundances constrained both total interaction turnover and rewiring. Our findings reveal the diversity of species interactions that may be missed when the temporal dynamics of networks are ignored.


Assuntos
Aves/fisiologia , Insetos/fisiologia , Magnoliopsida/fisiologia , Polinização , Animais , Colorado , Comportamento Alimentar , Estações do Ano , Especificidade da Espécie
19.
Ecology ; 98(2): 315-320, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27936500

RESUMO

Nitrogen and phosphorus frequently limit terrestrial plant production, but have a mixed record in regulating the abundance of terrestrial invertebrates. We contrasted four ways that Na could interact with an NP fertilizer to shape the plants and invertebrates of an inland prairie. We applied NP and Na to m2 plots in a factorial design. Aboveground invertebrate abundance was independently co-limited by NaCl and NP, but with +NP plots supporting more individuals. We suggest the disparity arises because NP enhanced plant height by 35% (1 SD) over controls, providing both food and habitat, whereas NaCl provides only food. Belowground invertebrates showed evidence of serial co-limitation, where NaCl additions alone were ineffectual, but catalyzed access to NP. This suggests the increased belowground food availability in NP plots increased Na demand. Na and NP supply rates vary with climate, land use, and with inputs like urine. The co-limitation and catalysis of N and P by Na thus has the potential for predicting patterns of abundance and diversity across spatial scales.


Assuntos
Ecossistema , Cadeia Alimentar , Pradaria , Sódio/análise , Animais , Nitrogênio , Fósforo
20.
Ecology ; 98(7): 1757-1763, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28380683

RESUMO

Macroecology seeks to understand broad-scale patterns in the diversity and abundance of organisms, but macroecologists typically study aboveground macroorganisms. Belowground organisms regulate numerous ecosystem functions, yet we lack understanding of what drives their diversity. Here, we examine the controls on belowground diversity along latitudinal and elevational gradients. We performed a global meta-analysis of 325 soil communities across 20 studies conducted along temperature and soil pH gradients. Belowground taxa, whether bacterial or fungal, observed along a given gradient of temperature or soil pH were equally likely to show a linear increase, linear decrease, humped pattern, trough-shaped pattern, or no pattern in diversity along the gradient. Land-use intensity weakly affected the diversity-temperature relationship, but no other factor did so. Our study highlights disparities among diversity patterns of soil microbial communities. Belowground diversity may be controlled by the associated climatic and historical contexts of particular gradients, by factors not typically measured in community-level studies, or by processes operating at scales that do not match the temporal and spatial scales under study. Because these organisms are responsible for a suite of key processes, understanding the drivers of their distribution and diversity is fundamental to understanding the functioning of ecosystems.


Assuntos
Bactérias/classificação , Biodiversidade , Ecossistema , Fungos/classificação , Microbiologia do Solo , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA