Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Heredity (Edinb) ; 130(6): 368-380, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36997655

RESUMO

To conserve the high functional and genetic variation in hotspots such as tropical rainforests, it is essential to understand the forces driving and maintaining biodiversity. We asked to what extent environmental gradients and terrain structure affect morphological and genomic variation across the wet tropical distribution of an Australian rainbowfish, Melanotaenia splendida splendida. We used an integrative riverscape genomics and morphometrics framework to assess the influence of these factors on both putative adaptive and non-adaptive spatial divergence. We found that neutral genetic population structure was largely explainable by restricted gene flow among drainages. However, environmental associations revealed that ecological variables had a similar power to explain overall genetic variation, and greater power to explain body shape variation, than the included neutral covariables. Hydrological and thermal variables were the strongest environmental predictors and were correlated with traits previously linked to heritable habitat-associated dimorphism in rainbowfishes. In addition, climate-associated genetic variation was significantly associated with morphology, supporting heritability of shape variation. These results support the inference of evolved functional differences among localities, and the importance of hydroclimate in early stages of diversification. We expect that substantial evolutionary responses will be required in tropical rainforest endemics to mitigate local fitness losses due to changing climates.


Assuntos
Genética Populacional , Floresta Úmida , Animais , Austrália , Ecossistema , Peixes
2.
Proc Natl Acad Sci U S A ; 117(29): 17112-17121, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32647058

RESUMO

Resilience to environmental stressors due to climate warming is influenced by local adaptations, including plastic responses. The recent literature has focused on genomic signatures of climatic adaptation, but little is known about how plastic capacity may be influenced by biogeographic and evolutionary processes. We investigate phenotypic plasticity as a target of climatic selection, hypothesizing that lineages that evolved in warmer climates will exhibit greater plastic adaptive resilience to upper thermal stress. This was experimentally tested by comparing transcriptomic responses within and among temperate, subtropical, and desert ecotypes of Australian rainbowfish subjected to contemporary and projected summer temperatures. Critical thermal maxima were estimated, and ecological niches delineated using bioclimatic modeling. A comparative phylogenetic expression variance and evolution model was used to assess plastic and evolved changes in gene expression. Although 82% of all expressed genes were found in the three ecotypes, they shared expression patterns in only 5 out of 236 genes that responded to the climate change experiment. A total of 532 genes showed signals of adaptive (i.e., genetic-based) plasticity due to ecotype-specific directional selection, and 23 of those responded to projected summer temperatures. Network analyses demonstrated centrality of these genes in thermal response pathways. The greatest adaptive resilience to upper thermal stress was shown by the subtropical ecotype, followed by the desert and temperate ecotypes. Our findings indicate that vulnerability to climate change will be highly influenced by biogeographic factors, emphasizing the value of integrative assessments of climatic adaptive traits for accurate estimation of population and ecosystem responses.


Assuntos
Adaptação Fisiológica/genética , Mudança Climática , Ecossistema , Temperatura Alta , Animais , Austrália , Clima Desértico , Ecótipo , Peixes/genética , Peixes/fisiologia , Genômica , Transcriptoma/genética
3.
Mol Ecol ; 31(8): 2223-2241, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35146819

RESUMO

Heterogeneous seascapes and strong environmental gradients in coastal waters are expected to influence adaptive divergence, particularly in species with large population sizes where selection is expected to be highly efficient. However, these influences might also extend to species characterized by strong social structure, natal philopatry and small home ranges. We implemented a seascape genomic study to test this hypothesis in Indo-Pacific bottlenose dolphins (Tursiops aduncus) distributed along the environmentally heterogeneous coast of southern Australia. The data sets included oceanographic and environmental variables thought to be good predictors of local adaptation in dolphins and 8081 filtered single nucleotide polymorphisms (SNPs) genotyped for individuals sampled from seven different bioregions. From a neutral perspective, population structure and connectivity of the dolphins were generally influenced by habitat type and social structuring. Genotype-environment association analysis identified 241 candidate adaptive loci and revealed that sea surface temperature and salinity gradients influenced adaptive divergence in these animals at both large- (1000 km) and fine-scales (<100 km). Enrichment analysis and annotation of candidate genes revealed functions related to sodium-activated ion transport, kidney development, adipogenesis and thermogenesis. The findings of spatial adaptive divergence and inferences of putative physiological adaptations challenge previous suggestions that marine megafauna is most likely to be affected by environmental and climatic changes via indirect, trophic effects. Our work contributes to conservation management of coastal bottlenose dolphins subjected to anthropogenic disturbance and to efforts of clarifying how seascape heterogeneity influences adaptive diversity and evolution in small cetaceans.


Assuntos
Golfinho Nariz-de-Garrafa , Animais , Golfinho Nariz-de-Garrafa/genética , Ecossistema , Genômica , Salinidade , Temperatura
4.
Mol Ecol ; 30(23): 6434-6448, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33675577

RESUMO

Wildlife species are challenged by various infectious diseases that act as important demographic drivers of populations and have become a great conservation concern particularly under growing environmental changes. The new era of whole genome sequencing provides new opportunities and avenues to explore the role of genetic variants in the plasticity of immune responses, particularly in non-model systems. Cetacean morbillivirus (CeMV) has emerged as a major viral threat to cetacean populations worldwide, contributing to the death of thousands of individuals of multiple dolphin and whale species. To understand the genomic basis of immune responses to CeMV, we generated and analysed whole genomes of 53 Indo-Pacific bottlenose dolphins (Tursiops aduncus) exposed to Australia's largest known CeMV-related mortality event that killed at least 50 dolphins from three different species. The genomic data set consisted of 10,168,981 SNPs anchored onto 23 chromosome-length scaffolds and 77 short scaffolds. Whole genome analysis indicated that levels of inbreeding in the dolphin population did not influence the outcome of an individual. Allele frequency estimates between survivors and nonsurvivors of the outbreak revealed 15,769 candidate SNPs, of which 689 were annotated to 295 protein coding genes. These included 50 genes with functions related to innate and adaptive immune responses, and cytokine signalling pathways and genes thought to be involved in immune responses to other morbilliviruses. Our study characterised genomic regions and pathways that may contribute to CeMV immune responses in dolphins. This represents a stride towards clarifying the complex interactions of the cetacean immune system and emphasises the value of whole genome data sets in understanding genetic elements that are essential for species conservation, including disease susceptibility and adaptation.


Assuntos
Golfinho Nariz-de-Garrafa , Doenças Transmissíveis , Infecções por Morbillivirus , Animais , Cetáceos , Imunidade/genética
5.
Proc Biol Sci ; 286(1896): 20182023, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30963923

RESUMO

Intraspecific genetic structure in widely distributed marine species often mirrors the boundaries between temperature-defined bioregions. This suggests that the same thermal gradients that maintain distinct species assemblages also drive the evolution of new biodiversity. Ecological speciation scenarios are often invoked to explain such patterns, but the fact that adaptation is usually only identified when phylogenetic splits are already evident makes it impossible to rule out the alternative scenario of allopatric speciation with subsequent adaptation. We integrated large-scale genomic and environmental datasets along one of the world's best-defined marine thermal gradients (the South African coastline) to test the hypothesis that incipient ecological speciation is a result of divergence linked to the thermal environment. We identified temperature-associated gene regions in a coastal fish species that is spatially homogeneous throughout several temperature-defined biogeographic regions based on selectively neutral markers. Based on these gene regions, the species is divided into geographically distinct regional populations. Importantly, the ranges of these populations are delimited by the same ecological boundaries that define distinct infraspecific genetic lineages in co-distributed marine species, and biogeographic disjunctions in species assemblages. Our results indicate that temperature-mediated selection represents an early stage of marine ecological speciation in coastal regions that lack physical dispersal barriers.


Assuntos
Meio Ambiente , Especiação Genética , Perciformes/genética , Água do Mar/química , Animais , Temperatura Baixa , Temperatura Alta , Oceanos e Mares , África do Sul
6.
Conserv Biol ; 33(6): 1404-1414, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-30901116

RESUMO

Hybridization poses a major challenge for species conservation because it threatens both genetic integrity and adaptive potential. Yet, hybridization can occasionally offer unprecedented opportunity for species recovery if the genome of an extinct taxon is present among living hybrids such that selective breeding could recapture it. We explored the design elements for establishing a captive-breeding program for Galapagos tortoises (Chelonoidis spp.) built around individuals with admixed ancestry involving an extinct species. The target individuals were hybrids between the extinct species from Floreana Island, C. niger, and an extant species, C. becki, which were recently found in the endemic range of C. becki, from Wolf Volcano on Isabela Island. We combined genotypic data from 35 tortoises with high ancestry from C. niger with forward-in-time simulations to explore captive breeding strategies that maximized overall genetic diversity and ancestry from C. niger while accommodating resource constraints, species biology, and the urgency to return tortoises to Floreana Island for facilitating ecosystem restoration. Overall genetic diversity was maximized when in the simulation tortoises were organized in relatively small breeding groups. Substantial amounts of the C. niger genome were captured despite limited resources available for selectively breeding tortoises in captivity. Genetic diversity was maximized when captive-bred offspring were released to the wild rather than being used as additional breeders. Our results provide genetic-based and practical guidance on the inclusion of hybrids with genomic representation from extinct taxa into species restoration programs and informs the ongoing debate on the value of hybrids in biodiversity conservation.


Reproducción en Cautiverio Informada Genéticamente de Híbridos de una Especie Extinta de Tortuga de las Galápagos Resumen La hibridación representa un obstáculo importante para la conservación de especies ya que amenaza tanto a la integridad genética como al potencial adaptativo. Aun así, la hibridación ocasionalmente puede ofrecer una oportunidad sin precedentes para la recuperación de una especie si el genoma de un taxón extinto está presente entre los híbridos vivientes de tal manera que la reproducción selectiva pudiera recuperarlo. Exploramos los elementos de diseño para el establecimiento de un programa de reproducción en cautiverio de la tortuga de las Galápagos (Chelonoidis spp.) construido en torno a los individuos con linajes mixtos que incluyeran una especie extinta. Los individuos fueron los híbridos de la especie extinta en la Isla Floreana, C. niger, y la especie viviente C. becki, encontrados recientemente en la distribución geográfica endémica de la segunda especie en el Volcán Wolf (Isla Isabela). Combinamos los datos genotípicos de 35 tortugas con un linaje cargado de C. niger usando simulaciones futuras de la descendencia generada por el programa para explorar las estrategias de reproducción en cautiverio que maximizaran en general la diversidad genética y el linaje de C. niger a la vez que se ajustaba a las restricciones de recursos, la biología de la especie y la urgencia por regresar las tortugas a la Isla Floreana para facilitar la restauración del ecosistema. En general, la diversidad genética se maximizó cuando en la simulación las tortugas estuvieron organizadas en grupos de reproducción relativamente pequeños y cuando cantidades sustanciales del genoma de C. niger fueron capturados con base en los recursos disponibles para reproducir selectivamente a las tortugas en cautiverio. La diversidad genética se vio especialmente maximizada cuando las crías reproducidas en cautiverio fueron liberadas en lugar de ser utilizadas como reproductoras adicionales. Nuestros resultados proporcionan una guía práctica y basada en la genética para la inclusión de híbridos con representación genómica de un taxón extinto en los programas de restauración de especies. Cuando incorporamos a los híbridos con diversidad genética que previamente se creía perdida en los programas con el propósito de la reintroducción de especies, nuestro estudio informa al debate continuo sobre el valor de los híbridos para la conservación de la biodiversidad.


Assuntos
Tartarugas , Animais , Cruzamento , Conservação dos Recursos Naturais , Ecossistema , Ilhas
7.
Proc Biol Sci ; 285(1878)2018 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-29720414

RESUMO

Spatial and temporal scales at which processes modulate genetic diversity over the landscape are usually overlooked, impacting the design of conservation management practices for widely distributed species. We examine processes shaping population divergence in highly mobile species by re-assessing the case of panmixia in the iconic olive ridley turtle from the eastern Pacific. We implemented a biophysical model of connectivity and a seascape genetic analysis based on nuclear DNA variation of 634 samples collected from 27 nesting areas. Two genetically distinct populations largely isolated during reproductive migrations and mating were detected, each composed of multiple nesting sites linked by high connectivity. This pattern was strongly associated with a steep environmental gradient and also influenced by ocean currents. These findings relate to meso-scale features of a dynamic oceanographic interface in the eastern tropical Pacific (ETP) region, a scenario that possibly provides different cost-benefit solutions and selective pressures for sea turtles during both the mating and migration periods. We reject panmixia and propose a new paradigm for olive ridley turtles where reproductive isolation due to assortative mating is linked to its environment. Our study demonstrates the relevance of integrative approaches for assessing the role of environmental gradients and oceanographic currents as drivers of genetic differentiation in widely distributed marine species. This is relevant for the conservation management of species of highly mobile behaviour, and assists the planning and development of large-scale conservation strategies for the threatened olive ridley turtles in the ETP.


Assuntos
Distribuição Animal , Meio Ambiente , Comportamento de Nidação , Tartarugas/fisiologia , Animais , Núcleo Celular/genética , América Central , Conservação dos Recursos Naturais , DNA/análise , México , Oceano Pacífico , Tartarugas/genética
8.
Mol Ecol ; 27(7): 1603-1620, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29420852

RESUMO

Populations of broadcast spawning marine organisms often have large sizes and are exposed to reduced genetic drift. Under such scenarios, strong selection associated with spatial environmental heterogeneity is expected to drive localized adaptive divergence, even in the face of connectivity. We tested this hypothesis using a seascape genomics approach in the commercially important greenlip abalone (Haliotis laevigata). We assessed how its population structure has been influenced by environmental heterogeneity along a zonal coastal boundary in southern Australia linked by strong oceanographic connectivity. Our data sets include 9,109 filtered SNPs for 371 abalones from 13 localities and environmental mapping across ~800 km. Genotype-environment association analyses and outlier tests defined 8,786 putatively neutral and 323 candidate adaptive loci. From a neutral perspective, the species is better represented by a metapopulation with very low differentiation (global FST  = 0.0081) and weak isolation by distance following a stepping-stone model. For the candidate adaptive loci, however, model-based and model-free approaches indicated five divergent population clusters. After controlling for spatial distance, the distribution of putatively adaptive variation was strongly correlated to selection linked to minimum sea surface temperature and oxygen concentration. Around 80 candidates were annotated to genes with functions related to high temperature and/or low oxygen tolerance, including genes that influence the resilience of abalone species found in other biogeographic regions. Our study includes a documented example about the uptake of genomic information in fisheries management and supports the hypothesis of adaptive divergence due to coastal environmental heterogeneity in a connected metapopulation of a broadcast spawner.


Assuntos
Meio Ambiente , Genômica , Moluscos/genética , Animais , Análise por Conglomerados , Análise Discriminante , Pesqueiros , Loci Gênicos , Genética Populacional , Técnicas de Genotipagem , Geografia , Anotação de Sequência Molecular , Polimorfismo de Nucleotídeo Único/genética , Análise de Componente Principal , Análise de Regressão
9.
Mol Ecol ; 27(1): 196-215, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29165848

RESUMO

Populations that are adaptively divergent but maintain high gene flow may have greater resilience to environmental change as gene flow allows the spread of alleles that have already been tested elsewhere. In addition, populations naturally subjected to ecological disturbance may already hold resilience to future environmental change. Confirming this necessitates ecological genomic studies of high dispersal, generalist species. Here we perform one such study on golden perch (Macquaria ambigua) in the Murray-Darling Basin (MDB), Australia, using a genome-wide SNP data set. The MDB spans across arid to wet and temperate to subtropical environments, with low to high ecological disturbance in the form of low to high hydrological variability. We found high gene flow across the basin and three populations with low neutral differentiation. Genotype-environment association analyses detected adaptive divergence predominantly linked to an arid region with highly variable riverine flow, and candidate loci included functions related to fat storage, stress and molecular or tissue repair. The high connectivity of golden perch in the MDB will likely allow locally adaptive traits in its most arid and hydrologically variable environment to spread and be selected in localities that are predicted to become arid and hydrologically variable in future climates. High connectivity in golden perch is likely due to their generalist life history and efforts of fisheries management. Our study adds to growing evidence of adaptation in the face of gene flow and highlights the importance of considering ecological disturbance and adaptive divergence in biodiversity management.


Assuntos
Adaptação Fisiológica/genética , Biodiversidade , Mudança Climática , Fluxo Gênico , Percas/genética , Percas/fisiologia , Animais , Austrália , Análise por Conglomerados , Frequência do Gene/genética , Loci Gênicos , Geografia , Polimorfismo de Nucleotídeo Único/genética , Análise de Componente Principal
10.
Mol Phylogenet Evol ; 109: 415-420, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28254472

RESUMO

Conflicting results from different molecular datasets have long confounded our ability to characterise species boundaries. Here we use genome-wide SNP data and an expanded allozyme dataset to resolve conflicting systematic hypotheses on an enigmatic group of fishes (Gadopsis, river blackfishes, Percichthyidae) restricted to southeastern Australia. Previous work based on three sets of molecular markers: mtDNA, nuclear intron DNA and 51 allozyme loci was unable to clearly resolve the status of a putative fifth candidate species (SWV) within Gadopsis marmoratus. Resolving the taxonomic status of candidate species SWV is particularly critical as based on IUCN criteria this taxon would be considered Critically Endangered. After all filtering steps we retained a subset of 10,862 putatively unlinked SNP loci for population genetic and phylogenomic analyses. Analyses of SNP loci based on maximum likelihood, fastSTRUCTURE and DAPC were all consistent with the previous and updated allozyme results supporting the validity of the candidate Gadopsis species SWV. Immediate conservation actions should focus on preventing take by anglers, protection of water resources to sustain perennial reaches and drought refuge pools, and aquatic and riparian habitat protection and improvement. In addition, a formal morphological taxonomic review of the genus Gadopsis is urgently required.


Assuntos
Espécies em Perigo de Extinção , Peixes/genética , Polimorfismo de Nucleotídeo Único , Animais , Austrália , DNA Mitocondrial , Genoma , Isoenzimas/genética , Filogenia , Rios
11.
Mol Phylogenet Evol ; 111: 65-75, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28347889

RESUMO

Species range limits often fluctuate in space and time in response to variation in environmental factors and to gradual niche evolution due to changes in adaptive traits. We used genome-wide data to investigate evolutionary divergence and species range limits in a generalist and highly dispersive fish species that shows an unusually wide distribution across arid and semi-arid regions of Australia. We generated ddRAD data (18,979 filtered SNPs and 1.725million bp of sequences) for samples from 27 localities spanning the native range of golden perch, Macquaria ambigua (Teleostei; Percichthyidae). Our analytical framework uses population genomics to assess connectivity and population structure using model-based and model-free approaches, phylogenetics to clarify evolutionary relationships, and a coalescent-based Bayesian species delimitation method to assess statistical support of inferred species boundaries. Addressing uncertainties regarding range limits and taxonomy is particularly relevant for this iconic Australian species because of the intensive stocking activities undertaken to support its recreational fishery and its predicted range shifts associated with ongoing climate change. Strong population genomic, phylogenetic, and coalescent species delimitation support was obtained for three separately evolving metapopulation lineages, each lineage should be considered a distinct cryptic species of golden perch. Their range limits match the climate-determined boundaries of main river basins, despite the ability of golden perch to cross drainage divides. We also identified cases suggestive of anthropogenic hybridization between lineages due to stocking of this recreationally important fish, as well as a potential hybrid zone with a temporally stable pattern of admixture. Our work informs on the consequences of aridification in the evolution of aquatic organisms, a topic poorly represented in the literature. It also shows that genome-scale data can substantially improve and rectify inferences about taxonomy, hybridization and conservation management previously proposed by detailed genetic studies.


Assuntos
Mudança Climática , Ecossistema , Genoma , Percas/genética , Animais , Austrália , Sequência de Bases , Análise por Conglomerados , Análise Discriminante , Geografia , Funções Verossimilhança , Filogenia , Polimorfismo de Nucleotídeo Único/genética , Análise de Componente Principal , Rios , Especificidade da Espécie
12.
J Hered ; 105(1): 91-100, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24123495

RESUMO

The northern Mexican Pacific (NMP), the Gulf of California (GC), and Baja California have been recognized as an ecological and evolutionarily dynamic region having experienced significant tectonic and climatic changes leading to the diversification of terrestrial and marine biotas. Zapteryx exasperata is a predominant ray caught in the artisanal fisheries of the NMP. Morphometric and reproductive differences between rays from the GC and the Pacific coast of Baja California (PCBC) regions suggest the presence of distinct populations. We investigate whether this distinction correlates with differences in genetic diversity and differentiation using sequences of the mitochondrial nicotinamide adenine dinucleotide dehydrogenase subunit 2 (ND2) gene and the noncoding control region (CR) in 63 specimens. Contrary to our expectations, ND2 bore significantly more diversity (h = 0.76) than CR (h = 0.39). Geographic patterns of diversity of CR were opposite to those of ND2, with GC being significantly less (ND2) and more (CR) diverse than PCBC. The diversity of concatenated haplotypes was high (h = 0.84). Low nucleotide diversity suggests the recent coancestry of haplotypes. Marked genetic structure (Φst = 0.23, P < 0.0001) revealed the existence of reproductive isolation and limited matrilineal gene flow between GC and PCBC, which correlates with their phenotypic distinction. These results suggest the influence of factors such as female reproductive philopatry, and ecological or historical vicariant barriers to gene flow. Our results point to the existence of a distinct management unit of banded guitarfish in each region, and add to the increasing evidence attesting to the diversifying nature of this evolutionarily dynamic region.


Assuntos
DNA Mitocondrial/isolamento & purificação , Filogenia , Rajidae/classificação , Rajidae/genética , Animais , DNA Mitocondrial/genética , Fluxo Gênico , Variação Genética , Haplótipos , México , Mitocôndrias/genética , Filogeografia , Análise de Sequência de DNA
13.
G3 (Bethesda) ; 12(3)2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35100370

RESUMO

Growth is one of the most important traits of an organism. For exploited species, this trait has ecological and evolutionary consequences as well as economical and conservation significance. Rapid changes in growth rate associated with anthropogenic stressors have been reported for several marine fishes, but little is known about the genetic basis of growth traits in teleosts. We used reduced genome representation data and genome-wide association approaches to identify growth-related genetic variation in the commercially, recreationally, and culturally important Australian snapper (Chrysophrys auratus, Sparidae). Based on 17,490 high-quality single-nucleotide polymorphisms and 363 individuals representing extreme growth phenotypes from 15,000 fish of the same age and reared under identical conditions in a sea pen, we identified 100 unique candidates that were annotated to 51 proteins. We documented a complex polygenic nature of growth in the species that included several loci with small effects and a few loci with larger effects. Overall heritability was high (75.7%), reflected in the high accuracy of the genomic prediction for the phenotype (small vs large). Although the single-nucleotide polymorphisms were distributed across the genome, most candidates (60%) clustered on chromosome 16, which also explains the largest proportion of heritability (16.4%). This study demonstrates that reduced genome representation single-nucleotide polymorphisms and the right bioinformatic tools provide a cost-efficient approach to identify growth-related loci and to describe genomic architectures of complex quantitative traits. Our results help to inform captive aquaculture breeding programs and are of relevance to monitor growth-related evolutionary shifts in wild populations in response to anthropogenic pressures.


Assuntos
Estudo de Associação Genômica Ampla , Perciformes , Animais , Austrália , Genoma , Perciformes/genética , Perciformes/crescimento & desenvolvimento , Fenótipo , Polimorfismo de Nucleotídeo Único
14.
Evol Appl ; 15(7): 1099-1114, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35899251

RESUMO

The efficacy of fisheries management strategies depends on stock assessment and management actions being carried out at appropriate spatial scales. This requires understanding of spatial and temporal population structure and connectivity, which is challenging in weakly structured and highly connected marine populations. We carried out a population genomics study of the heavily exploited snapper (Chrysophrys auratus) along ~2600 km of the Australian coastline, with a focus on Western Australia (WA). We used 10,903 filtered SNPs in 341 individuals from eight sampling locations to characterize population structure and connectivity in snapper across WA and to assess if current spatial scales of stock assessment and management agree with evidence from population genomics. Our dataset also enabled us to investigate temporal stability in population structure as well as connectivity between WA and its nearest, eastern jurisdictional neighbour. As expected for a species influenced by the extensive ocean boundary current in the region, low genetic differentiation and high connectivity were uncovered across WA. However, we did detect strong isolation by distance and genetic discontinuities in the mid-west and south-east. The discontinuities correlate with boundaries between biogeographic regions, influenced by on-shelf oceanography, and the sites of important spawning aggregations. We also detected temporal instability in genetic structure at one of our sites, possibly due to interannual variability in recruitment in adjacent regions. Our results partly contrast with the current spatial management of snapper in WA, indicating the likely benefits of a review. This study supports the value of population genomic surveys in informing the management of weakly structured and wide-ranging marine fishery resources.

15.
Evolution ; 76(1): 171-183, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34778944

RESUMO

How populations of aquatic fauna persist in extreme desert environments is an enigma. Individuals often breed and disperse during favorable conditions. Theory predicts that adaptive capacity should be low in small populations, such as in desert fishes. We integrated satellite-derived surface water data and population genomic diversity from 20,294 single-nucleotide polymorphisms across 344 individuals to understand metapopulation persistence of the desert rainbowfish (Melanotaenia splendida tatei) in central Australia. Desert rainbowfish showed very small effective population sizes, especially at peripheral populations, and low connectivity between river catchments. Yet, there was no evidence of population-level inbreeding and a signal of possible adaptive divergence associated with aridity was detected. Candidate genes for local adaptation included functions related to environmental cues and stressful conditions. Eco-evolutionary modeling showed that positive selection in refugial subpopulations combined with connectivity during flood periods can enable retention of adaptive diversity. Our study suggests that adaptive variation can be maintained in small populations and integrate with neutral metapopulation processes to allow persistence in the desert.


Assuntos
Adaptação Fisiológica , Água , Adaptação Fisiológica/genética , Animais , Evolução Biológica , Genômica , Humanos , Densidade Demográfica
16.
BMC Ecol Evol ; 22(1): 88, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35818031

RESUMO

BACKGROUND: High levels of standing genomic variation in wide-ranging marine species may enhance prospects for their long-term persistence. Patterns of connectivity and adaptation in such species are often thought to be influenced by spatial factors, environmental heterogeneity, and oceanographic and geomorphological features. Population-level studies that analytically integrate genome-wide data with environmental information (i.e., seascape genomics) have the potential to inform the spatial distribution of adaptive diversity in wide-ranging marine species, such as many marine mammals. We assessed genotype-environment associations (GEAs) in 214 common dolphins (Delphinus delphis) along > 3000 km of the southern coast of Australia. RESULTS: We identified 747 candidate adaptive SNPs out of a filtered panel of 17,327 SNPs, and five putatively locally-adapted populations with high levels of standing genomic variation were disclosed along environmentally heterogeneous coasts. Current velocity, sea surface temperature, salinity, and primary productivity were the key environmental variables associated with genomic variation. These environmental variables are in turn related to three main oceanographic phenomena that are likely affecting the dispersal of common dolphins: (1) regional oceanographic circulation, (2) localised and seasonal upwellings, and (3) seasonal on-shelf circulation in protected coastal habitats. Signals of selection at exonic gene regions suggest that adaptive divergence is related to important metabolic traits. CONCLUSION: To the best of our knowledge, this represents the first seascape genomics study for common dolphins (genus Delphinus). Information from the associations between populations and their environment can assist population management in forecasting the adaptive capacity of common dolphins to climate change and other anthropogenic impacts.


Assuntos
Golfinhos Comuns , Animais , Genética Populacional , Genômica , Genótipo , Oceanografia
17.
J Hered ; 102(3): 269-74, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21414964

RESUMO

Assessing the realized effect of dispersal in the genetic makeup of a species has significant evolutionary, ecological, and economical consequences. Here, we investigate the genetic diversity and population differentiation in the aquilopelagic golden cownose ray Rhinoptera steindachneri from the Gulf of California (GC) and the Pacific coast of Baja California (PCBC) using the mitochondrial NADH2 gene. Low levels of genetic diversity were found with only 4 polymerase chain reaction-restriction fragment length polymorphism haplotypes among 76 specimens. Pacific coast organisms were fixed for a unique haplotype not shared with rays from the gulf; 92% of GC rays possessed a single NADH2 haplotype not found in the Pacific. This produced significant differentiation between the GC and the PCBC (Φ(CT) = 0.972, P < 0.001). A pronounced phylogeographic pattern was found in which GC haplotypes were reciprocally monophyletic relative to a very divergent Pacific lineage (d = 10%). Our results indicate that despite high dispersal potential, GC and PCBC golden cownose ray populations are characterized by highly divergent mitochondrial lineages. Although more evidence is needed to corroborate the genetic isolation and systematic status of PCBC and GC golden cownose rays, our results suggest a possible cryptic species in the region.


Assuntos
DNA Mitocondrial/genética , Evolução Molecular , Variação Genética , Rajidae/classificação , Rajidae/genética , Animais , México , Dados de Sequência Molecular , Complexos Multienzimáticos/genética , NADH NADPH Oxirredutases/genética , Filogenia , Filogeografia
18.
Sci Adv ; 7(38): eabf4514, 2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34524856

RESUMO

The KwaZulu-Natal sardine run, popularly known as the "greatest shoal on Earth," is a mass migration of South African sardines from their temperate core range into the subtropical Indian Ocean. It has been suggested that this represents the spawning migration of a distinct subtropical stock. Using genomic and transcriptomic data from sardines collected around the South African coast, we identified two stocks, one cool temperate (Atlantic) and the other warm temperate (Indian Ocean). Unexpectedly, we found that sardines participating in the sardine run are primarily of Atlantic origin and thus prefer colder water. These sardines separate from the warm-temperate stock and move into temporarily favorable Indian Ocean habitat during brief cold-water upwelling periods. Once the upwelling ends, they find themselves trapped in physiologically challenging subtropical habitat and subject to intense predation pressure. This makes the sardine run a rare example of a mass migration that has no apparent fitness benefits.

19.
Mol Phylogenet Evol ; 53(1): 23-33, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19501181

RESUMO

Crabs of the family Hymenosomatidae are common in coastal and shelf regions throughout much of the southern hemisphere. One of the genera in the family, Hymenosoma, is represented in Africa and the South Pacific (Australia and New Zealand). This distribution can be explained either by vicariance (presence of the genus on the Gondwanan supercontinent and divergence following its break-up) or more recent transoceanic dispersal from one region to the other. We tested these hypotheses by reconstructing phylogenetic relationships among the seven presently-accepted species in the genus, as well as examining their placement among other hymenosomatid crabs, using sequence data from two nuclear markers (Adenine Nucleotide Transporter [ANT] exon 2 and 18S rDNA) and three mitochondrial markers (COI, 12S and 16S rDNA). The five southern African representatives of the genus were recovered as a monophyletic lineage, and another southern African species, Neorhynchoplax bovis, was identified as their sister taxon. The two species of Hymenosoma from the South Pacific neither clustered with their African congeners, nor with each other, and should therefore both be placed into different genera. Molecular dating supports a post-Gondwanan origin of the Hymenosomatidae. While long-distance dispersal cannot be ruled out to explain the presence of the family Hymenosomatidae on the former Gondwanan land-masses and beyond, the evolutionary history of the African species of Hymenosoma indicates that a third means of speciation may be important in this group: gradual along-coast dispersal from tropical towards temperate regions, with range expansions into formerly inhospitable habitat during warm climatic phases, followed by adaptation and speciation during subsequent cooler phases.


Assuntos
Braquiúros/genética , Evolução Molecular , Especiação Genética , Filogenia , Animais , Braquiúros/classificação , DNA Mitocondrial/genética , DNA Ribossômico/genética , Análise de Sequência de DNA
20.
Adv Mar Biol ; 83: 115-157, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31606069

RESUMO

One of the most critical threats to biodiversity is the high extinction rate driven by human activities. Reducing extinction rates requires the implementation of conservation programmes based on robust scientific data. Elasmobranchs are important ecological components of the ocean, and several species sustain substantial economic activities. Unfortunately, elasmobranchs are one of the most threatened and understudied animal taxa. The Mexican Pacific Coast (MPC) is a region with high elasmobranch diversity and is the seat of major elasmobranch fisheries. But it is also a developing region with several conservation and management challenges which require national and international attention. Here, we review the conservation genetics literature of elasmobranchs from the MPC. We present a synthesis of the works using samples from the region and emphasize the main gaps and biases in these data. In addition, we discuss the benefits and challenges of generating genomic information to improve the management and conservation of an elasmobranch biodiversity hotspot in a developing country. We found 47 elasmobranch genetic articles that cover <30% of the elasmobranch diversity in the region. These studies mainly used mitochondrial DNA sequences to analyse the genetic structure of commercially important and abundant species of the order Carcharhiniformes. Some of these papers also assessed mating systems, demographic parameters, and taxonomic uncertainties, all of which are important topics for efficient management decisions. In terms of conservation genetics, elasmobranchs from the MPC remain understudied. However, high-throughput sequencing technologies have increased the power and accessibility of genomic tools, even in developing countries such as Mexico. The tools described here provide information relevant for biodiversity conservation. Therefore, we strongly suggest that investment in genomic research will assist implementation of efficient management strategies. In time, this will reduce the extinction risk of the unique elasmobranch biodiversity from the MPC.


Assuntos
Conservação dos Recursos Naturais , Elasmobrânquios/genética , Animais , Conservação dos Recursos Naturais/tendências , México , Oceano Pacífico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA