RESUMO
Soil is a major receptor of manufactured nanomaterials (NMs) following unintentional releases or intentional uses. Ceria NMs have been shown to undergo biotransformation in plant and soil organisms with a partial Ce(IV) reduction into Ce(III), but the influence of environmentally widespread soil bacteria is poorly understood. We used high-energy resolution fluorescence-detected X-ray absorption spectroscopy (HERFD-XAS) with an unprecedented detection limit to assess Ce speciation in a model soil bacterium (Pseudomonas brassicacearum) exposed to CeO2 NMs of different sizes and shapes. The findings revealed that the CeO2 NM's size drives the biotransformation process. No biotransformation was observed for the 31 nm CeO2 NMs, contrary to 7 and 4 nm CeO2 NMs, with a Ce reduction of 64 ± 14% and 70 ± 15%, respectively. This major reduction appeared quickly, from the early exponential bacterial growth phase. Environmentally relevant organic acid metabolites secreted by Pseudomonas, especially in the rhizosphere, were investigated. The 2-keto-gluconic and citric acid metabolites alone were able to induce a significant reduction in 4 nm CeO2 NMs. The high biotransformation measured for <7 nm NMs would affect the fate of Ce in the soil and biota.
Assuntos
Cério , Nanopartículas Metálicas , Nanoestruturas , Tamanho da Partícula , Cério/química , Solo/química , Nanopartículas Metálicas/química , BactériasRESUMO
The current study examines the desiccation-resistant Ramlibacter tataouinensis TTB310T as a model organism for the production of novel exopolysaccharides and their structural features. This bacterium is able to produce dividing forms of cysts which synthesize cell-bound exopolysaccharide. Initial experiments were conducted on the enrichment of cyst biomass for exopolysaccharide production under batch-fed conditions in a pilot-scale bioreactor, with lactate as the source of carbon and energy. The optimized medium produced significant quantities of exopolysaccharide in a single growth phase, since the production of exopolysaccharide took place during the division of the cysts. The exopolysaccharide layer was extracted from the cysts using a modified trichloroacetic acid method. The biochemical characterization of purified exopolysaccharide was performed by gas chromatography, ultrahigh-resolution mass spectrometry, nuclear magnetic resonance, and Fourier-transform infrared spectrometry. The repeating unit of exopolysaccharide was a decasaccharide consisting of ribose, glucose, rhamnose, galactose, mannose, and glucuronic acid with the ratio 3:2:2:1:1:1, and additional substituents such as acetyl, succinyl, and methyl moieties were also observed as a part of the exopolysaccharide structure. This study contributes to a fundamental understanding of the novel structural features of exopolysaccharide from a dividing form of cysts, and, further, results can be used to study its rheological properties for various industrial applications.
Assuntos
Comamonadaceae , Cistos , Humanos , Cromatografia Gasosa-Espectrometria de Massas , Ramnose , Polissacarídeos Bacterianos/químicaRESUMO
In the past decade, mesocosms have emerged as a useful tool for the environmental study of engineered nanomaterials (ENMs) as they can mimic the relevant exposure scenario of contamination. Herein, we analyzed the scientific outcomes of aquatic mesocosm experiments, with regard to their designs, the ENMs tested, and the end points investigated. Several mesocosm designs were consistently applied in the past decade to virtually mimic various contamination scenarios with regard to ecosystem setting as well as ENMs class, dose, and dosing. Statistical analyses were carried out with the literature data to identify the main parameters driving ENM distribution in the mesocosms and the potential risk posed to benthic and planktonic communities as well as global ecosystem responses. These analyses showed that at the end of the exposure, mesocosm size (water volume), experiment duration, and location indoor/outdoor had major roles in defining the ENMs/metal partitioning. Moreover, a higher exposure of the benthic communities is often observed but did not necessarily translate to a higher risk due to the lower hazard posed by transformed ENMs in the sediments (e.g., aggregated, sulfidized). However, planktonic organisms were generally exposed to lower concentrations of potentially more reactive and toxic ENM species. Hence, mesocosms can be complementary tools to existing standard operational procedures for regulatory purposes and environmental fate and risk assessment of ENMs. To date, the research was markedly unbalanced toward the investigation of metal-based ENMs compared to metalloid- and carbon-based ENMs but also nanoenabled products. Future studies are expected to fill this gap, with special regard to high production volume and potentially hazardous ENMs. Finally, to take full advantage of mesocosms, future studies must be carefully planned to incorporate interdisciplinary approaches and ensure that the large data sets produced are fully exploited.
Assuntos
Ecossistema , Nanoestruturas , Nanoestruturas/toxicidade , Medição de RiscoRESUMO
Terrestrial plants can internalize and translocate nanoparticles (NPs). However, direct evidence for the processes driving the NP uptake and distribution in plants is scarce at the cellular level. Here, NP-root interactions were investigated after 10 days of exposure of Arabidopsis thaliana to 10 mg·L-1 of negatively or positively charged gold NPs (â¼12 nm) in gels. Two complementary imaging tools were used: X-ray computed nanotomography (nano-CT) and enhanced dark-field microscopy combined with hyperspectral imaging (DF-HSI). The use of these emerging techniques improved our ability to detect and visualize NP in plant tissue: by spectral confirmation via DF-HSI, and in three dimensions via nano-CT. The resulting imaging provides direct evidence that detaching border-like cells (i.e., sheets of border cells detaching from the root) and associated mucilage can accumulate and trap NPs irrespective of particle charge. On the contrary, border cells on the root cap behaved in a charge-specific fashion: positively charged NPs induced a higher mucilage production and adsorbed to it, which prevented translocation into the root tissue. Negatively charged NPs did not adsorb to the mucilage and were able to translocate into the apoplast. These observations provide direct mechanistic insight into NP-plant interactions, and reveal the important function of border cells and mucilage in interactions of plants with charged NPs.
Assuntos
Arabidopsis/química , Ouro , Nanopartículas , Raízes de Plantas , Raios XRESUMO
The ISO-standardized RHIZOtest is used here for the first time to decipher how plant species, soil properties, and physical-chemical properties of the nanoparticles and their transformation regulate the phytoavailability of nanoparticles. Two plants, tomato and fescue, were exposed to two soils with contrasted properties: a sandy soil poor in organic matter and a clay soil rich in organic matter, both contaminated with 1, 15, and 50 mg·kg-1 of dissolved Ce2(SO4)3, bare and citrate-coated CeO2 nanoparticles. All the results demonstrate that two antagonistic soil properties controlled Ce uptake. The clay fraction enhanced the retention of the CeO2 nanoparticles and hence reduced Ce uptake, whereas the organic matter content enhanced Ce uptake. Moreover, in the soil poor in organic matter, the organic citrate coating significantly enhanced the phytoavailability of the cerium by forming smaller aggregates thereby facilitating the transport of nanoparticles to the roots. By getting rid of the dissimilarities between the root systems of the different plants and the normalizing the surfaces exposed to nanoparticles, the RHIZOtest demonstrated that the species of plant did not drive the phytoavailability, and provided evidence for soil-plant transfers at concentrations lower than those usually cited in the literature and closer to predicted environmental concentrations.
Assuntos
Cério/farmacocinética , Nanopartículas , Poluentes do Solo/farmacocinética , Solanum lycopersicum , Raízes de Plantas , Poaceae , SoloRESUMO
The P2CS database (http://www.p2cs.org/) is a comprehensive resource for the analysis of Prokaryotic Two-Component Systems (TCSs). TCSs are comprised of a receptor histidine kinase (HK) and a partner response regulator (RR) and control important prokaryotic behaviors. The latest incarnation of P2CS includes 164,651 TCS proteins, from 2758 sequenced prokaryotic genomes. Several important new features have been added to P2CS since it was last described. Users can search P2CS via BLAST, adding hits to their cart, and homologous proteins can be aligned using MUSCLE and viewed using Jalview within P2CS. P2CS also provides phylogenetic trees based on the conserved signaling domains of the RRs and HKs from entire genomes. HK and RR trees are annotated with gene organization and domain architecture, providing insights into the evolutionary origin of the contemporary gene set. The majority of TCSs are encoded by adjacent HK and RR genes, however, 'orphan' unpaired TCS genes are also abundant and identifying their partner proteins is challenging. P2CS now provides paired HK and RR trees with proteins from the same genetic locus indicated. This allows the appraisal of evolutionary relationships across entire TCSs and in some cases the identification of candidate partners for orphan TCS proteins.
Assuntos
Proteínas de Bactérias/química , Bases de Dados de Proteínas , Genoma Microbiano , Proteínas Quinases/química , Transdução de Sinais , Proteínas de Bactérias/classificação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Histidina Quinase , Internet , Filogenia , Proteínas Quinases/classificação , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Alinhamento de SequênciaRESUMO
The toxicity of high-aspect-ratio nanomaterials (HARNs) is often associated with oxidative stress. The essential nutrient Fe may also be responsible of oxidative stress through the production of reactive oxygen species. In the present study, it has been examined to what extent adding Fenton reaction promoting Fe impacted the toxicity of an alumino-germanate model HARN. Structural addition of only 0.95% wt Fe to Ge-imogolite not only alleviated the toxicity observed in the case of Fe-free nanotubes but also stimulated bacterial growth. This was attributed to the metabolization of siderophore-mobilized Fe from the nanotube structure. This was evidenced by the regulation of the homeostasis-monitoring intracellular Fe levels. This was accompanied by a biodegradation of the nanotubes approaching 40%, whereas the Fe-free nanomaterial remained nearly untouched.
Assuntos
Ferro/química , Pseudomonas/metabolismo , Biodegradação Ambiental , Homeostase , Nanotubos/químicaRESUMO
Soils act as nanoceria sinks via agricultural spreading and surface waters. Canola plants were grown for one month in soil spiked with nanoceria (1 mg·kg(-1)). To define the role of nanomaterials design on environmental impacts, we studied nanoceria with different sizes (3.5 or 31 nm) and coating (citrate). We measured microbial activities involved in C, N, and P cycling in the rhizosphere and unplanted soil. Bacterial community structure was analyzed in unplanted soil, rhizosphere, and plant roots by 454-pyrosequencing of the 16S rRNA gene. This revealed an impact gradient dependent on nanomaterials design, ranging from decreased microbial enzymatic activities in planted soil to alterations in bacterial community structure in roots. Particle size/aggregation was a key parameter in modulating nanoceria effects on root communities. Citrate coating lowered the impact on microbial enzymatic activities but triggered variability in the bacterial community structure near the plant root. Some nanoceria favored taxa whose closest relatives are hydrocarbon-degrading bacteria and disadvantaged taxa frequently associated in consortia with disease-suppressive activity toward plant pathogens. This work provides a basis to determine outcomes of nanoceria in soil, at a dose close to predicted environmental concentrations, and to design them to minimize these impacts.
Assuntos
Microbiologia do Solo , Solo/química , Microbiota , Raízes de Plantas/microbiologia , RNA Ribossômico 16S/genética , RizosferaRESUMO
The objective of this work was to investigate the fate of silver nanoparticles (Ag-NPs) in a sludge-amended soil cultivated with monocot (Wheat) and dicot (Rape) crop species. A pot experiment was performed with sludges produced in a pilot wastewater treatment plant containing realistic Ag concentrations (18 and 400 mg kg(-1), 14 mg kg(-1) for the control). Investigations focused on the highest dose treatment. X-ray absorption spectroscopy (XAS) showed that Ag2S was the main species in the sludge and amended soil before and after plant culture. The second most abundant species was an organic and/or amorphous Ag-S phase whose proportion slightly varied (from 24% to 36%) depending on the conditions. Micro and nano X-ray fluorescence (XRF) showed that Ag was preferentially associated with S-rich particles, including organic fragments, of the sludge and amended soils. Ag was distributed as heteroaggregates with soil components (size ranging from ≤0.5 to 1-3 µm) and as diffused zones likely corresponding to sorbed/complexed Ag species. Nano-XRF evidenced the presence of mixed metallic sulfides. Ag was weakly exchangeable and labile. However, micronutrient mobilization by plant roots and organic matter turnover may induce Ag species interconversion eventually leading to Ag release on longer time scales. Together, these data provide valuable information for risk assessment of sewage sludge application on agricultural soils.
Assuntos
Nanopartículas , Esgotos/química , Prata , Solo/química , Poluentes Químicos da Água/análise , Agricultura , Brassica rapa/crescimento & desenvolvimento , Brassica rapa/metabolismo , Nanopartículas/análise , Nanopartículas/química , Raízes de Plantas/metabolismo , Medição de Risco , Prata/química , Prata/farmacocinética , Poluentes do Solo/análise , Poluentes do Solo/farmacocinética , Enxofre/química , Suíça , Triticum/crescimento & desenvolvimento , Triticum/metabolismo , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Espectroscopia por Absorção de Raios XRESUMO
Plant pathogens including fungi and bacteria cause many of the most serious crop diseases. The plant innate immune response is triggered upon recognition of microbe-associated molecular patterns (MAMPs) such as flagellin22 and peptidoglycan. To date, very little is known of MAMP-mediated responses in roots. Root border cells are cells that originate from root caps and are released individually into the rhizosphere. Root tips of Arabidopsis (Arabidopsis thaliana) and flax (Linum usitatissimum) release cells known as "border-like cells." Whereas root border cells of pea (Pisum sativum) are clearly involved in defense against fungal pathogens, the function of border-like cells remains to be established. In this study, we have investigated the responses of root border-like cells of Arabidopsis and flax to flagellin22 and peptidoglycan. We found that both MAMPs triggered a rapid oxidative burst in root border-like cells of both species. The production of reactive oxygen species was accompanied by modifications in the cell wall distribution of extensin epitopes. Extensins are hydroxyproline-rich glycoproteins that can be cross linked by hydrogen peroxide to enhance the mechanical strength of the cell wall. In addition, both MAMPs also caused deposition of callose, a well-known marker of MAMP-elicited defense. Furthermore, flagellin22 induced the overexpression of genes involved in the plant immune response in root border-like cells of Arabidopsis. Our findings demonstrate that root border-like cells of flax and Arabidopsis are able to perceive an elicitation and activate defense responses. We also show that cell wall extensin is involved in the innate immunity response of root border-like cells.
Assuntos
Arabidopsis/imunologia , Arabidopsis/microbiologia , Linho/imunologia , Linho/microbiologia , Células Vegetais/imunologia , Células Vegetais/microbiologia , Raízes de Plantas/citologia , Arabidopsis/citologia , Arabidopsis/genética , Biomarcadores/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Parede Celular/efeitos dos fármacos , Parede Celular/imunologia , Parede Celular/ultraestrutura , Epitopos/imunologia , Flagelina/farmacologia , Linho/citologia , Linho/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Glucanos/metabolismo , Glicoproteínas/imunologia , Peptidoglicano/farmacologia , Células Vegetais/efeitos dos fármacos , Células Vegetais/ultraestrutura , Proteínas de Plantas/imunologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/imunologia , Raízes de Plantas/microbiologia , Espécies Reativas de Oxigênio/metabolismo , Receptores de Reconhecimento de Padrão/imunologia , Fatores de TempoRESUMO
TiO2-based nanocomposite (NC) are widely used as invisible UV protectant in cosmetics. These nanomaterials (NMs) end in the environment as altered materials. We have investigated the properties of T-Lite SF, a TiO2-NC used as sunscreen, after weathering in water and under light. We have examined the formation of ROS and their consequences on cell physiology of Escherichia coli. Our results show that aged-T-Lite SF produced singlet oxygen under low intensity long wave UV and formed hydroxyl radicals at high intensity. Despite the production of these ROS, T-Lite SF had neither effect on the viability of E. coli nor on mutant impaired in oxidative stress, did not induce mutagenesis and did not impair the integrity of membrane lipids, thus seemed safe to bacteria. However, when pre-exposed to T-Lite SF under low intensity UV, cells turned out to be more sensitive to cadmium, a priority pollutant widely disseminated in soil and surface waters. This effect was not a Trojan horse: sensitization of cells was dependent on the formation of singlet oxygen. These results provide a basis for caution, especially on NMs that have no straight environmental toxicity. It is crucial to anticipate indirect and combined effects of environmental pollutants and NMs.
Assuntos
Cádmio/toxicidade , Escherichia coli/efeitos dos fármacos , Escherichia coli/efeitos da radiação , Nanocompostos , Oxigênio Singlete/química , Protetores Solares/química , Titânio/química , Raios Ultravioleta , Espectroscopia de Ressonância de Spin Eletrônica , Escherichia coli/metabolismo , Radical Hidroxila/química , Microscopia Eletrônica de Varredura , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismoRESUMO
Engineered nanomaterials (ENMs) are used to enhance the properties of many manufactured products and technologies. Increased use of ENMs will inevitably lead to their release into the environment. An important route of exposure is through the waste stream, where ENMs will enter wastewater treatment plants (WWTPs), undergo transformations, and be discharged with treated effluent or biosolids. To better understand the fate of a common ENM in WWTPs, experiments with laboratory-scale activated sludge reactors and pristine and citrate-functionalized CeO2 nanoparticles (NPs) were conducted. Greater than 90% of the CeO2 introduced was observed to associate with biosolids. This association was accompanied by reduction of the Ce(IV) NPs to Ce(III). After 5 weeks in the reactor, 44 ± 4% reduction was observed for the pristine NPs and 31 ± 3% for the citrate-functionalized NPs, illustrating surface functionality dependence. Thermodynamic arguments suggest that the likely Ce(III) phase generated would be Ce2S3. This study indicates that the majority of CeO2 NPs (>90% by mass) entering WWTPs will be associated with the solid phase, and a significant portion will be present as Ce(III). At maximum, 10% of the CeO2 will remain in the effluent and be discharged as a Ce(IV) phase, governed by cerianite (CeO2).
Assuntos
Reatores Biológicos , Cério/química , Ácido Cítrico/química , Laboratórios , Nanopartículas/química , Esgotos/química , Bactérias/metabolismo , Reatores Biológicos/microbiologia , Biotransformação , Cério/análise , Cinética , Esgotos/microbiologia , Águas Residuárias , Purificação da Água , Espectroscopia por Absorção de Raios XRESUMO
Over the past decades, the atmospheric CO2 concentration and global average temperature have been increasing, and this trend is projected to soon become more severe. This scenario of climate change intensifies abiotic stress factors (such as drought, flooding, salinity, and ultraviolet radiation) that threaten forest and associated ecosystems as well as crop production. These factors can negatively affect plant growth and development with a consequent reduction in plant biomass accumulation and yield, in addition to increasing plant susceptibility to biotic stresses. Recently, biostimulants have become a hotspot as an effective and sustainable alternative to alleviate the negative effects of stresses on plants. However, the majority of biostimulants have poor stability under environmental conditions, which leads to premature degradation, shortening their biological activity. To solve these bottlenecks, micro- and nano-based formulations containing biostimulant molecules and/or microorganisms are gaining attention, as they demonstrate several advantages over their conventional formulations. In this review, we focus on the encapsulation of plant growth regulators and plant associative microorganisms as a strategy to boost their application for plant protection against abiotic stresses. We also address the potential limitations and challenges faced for the implementation of this technology, as well as possibilities regarding future research.
Assuntos
Mudança Climática , Reguladores de Crescimento de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Ecossistema , Raios Ultravioleta , Plantas/metabolismoRESUMO
The range of metals used for industrial purposes - electrical engineering, solar panels, batteries - has increased substantially over the last twenty years. Some of these emerging metals are the subject of geopolitical conflict and are considered critical as their unique properties make them irreplaceable. Many of these elements are poorly studied and their biogeochemical cycles still raise many questions. Aim of this study is to analyse the soil-to-plant transfer of some of these chemical elements and to shed light on their uptake pathways. For this purpose, the geological site of Jas Roux (France) was chosen as this alpine site is naturally rich in critical and potentially toxic elements such as As, Sb, Ba and Tl, but nevertheless is host to a high diversity of plants. Elemental concentrations were analysed in the topsoil and in 12 selected alpine plant species sampled in situ. Statistical tools were used to detect species dependent characteristics in elemental uptake. Our analyses revealed accumulation of rare earth elements by Saxifraga paniculata, selective oxyanion absorption by Hippocrepis comosa, accumulation of Tl by Biscutella laevigata and Galium corrudifolium and an exclusion strategy in Juniperus communis. These findings advance our understanding of the environmental behaviour of critical metals and metalloids such as V, As, Y, Sb, Ce, Ba and Tl and might bare valuable information for phytoremediation applications.
Assuntos
Brassicaceae , Metais Pesados , Poluentes do Solo , Biodegradação Ambiental , Monitoramento Ambiental , Metais/análise , Metais Pesados/análise , Solo , Poluentes do Solo/análiseRESUMO
To shed light on the genetic equipment of the beneficial plant-associated bacterium Pseudomonas brassicacearum, we sequenced the whole genome of the strain NFM421. Its genome consists of one chromosome equipped with a repertoire of factors beneficial for plant growth. In addition, a complete type III secretion system and two complete type VI secretion systems were identified. We report here the first genome sequence of this species.
Assuntos
Genoma Bacteriano , Raízes de Plantas/microbiologia , Pseudomonas/genética , DNA Bacteriano/genética , Regulação Bacteriana da Expressão Gênica , Dados de Sequência Molecular , Pseudomonas/metabolismoRESUMO
Our agriculture is threatened by climate change and the depletion of resources and biodiversity. A new agriculture revolution is needed in order to increase the production of crops and ensure the quality and safety of food, in a sustainable way. Nanotechnology can contribute to the sustainability of agriculture. Seed nano-priming is an efficient process that can change seed metabolism and signaling pathways, affecting not only germination and seedling establishment but also the entire plant lifecycle. Studies have shown various benefits of using seed nano-priming, such as improved plant growth and development, increased productivity, and a better nutritional quality of food. Nano-priming modulates biochemical pathways and the balance between reactive oxygen species and plant growth hormones, resulting in the promotion of stress and diseases resistance outcoming in the reduction of pesticides and fertilizers. The present review provides an overview of advances in the field, showing the challenges and possibilities concerning the use of nanotechnology in seed nano-priming, as a contribution to sustainable agricultural practices.
RESUMO
Two-component systems (TCSs) are ubiquitous signaling pathways, typically comprising a sensory histidine kinase (HK) and a response regulator, which communicate via intermolecular kinase-to-receiver domain phosphotransfer. Hybrid HKs constitute non-canonical TCS signaling pathways, with transmitter and receiver domains within a single protein communicating via intramolecular phosphotransfer. Here, we report how evolutionary relationships between hybrid HKs can be used as predictors of potential intermolecular and intramolecular interactions ('phylogenetic promiscuity'). We used domain-swap genes chimeras to investigate the specificity of phosphotransfer within hybrid HKs of the GacS-GacA multikinase network of Pseudomonas brassicacearum. The receiver domain of GacS was replaced with those from nine donor hybrid HKs. Three chimeras with receivers from other hybrid HKs demonstrated correct functioning through complementation of a gacS mutant, which was dependent on strains having a functional gacA. Formation of functional chimeras was predictable on the basis of evolutionary heritage, and raises the possibility that HKs sharing a common ancestor with GacS might remain components of the contemporary GacS network. The results also demonstrate that understanding the evolutionary heritage of signaling domains in sophisticated networks allows their rational rewiring by simple domain transplantation, with implications for the creation of designer networks and inference of functional interactions.
Assuntos
Evolução Biológica , Proteínas Quinases/metabolismo , Transdução de Sinais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fenótipo , Fosforilação , Filogenia , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Quinases/genética , Pseudomonas/classificação , Pseudomonas/genéticaRESUMO
Microbial exopolysaccharides (EPSs) play key roles in plant-microbe interactions, such as biofilm formation on plant roots and legume nodulation by rhizobia. Here, we focused on the function of an EPS produced by Rhizobium sp. YAS34 in the colonization and biofilm formation on non-legume plant roots (Arabidopsis thaliana and Brassica napus). Using random transposon mutagenesis, we isolated an EPS-deficient mutant of strain YAS34 impaired in a glycosyltransferase gene (gta). Wild type and mutant strains were tagged with a plasmid-born GFP and, for the first time, the EPS produced by the wild-type strain was seen in the rhizosphere using selective carbohydrate probing with a fluorescent lectin and confocal laser-scanning microscopy. We show for the fist time that Rhizobium forms biofilms on roots of non-legumes, independently of the EPS synthesis. When produced by strain YAS34 wild type, EPS is targeted at specific parts of the plant root system. Nutrient fluctuations, root exudates and bacterial growth phase can account for such a production pattern. The EPS synthesis in Rhizobium sp. YAS34 is not essential for biofilm formation on roots, but is critical to colonization of the basal part of the root system and increasing the stability of root-adhering soil. Thus, in Rhizobium sp. YAS34 and non-legume interactions, microbial EPS is implicated in root-soil interface, root colonization, but not in biofilm formation.
Assuntos
Arabidopsis/microbiologia , Biofilmes , Brassica napus/microbiologia , Polissacarídeos Bacterianos/fisiologia , Rhizobium/metabolismo , Raízes de Plantas/microbiologiaRESUMO
The development of economically-efficient microbial electrochemical technologies remains hindered by the low ionic conductivity of the culture media used as the electrolyte. To overcome this drawback, halotolerant bioanodes were designed with salt marsh sediment used as the inoculum in electrolytes containing NaCl at 30 or 45g/L (ionic conductivity 7.0 or 10.4S·m(-1)). The bioanodes were formed at four different potentials -0.4, -0.2, 0.0 and 0.2V/SCE to identify the effect on the electrochemical kinetic parameters, the biofilm structures and the composition of the microbial communities. The bioanodes formed at -0.4V/SCE were largely dominated by Marinobacter spp. Voltammetry showed that they provided higher currents than the other bioanodes in the range of low potentials, but the maximum currents were limited by the poor surface colonization. The bioanodes formed at -0.2, 0.0 and 0.2V/SCE showed similar ratios of Marinobacter and Desulfuromonas spp. and higher values of the maximum current density. The combined analysis of kinetic parameters, biofilm structure and biofilm composition showed that Marinobacter spp., which ensured a higher electron transfer rate, were promising species for the design of halotolerant bioanodes. The challenge is now to overcome its limited surface colonization in the absence of Desulfuromonas spp.
Assuntos
Fontes de Energia Bioelétrica/microbiologia , Biofilmes , Gammaproteobacteria/fisiologia , Corrosão , Condutividade Elétrica , Eletroquímica , Eletrodos , Gammaproteobacteria/química , Gammaproteobacteria/metabolismo , CinéticaRESUMO
Fluorinated double-chain (poly)cationic lipids (one or both of these chains being ended by a highly fluorinated tail) which are close analogues of DOTMA, DMRIE or DPPES were designed as synthetic vectors for gene delivery. For N/P ratios (N=number of amine functions of the lipid; P=number of DNA phosphates) from 0.8 to 5, these fluorinated cationic lipids condensed DNA, with or without the use of DOPE, to form fluorinated lipoplexes. No specific cell toxicity was evidenced for these new fluorinated lipoplexes. The efficiency of some of the fluorinated lipoplexes to transfect lung epithelial A549 cells was comparable to that of the first generation of fluorinated lipoplexes made from fluorinated analogues of DOGS (Transfectam) [Bioconjug. Chem. 12 (2001) 114]. These results, combined with the higher in vivo transfection potential found for fluorinated lipoplexes than for conventional lipoplexes or PEI polyplexes [J. Gene Med. 3 (2001) 109], confirm that fluorinated lipoplexes are very promising gene transfer systems.