Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Cell ; 163(7): 1730-41, 2015 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-26686654

RESUMO

The occurrence of cognitive disturbances upon CNS inflammation or infection has been correlated with increased levels of the cytokine tumor necrosis factor-α (TNFα). To date, however, no specific mechanism via which this cytokine could alter cognitive circuits has been demonstrated. Here, we show that local increase of TNFα in the hippocampal dentate gyrus activates astrocyte TNF receptor type 1 (TNFR1), which in turn triggers an astrocyte-neuron signaling cascade that results in persistent functional modification of hippocampal excitatory synapses. Astrocytic TNFR1 signaling is necessary for the hippocampal synaptic alteration and contextual learning-memory impairment observed in experimental autoimmune encephalitis (EAE), an animal model of multiple sclerosis (MS). This process may contribute to the pathogenesis of cognitive disturbances in MS, as well as in other CNS conditions accompanied by inflammatory states or infections.


Assuntos
Astrócitos/metabolismo , Giro Denteado/metabolismo , Encefalomielite Autoimune Experimental/fisiopatologia , Memória , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo , Animais , Encefalomielite Autoimune Experimental/imunologia , Humanos , Aprendizagem , Camundongos , Esclerose Múltipla/fisiopatologia , Piperidinas , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo
2.
J Neurosci ; 40(46): 8799-8815, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33046549

RESUMO

Signal propagation in the dendrites of many neurons, including cortical pyramidal neurons in sensory cortex, is characterized by strong attenuation toward the soma. In contrast, using dual whole-cell recordings from the apical dendrite and soma of layer 5 (L5) pyramidal neurons in the anterior cingulate cortex (ACC) of adult male mice we found good coupling, particularly of slow subthreshold potentials like NMDA spikes or trains of EPSPs from dendrite to soma. Only the fastest EPSPs in the ACC were reduced to a similar degree as in primary somatosensory cortex, revealing differential low-pass filtering capabilities. Furthermore, L5 pyramidal neurons in the ACC did not exhibit dendritic Ca2+ spikes as prominently found in the apical dendrite of S1 (somatosensory cortex) pyramidal neurons. Fitting the experimental data to a NEURON model revealed that the specific distribution of Ileak, Iir, Im , and Ih was sufficient to explain the electrotonic dendritic structure causing a leaky distal dendritic compartment with correspondingly low input resistance and a compact perisomatic region, resulting in a decoupling of distal tuft branches from each other while at the same time efficiently connecting them to the soma. Our results give a biophysically plausible explanation of how a class of prefrontal cortical pyramidal neurons achieve efficient integration of subthreshold distal synaptic inputs compared with the same cell type in sensory cortices.SIGNIFICANCE STATEMENT Understanding cortical computation requires the understanding of its fundamental computational subunits. Layer 5 pyramidal neurons are the main output neurons of the cortex, integrating synaptic inputs across different cortical layers. Their elaborate dendritic tree receives, propagates, and transforms synaptic inputs into action potential output. We found good coupling of slow subthreshold potentials like NMDA spikes or trains of EPSPs from the distal apical dendrite to the soma in pyramidal neurons in the ACC, which was significantly better compared with S1. This suggests that frontal pyramidal neurons use a different integration scheme compared with the same cell type in somatosensory cortex, which has important implications for our understanding of information processing across different parts of the neocortex.


Assuntos
Dendritos/fisiologia , Giro do Cíngulo/fisiologia , Células Piramidais/fisiologia , Córtex Somatossensorial/fisiologia , Potenciais de Ação/fisiologia , Animais , Fenômenos Eletrofisiológicos , Potenciais Pós-Sinápticos Excitadores , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Optogenética , Receptores de N-Metil-D-Aspartato/fisiologia
3.
Neurobiol Dis ; 156: 105419, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34111520

RESUMO

Migraine is a common but poorly understood sensory circuit disorder. Mouse models of familial hemiplegic migraine (FHM, a rare monogenic form of migraine with aura) show increased susceptibility to cortical spreading depression (CSD, the phenomenon that underlies migraine aura and can activate migraine headache mechanisms), allowing an opportunity to investigate the mechanisms of CSD and migraine onset. In FHM type 2 (FHM2) knock-in mice with reduced expression of astrocytic Na+, K+-ATPases, the reduced rate of glutamate uptake into astrocytes can account for the facilitation of CSD initiation. Here, we investigated the underlying mechanisms and show that the reduced rate of glutamate clearance in FHM2 mice results in increased amplitude and slowing of rise time and decay of the NMDA receptor (NMDAR) excitatory postsynaptic current (EPSC) elicited in layer 2/3 pyramidal cells by stimulation of neuronal afferents in somatosensory cortex slices. The relative increase in NMDAR activation in FHM2 mice is activity-dependent, being larger after high-frequency compared to low-frequency afferent activity. Inhibition of GluN1-N2B NMDARs, which hardly affected the NMDAR EPSC in wild-type mice, rescued the increased and prolonged activation of NMDARs as well as the facilitation of CSD induction and propagation in FHM2 mice. Our data suggest that the enhanced susceptibility to CSD in FHM2 is mainly due to specific activation of extrasynaptic GluN1-N2B NMDARs and point to these receptors as possible therapeutic targets for prevention of CSD and migraine.


Assuntos
Astrócitos/metabolismo , Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , Ácido Glutâmico/metabolismo , Transtornos de Enxaqueca/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Espaço Extracelular/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Transtornos de Enxaqueca/genética , Proteínas do Tecido Nervoso/genética , Técnicas de Cultura de Órgãos , Receptores de N-Metil-D-Aspartato/genética , Córtex Somatossensorial/metabolismo
4.
J Neurosci ; 36(40): 10296-10313, 2016 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-27707967

RESUMO

Distinct types of GABAergic interneurons target different subcellular domains of pyramidal cells, thereby shaping pyramidal cell activity patterns. Whether the presynaptic heterogeneity of GABAergic innervation is mirrored by specific postsynaptic factors is largely unexplored. Here we show that dystroglycan, a protein responsible for the majority of congenital muscular dystrophies when dysfunctional, has a function at postsynaptic sites restricted to a subset of GABAergic interneurons. Conditional deletion of Dag1, encoding dystroglycan, in pyramidal cells caused loss of CCK-positive basket cell terminals in hippocampus and neocortex. PV-positive basket cell terminals were unaffected in mutant mice, demonstrating interneuron subtype-specific function of dystroglycan. Loss of dystroglycan in pyramidal cells had little influence on clustering of other GABAergic postsynaptic proteins and of glutamatergic synaptic proteins. CCK-positive terminals were not established at P21 in the absence of dystroglycan and were markedly reduced when dystroglycan was ablated in adult mice, suggesting a role for dystroglycan in both formation and maintenance of CCK-positive terminals. The necessity of neuronal dystroglycan for functional innervation by CCK-positive basket cell axon terminals was confirmed by reduced frequency of inhibitory events in pyramidal cells of dystroglycan-deficient mice and further corroborated by the inefficiency of carbachol to increase IPSC frequency in these cells. Finally, neurexin binding seems dispensable for dystroglycan function because knock-in mice expressing binding-deficient T190M dystroglycan displayed normal CCK-positive terminals. Together, we describe a novel function of dystroglycan in interneuron subtype-specific trans-synaptic signaling, revealing correlation of presynaptic and postsynaptic molecular diversity. SIGNIFICANCE STATEMENT: Dystroglycan, an extracellular and transmembrane protein of the dystrophin-glycoprotein complex, is at the center of molecular studies of muscular dystrophies. Although its synaptic distribution in cortical brain regions is long established, function of dystroglycan in the synapse remained obscure. Using mice that selectively lack neuronal dystroglycan, we provide evidence that a subset of GABAergic interneurons requires dystroglycan for formation and maintenance of axonal terminals on pyramidal cells. As such, dystroglycan is the first postsynaptic GABAergic protein for which an interneuron terminal-specific function could be shown. Our findings also offer a new perspective on the mechanisms that lead to intellectual disability in muscular dystrophies without associated brain malformations.


Assuntos
Colecistocinina/metabolismo , Distroglicanas/fisiologia , Terminações Pré-Sinápticas/fisiologia , Células Piramidais/fisiologia , Animais , Proteínas de Ligação ao Cálcio , Carbacol/farmacologia , Distroglicanas/genética , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Feminino , Técnicas de Introdução de Genes , Interneurônios/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Agonistas Muscarínicos/farmacologia , Moléculas de Adesão de Célula Nervosa/metabolismo , Sistema Nervoso Parassimpático/efeitos dos fármacos , Sistema Nervoso Parassimpático/fisiologia , Ácido gama-Aminobutírico/fisiologia
5.
Neurobiol Dis ; 106: 214-221, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28690143

RESUMO

Neuropathic pain is a debilitating pathological condition of high clinical relevance. Changes in neuronal excitability in the anterior cingulate cortex (ACC) play a central role in the negative emotional and affective aspects of chronic pain. We evaluated the effects of LP-211, a new serotonin-receptor-type-7 (5-HT7R) agonist that crosses the blood-brain barrier, on ACC neurons in a mouse model of neuropathic pain. LP-211 reduced synaptic integration in layer 5 pyramidal neurons, which was enhanced in neuropathic pain due to a dysfunction of dendritic hyperpolarization-activated-and-cyclic-nucleotide-regulated (HCN) channels. Acute injection of LP-211 had an analgesic effect, increasing the mechanical withdrawal threshold in neuropathic animals, which was partially mediated by an action in the ACC. Additionally, the acute application of LP-211 blocked the switch in the place escape/avoidance behavior induced by noxious stimuli. Thus systemic treatment with a 5-HT7R agonist leads to modulation of the ACC, which dampens sensory and affective aspects of chronic pain.


Assuntos
Afeto/efeitos dos fármacos , Analgésicos não Narcóticos/farmacologia , Neuralgia/tratamento farmacológico , Piperazinas/farmacologia , Agonistas do Receptor de Serotonina/farmacologia , Afeto/fisiologia , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Aprendizagem da Esquiva/fisiologia , Dendritos/efeitos dos fármacos , Dendritos/metabolismo , Dendritos/patologia , Avaliação Pré-Clínica de Medicamentos , Reação de Fuga/efeitos dos fármacos , Reação de Fuga/fisiologia , Giro do Cíngulo/efeitos dos fármacos , Giro do Cíngulo/metabolismo , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Neuralgia/metabolismo , Neuralgia/patologia , Neuralgia/psicologia , Limiar da Dor/efeitos dos fármacos , Limiar da Dor/fisiologia , Células Piramidais/efeitos dos fármacos , Células Piramidais/metabolismo , Células Piramidais/patologia , Receptores de Serotonina/metabolismo , Técnicas de Cultura de Tecidos , Tato
6.
J Neurosci ; 34(17): 5754-64, 2014 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-24760836

RESUMO

Neuropathic pain caused by peripheral nerve injury is a debilitating neurological condition of high clinical relevance. On the cellular level, the elevated pain sensitivity is induced by plasticity of neuronal function along the pain pathway. Changes in cortical areas involved in pain processing contribute to the development of neuropathic pain. Yet, it remains elusive which plasticity mechanisms occur in cortical circuits. We investigated the properties of neural networks in the anterior cingulate cortex (ACC), a brain region mediating affective responses to noxious stimuli. We performed multiple whole-cell recordings from neurons in layer 5 (L5) of the ACC of adult mice after chronic constriction injury of the sciatic nerve of the left hindpaw and observed a striking loss of connections between excitatory and inhibitory neurons in both directions. In contrast, no significant changes in synaptic efficacy in the remaining connected pairs were found. These changes were reflected on the network level by a decrease in the mEPSC and mIPSC frequency. Additionally, nerve injury resulted in a potentiation of the intrinsic excitability of pyramidal neurons, whereas the cellular properties of interneurons were unchanged. Our set of experimental parameters allowed constructing a neuronal network model of L5 in the ACC, revealing that the modification of inhibitory connectivity had the most profound effect on increased network activity. Thus, our combined experimental and modeling approach suggests that cortical disinhibition is a fundamental pathological modification associated with peripheral nerve damage. These changes at the cortical network level might therefore contribute to the neuropathic pain condition.


Assuntos
Giro do Cíngulo/fisiopatologia , Inibição Neural/fisiologia , Neuralgia/fisiopatologia , Traumatismos dos Nervos Periféricos/fisiopatologia , Nervo Isquiático/lesões , Animais , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neuralgia/etiologia , Neurônios/fisiologia , Limiar da Dor/fisiologia , Traumatismos dos Nervos Periféricos/complicações , Nervo Isquiático/fisiopatologia , Transmissão Sináptica/fisiologia
7.
Adv Exp Med Biol ; 970: 307-31, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22351062

RESUMO

In the last years, the classical view of glial cells (in particular of astrocytes) as a simple supportive cell for neurons has been replaced by a new vision in which glial cells are active elements of the brain. Such a new vision is based on the existence of a bidirectional communication between astrocytes and neurons at synaptic level. Indeed, perisynaptic processes of astrocytes express active G-protein-coupled receptors that are able (1) to sense neurotransmitters released from the synapse during synaptic activity, (2) to increase cytosolic levels of calcium, and (3) to stimulate the release of gliotransmitters that in turn can interact with the synaptic elements. The mechanism(s) by which astrocytes can release gliotransmitter has been extensively studied during the last years. Many evidences have suggested that a fraction of astrocytes in situ release neuroactive substances both with calcium-dependent and calcium-independent mechanism(s); whether these mechanisms coexist and under what physiological or pathological conditions they occur, it remains unclear. However, the calcium-dependent exocytotic vesicular release has received considerable attention due to its potential to occur under physiological conditions via a finely regulated way. By releasing gliotransmitters in millisecond time scale with a specific vesicular apparatus, astrocytes can integrate and process synaptic information and control or modulate synaptic transmission and plasticity.


Assuntos
Astrócitos/fisiologia , Sinalização do Cálcio/fisiologia , Hipocampo/fisiologia , Neurônios/fisiologia , Sinapses/metabolismo , Transmissão Sináptica/fisiologia , Animais , Astrócitos/ultraestrutura , Cálcio/metabolismo , Comunicação Celular , Exocitose/fisiologia , Corantes Fluorescentes , Ácido Glutâmico/metabolismo , Hipocampo/citologia , Humanos , Microscopia Eletrônica , Plasticidade Neuronal/fisiologia , Neurônios/ultraestrutura , Neurotransmissores/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Glutamato/fisiologia
9.
Nat Neurosci ; 10(3): 331-9, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17310248

RESUMO

The release of transmitters from glia influences synaptic functions. The modalities and physiological functions of glial release are poorly understood. Here we show that glutamate exocytosis from astrocytes of the rat hippocampal dentate molecular layer enhances synaptic strength at excitatory synapses between perforant path afferents and granule cells. The effect is mediated by ifenprodil-sensitive NMDA ionotropic glutamate receptors and involves an increase of transmitter release at the synapse. Correspondingly, we identify NMDA receptor 2B subunits on the extrasynaptic portion of excitatory nerve terminals. The receptor distribution is spatially related to glutamate-containing synaptic-like microvesicles in the apposed astrocytic processes. This glial regulatory pathway is endogenously activated by neuronal activity-dependent stimulation of purinergic P2Y1 receptors on the astrocytes. Thus, we provide the first combined functional and ultrastructural evidence for a physiological control of synaptic activity via exocytosis of glutamate from astrocytes.


Assuntos
Astrócitos/metabolismo , Exocitose/fisiologia , Ácido Glutâmico/metabolismo , Sinapses/metabolismo , Transmissão Sináptica/fisiologia , Análise de Variância , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/efeitos da radiação , Astrócitos/ultraestrutura , Estimulação Elétrica/métodos , Agonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Exocitose/efeitos dos fármacos , Exocitose/efeitos da radiação , Hipocampo/citologia , Técnicas In Vitro , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Potenciais da Membrana/efeitos da radiação , Microscopia Imunoeletrônica/métodos , N-Metilaspartato/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Neurônios/efeitos da radiação , Técnicas de Patch-Clamp/métodos , Via Perfurante/fisiologia , Via Perfurante/efeitos da radiação , Piperidinas/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de N-Metil-D-Aspartato/ultraestrutura , Sinapses/ultraestrutura
10.
Cell Rep ; 35(2): 108952, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33852851

RESUMO

The mechanisms controlling the post-natal maturation of astrocytes play a crucial role in ensuring correct synaptogenesis. We show that mitochondrial biogenesis in developing astrocytes is necessary for coordinating post-natal astrocyte maturation and synaptogenesis. The astrocytic mitochondrial biogenesis depends on the transient upregulation of metabolic regulator peroxisome proliferator-activated receptor gamma (PPARγ) co-activator 1α (PGC-1α), which is controlled by metabotropic glutamate receptor 5 (mGluR5). At tissue level, the loss or downregulation of astrocytic PGC-1α sustains astrocyte proliferation, dampens astrocyte morphogenesis, and impairs the formation and function of neighboring synapses, whereas its genetic re-expression is sufficient to restore the mitochondria compartment and correct astroglial and synaptic defects. Our findings show that the developmental enhancement of mitochondrial biogenesis in astrocytes is a critical mechanism controlling astrocyte maturation and supporting synaptogenesis, thus suggesting that astrocytic mitochondria may be a therapeutic target in the case of neurodevelopmental and psychiatric disorders characterized by impaired synaptogenesis.


Assuntos
Astrócitos/metabolismo , Mitocôndrias/genética , Neurogênese/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Receptor de Glutamato Metabotrópico 5/genética , Sinapses/metabolismo , Transmissão Sináptica/genética , Animais , Animais Recém-Nascidos , Astrócitos/citologia , Encéfalo/citologia , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Diferenciação Celular , Proliferação de Células , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , ATPases Mitocondriais Próton-Translocadoras/genética , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Biogênese de Organelas , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Cultura Primária de Células , Receptor de Glutamato Metabotrópico 5/metabolismo , Sinapses/genética , Sinapses/ultraestrutura
11.
Sci Adv ; 6(23): eaaz1584, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32548257

RESUMO

Astrocytes are essential contributors to neuronal function. As a consequence, disturbed astrocyte-neuron interactions are involved in the pathophysiology of several neurological disorders, with a strong impact on brain circuits and behavior. Here, we describe altered cortical physiology in a genetic mouse model of familial hemiplegic migraine type 2 (FHM2), with reduced expression of astrocytic Na+,K+-ATPases. We used whole-cell electrophysiology, two-photon microscopy, and astrocyte gene rescue to demonstrate that an impairment in astrocytic glutamate uptake promotes NMDA spike generation in dendrites of cingulate cortex pyramidal neurons and enhances output firing of these neurons. Astrocyte compensation of the defective ATPase in the cingulate cortex rescued glutamate uptake, prevented abnormal NMDA spikes, and reduced sensitivity to cranial pain triggers. Together, our results demonstrate that impaired astrocyte function alters neuronal activity in the cingulate cortex and facilitates migraine-like cranial pain states in a mouse model of migraine.


Assuntos
Astrócitos , Transtornos de Enxaqueca , Animais , Astrócitos/metabolismo , Modelos Animais de Doenças , Ácido Glutâmico/metabolismo , Cefaleia/metabolismo , Camundongos , Transtornos de Enxaqueca/genética , Transtornos de Enxaqueca/metabolismo , N-Metilaspartato/metabolismo
12.
Nat Neurosci ; 22(2): 154-166, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30664773

RESUMO

Astrocytes serve important roles that affect recruitment and function of neurons at the local and network levels. Here we review the contributions of astrocyte signaling to synaptic plasticity, neuronal network oscillations, and memory function. The roles played by astrocytes are not fully understood, but astrocytes seem to contribute to memory consolidation and seem to mediate the effects of vigilance and arousal on memory performance. Understanding the role of astrocytes in cognitive processes may also advance our understanding of how these processes go awry in pathological conditions. Indeed, abnormal astrocytic signaling can cause or contribute to synaptic and network imbalances, leading to cognitive impairment. We discuss evidence for this from animal models of Alzheimer's disease and multiple sclerosis and from animal studies of sleep deprivation and drug abuse and addiction. Understanding the emerging roles of astrocytes in cognitive function and dysfunction will open up a large array of new therapeutic opportunities.


Assuntos
Astrócitos/fisiologia , Encéfalo/fisiopatologia , Cognição/fisiologia , Disfunção Cognitiva/fisiopatologia , Neurônios/fisiologia , Animais , Encéfalo/patologia , Disfunção Cognitiva/patologia , Humanos , Memória/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/patologia
13.
Commun Biol ; 2: 127, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30963115

RESUMO

Removal of synaptically-released glutamate by astrocytes is necessary to spatially and temporally limit neuronal activation. Recent evidence suggests that astrocytes may have specialized functions in specific circuits, but the extent and significance of such specialization are unclear. By performing direct patch-clamp recordings and two-photon glutamate imaging, we report that in the somatosensory cortex, glutamate uptake by astrocytes is slower during sustained synaptic stimulation when compared to lower stimulation frequencies. Conversely, glutamate uptake capacity is increased in the frontal cortex during higher frequency synaptic stimulation, thereby limiting extracellular buildup of glutamate and NMDA receptor activation in layer 5 pyramidal neurons. This efficient glutamate clearance relies on Na+/K+-ATPase function and both GLT-1 and non-GLT-1 transporters. Thus, by enhancing their glutamate uptake capacity, astrocytes in the frontal cortex may prevent excessive neuronal excitation during intense synaptic activity. These results may explain why diseases associated with network hyperexcitability differentially affect individual brain areas.


Assuntos
Lobo Frontal/metabolismo , Ácido Glutâmico/metabolismo , Células Piramidais/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Córtex Somatossensorial/metabolismo , Animais , Astrócitos/metabolismo , Potenciais Evocados , Transportador 2 de Aminoácido Excitatório/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , N-Metilaspartato/metabolismo , Técnicas de Patch-Clamp , Sinapses/metabolismo , Transmissão Sináptica/fisiologia
14.
Neuron ; 103(1): 102-117.e5, 2019 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-31103358

RESUMO

Spinal transmission of pruritoceptive (itch) signals requires transneuronal signaling by gastrin-releasing peptide (GRP) produced by a subpopulation of dorsal horn excitatory interneurons. These neurons also express the glutamatergic marker vGluT2, raising the question of why glutamate alone is insufficient for spinal itch relay. Using optogenetics together with slice electrophysiology and mouse behavior, we demonstrate that baseline synaptic coupling between GRP and GRP receptor (GRPR) neurons is too weak for suprathreshold excitation. Only when we mimicked the endogenous firing of GRP neurons and stimulated them repetitively to fire bursts of action potentials did GRPR neurons depolarize progressively and become excitable by GRP neurons. GRPR but not glutamate receptor antagonism prevented this action. Provoking itch-like behavior by optogenetic activation of spinal GRP neurons required similar stimulation paradigms. These results establish a spinal gating mechanism for itch that requires sustained repetitive activity of presynaptic GRP neurons and postsynaptic GRP signaling to drive GRPR neuron output.


Assuntos
Peptídeo Liberador de Gastrina/genética , Prurido/fisiopatologia , Potenciais de Ação/fisiologia , Animais , Comportamento Animal , Feminino , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Transgênicos , Neurônios , Optogenética , Bloqueadores dos Canais de Potássio/farmacologia , Prurido/genética , Prurido/psicologia , Receptores da Bombesina/antagonistas & inibidores , Receptores da Bombesina/genética , Receptores de Glutamato/fisiologia , Receptores Pré-Sinápticos/metabolismo , Medula Espinal/citologia
15.
EMBO Mol Med ; 8(8): 967-86, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27354390

RESUMO

Migraine is a common disabling brain disorder. A subtype of migraine with aura (familial hemiplegic migraine type 2: FHM2) is caused by loss-of-function mutations in α2 Na(+),K(+) ATPase (α2 NKA), an isoform almost exclusively expressed in astrocytes in adult brain. Cortical spreading depression (CSD), the phenomenon that underlies migraine aura and activates migraine headache mechanisms, is facilitated in heterozygous FHM2-knockin mice with reduced expression of α2 NKA The mechanisms underlying an increased susceptibility to CSD in FHM2 are unknown. Here, we show reduced rates of glutamate and K(+) clearance by cortical astrocytes during neuronal activity and reduced density of GLT-1a glutamate transporters in cortical perisynaptic astrocytic processes in heterozygous FHM2-knockin mice, demonstrating key physiological roles of α2 NKA and supporting tight coupling with GLT-1a. Using ceftriaxone treatment of FHM2 mutants and partial inhibition of glutamate transporters in wild-type mice, we obtain evidence that defective glutamate clearance can account for most of the facilitation of CSD initiation in FHM2-knockin mice, pointing to excessive glutamatergic transmission as a key mechanism underlying the vulnerability to CSD ignition in migraine.


Assuntos
Astrócitos/metabolismo , Córtex Cerebral/patologia , Córtex Cerebral/fisiopatologia , Ácido Glutâmico/metabolismo , Enxaqueca com Aura/patologia , Enxaqueca com Aura/fisiopatologia , Potássio/metabolismo , Animais , Modelos Animais de Doenças , Técnicas de Introdução de Genes , Camundongos
16.
Neuron ; 86(1): 233-46, 2015 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-25819610

RESUMO

Neuropathic pain is caused by long-term modifications of neuronal function in the peripheral nervous system, the spinal cord, and supraspinal areas. Although functional changes in the forebrain are thought to contribute to the development of persistent pain, their significance and precise subcellular nature remain unexplored. Using somatic and dendritic whole-cell patch-clamp recordings from neurons in the anterior cingulate cortex, we discovered that sciatic nerve injury caused an activity-dependent dysfunction of hyperpolarization-activated cyclic nucleotide-regulated (HCN) channels in the dendrites of layer 5 pyramidal neurons resulting in enhanced integration of excitatory postsynaptic inputs and increased neuronal firing. Specific activation of the serotonin receptor type 7 (5-HT7R) alleviated the lesion-induced pathology by increasing HCN channel function, restoring normal dendritic integration, and reducing mechanical pain hypersensitivity in nerve-injured animals in vivo. Thus, serotoninergic neuromodulation at the forebrain level can reverse the dendritic dysfunction induced by neuropathic pain and may represent a potential therapeutical target.


Assuntos
Córtex Cerebral/patologia , Dendritos/patologia , Neuralgia/patologia , Neuralgia/terapia , Neurônios/patologia , Serotonina/metabolismo , Animais , Fármacos Cardiovasculares/farmacologia , Dendritos/metabolismo , Modelos Animais de Doenças , Potenciais Pós-Sinápticos Excitadores/fisiologia , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Lisina/análogos & derivados , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/fisiologia , Neurônios/ultraestrutura , Medição da Dor , Canais de Potássio/metabolismo , Pirimidinas/farmacologia , Receptores de Serotonina/metabolismo , Serotoninérgicos/farmacologia , Fatores de Tempo
18.
Trends Neurosci ; 35(10): 638-47, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22749718

RESUMO

Pathological brain states are known to induce massive production of proinflammatory cytokines, including tumor necrosis factor alpha (TNFα). At much lower levels, these cytokines are also present in the healthy brain, where it is increasingly being recognized that they exert regulatory influences. Recent studies suggest that TNFα plays important roles in controlling synaptic transmission and plasticity. Here, we discuss the evidence in support of synaptic regulation by TNFα and the underlying cellular mechanisms, including control of AMPA receptor trafficking and glutamate release from astrocytes. These findings suggest that increases in TNFα levels (caused by nervous system infection, injury, or disease) transform the physiological actions of the cytokine into deleterious ones. This functional switch may contribute to cognitive alterations in several brain pathologies.


Assuntos
Sistema Nervoso Central/fisiologia , Transmissão Sináptica/fisiologia , Fator de Necrose Tumoral alfa/fisiologia , Animais , Astrócitos/metabolismo , Sistema Nervoso Central/metabolismo , Doenças do Sistema Nervoso Central/metabolismo , Ácido Glutâmico/metabolismo , Humanos , Modelos Biológicos , Plasticidade Neuronal/fisiologia , Receptores de AMPA/fisiologia , Transdução de Sinais/fisiologia , Fator de Necrose Tumoral alfa/metabolismo
19.
Artigo em Inglês | MEDLINE | ID: mdl-23125832

RESUMO

Research in the last two decades has made clear that astrocytes play a crucial role in the brain beyond their functions in energy metabolism and homeostasis. Many studies have shown that astrocytes can dynamically modulate neuronal excitability and synaptic plasticity, and might participate in higher brain functions like learning and memory. With the plethora of astrocyte mediated signaling processes described in the literature today, the current challenge is to identify, which of these processes happen under what physiological condition, and how this shapes information processing and, ultimately, behavior. To answer these questions will require a combination of advanced physiological, genetical, and behavioral experiments. Additionally, mathematical modeling will prove crucial for testing predictions on the possible functions of astrocytes in neuronal networks, and to generate novel ideas as to how astrocytes can contribute to the complexity of the brain. Here, we aim to provide an outline of how astrocytes can interact with neurons. We do this by reviewing recent experimental literature on astrocyte-neuron interactions, discussing the dynamic effects of astrocytes on neuronal excitability and short- and long-term synaptic plasticity. Finally, we will outline the potential computational functions that astrocyte-neuron interactions can serve in the brain. We will discuss how astrocytes could govern metaplasticity in the brain, how they might organize the clustering of synaptic inputs, and how they could function as memory elements for neuronal activity. We conclude that astrocytes can enhance the computational power of neuronal networks in previously unexpected ways.

20.
Neuron ; 69(5): 988-1001, 2011 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-21382557

RESUMO

VIDEO ABSTRACT: Glutamatergic gliotransmission provides a stimulatory input to excitatory synapses in the hippocampal dentate gyrus. Here, we show that tumor necrosis factor-alpha (TNFα) critically controls this process. With constitutive TNFα present, activation of astrocyte P2Y1 receptors induces localized [Ca(2+)](i) elevations followed by glutamate release and presynaptic NMDA receptor-dependent synaptic potentiation. In preparations lacking TNFα, astrocytes respond with identical [Ca(2+)](i) elevations but fail to induce neuromodulation. We find that TNFα specifically controls the glutamate release step of gliotransmission. In cultured astrocytes lacking TNFα glutamate exocytosis is dramatically slowed down due to altered vesicle docking. Addition of low picomolar TNFα promptly reconstitutes both normal exocytosis in culture and gliotransmission in situ. Alternatively, gliotransmission can be re-established without adding TNFα, by limiting glutamate uptake, which compensates slower release. These findings demonstrate that gliotransmission and its synaptic effects are controlled not only by astrocyte [Ca(2+)](i) elevations but also by permissive/homeostatic factors like TNFα.


Assuntos
Astrócitos/metabolismo , Comunicação Celular/fisiologia , Giro Denteado/metabolismo , Ácido Glutâmico/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Astrócitos/citologia , Cálcio/metabolismo , Células Cultivadas , Eletrofisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Exocitose/fisiologia , Camundongos , Camundongos Transgênicos , Potenciais Pós-Sinápticos em Miniatura/fisiologia , Receptores Purinérgicos P2Y1/metabolismo , Sinapses/metabolismo , Vesículas Sinápticas/metabolismo , Fator de Necrose Tumoral alfa/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA