Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Infect Dis ; 226(2): 246-257, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-35758878

RESUMO

BACKGROUND: The ALVAC/gp120 + MF59 vaccines in the HIV Vaccine Trials Network (HVTN) 702 efficacy trial did not prevent human immunodeficiency virus-1 (HIV-1) acquisition. Vaccine-matched immunological endpoints that were correlates of HIV-1 acquisition risk in RV144 were measured in HVTN 702 and evaluated as correlates of HIV-1 acquisition. METHODS: Among 1893 HVTN 702 female vaccinees, 60 HIV-1-seropositive cases and 60 matched seronegative noncases were sampled. HIV-specific CD4+ T-cell and binding antibody responses were measured 2 weeks after fourth and fifth immunizations. Cox proportional hazards models assessed prespecified responses as predictors of HIV-1 acquisition. RESULTS: The HVTN 702 Env-specific CD4+ T-cell response rate was significantly higher than in RV144 (63% vs 40%, P = .03) with significantly lower IgG binding antibody response rate and magnitude to 1086.C V1V2 (67% vs 100%, P < .001; Pmag < .001). Although no significant univariate associations were observed between any T-cell or binding antibody response and HIV-1 acquisition, significant interactions were observed (multiplicity-adjusted P ≤.03). Among vaccinees with high IgG A244 V1V2 binding antibody responses, vaccine-matched CD4+ T-cell endpoints associated with decreased HIV-1 acquisition (estimated hazard ratios = 0.40-0.49 per 1-SD increase in CD4+ T-cell endpoint). CONCLUSIONS: HVTN 702 and RV144 had distinct immunogenicity profiles. However, both identified significant correlations (univariate or interaction) for IgG V1V2 and polyfunctional CD4+ T cells with HIV-1 acquisition. Clinical Trials Registration . NCT02968849.


Assuntos
Vacinas contra a AIDS , Infecções por HIV , Soropositividade para HIV , HIV-1 , Feminino , Anticorpos Anti-HIV , Proteína gp120 do Envelope de HIV , Infecções por HIV/prevenção & controle , Humanos , Imunoglobulina G , Masculino , África do Sul
2.
J Immunol ; 201(4): 1315-1326, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-30006374

RESUMO

Ab avidity is a measure of the overall strength of Ab-Ag interactions and hence is important for understanding the functional efficiency of Abs. In vaccine evaluations, Ab avidity measurements can provide insights into immune correlates of protection and generate hypotheses regarding mechanisms of protection to improve vaccine design to achieve higher levels of efficacy. The commonly used Ab avidity assays require the use of chaotropic reagents to measure avidity index. In this study, using real-time detection of Ab-Ag binding by biolayer interferometry (BLI) technique, we have developed a qualified assay for measuring avidity of vaccine-induced Abs specific for Plasmodium falciparum circumsporozoite protein (CSP) Ags. Human mAb derived from plasmablasts of recipients of RTS,S/AS01 (RTS,S), the most advanced malaria vaccine candidate, were used in the assay development to measure Ag-specific binding responses and rate constants of association and dissociation. The optimized BLI binding assay demonstrated 1) good precision (percentage of coefficient of variation <20), 2) high specificity, 3) a lower limit of detection and quantitation in the 0.3-3.3 nM range, and 4) a range of linearity up to 50-100 nM for the CSP Ags tested. Analysis of polyclonal sera of malaria vaccinees demonstrated the suitability of this method to distinguish among vaccinees and rank Ab responses by avidity. These results demonstrate that precise, specific, and sensitive BLI measurements of Ab avidity in polyclonal sera from malaria vaccinees can map Ab response heterogeneity and potentially help to determine the role of Ab avidity as an immune correlate of protection for vaccines.


Assuntos
Anticorpos Antiprotozoários/imunologia , Afinidade de Anticorpos/imunologia , Antígenos de Protozoários/imunologia , Interferometria/métodos , Vacinas Antimaláricas/imunologia , Humanos , Malária Falciparum/imunologia , Plasmodium falciparum
3.
J Infect Dis ; 217(8): 1280-1288, 2018 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-29325070

RESUMO

Background: HVTN 505 was a human immunodeficiency virus type 1 (HIV-1) preventive vaccine efficacy trial of a DNA/recombinant adenovirus serotype 5 (rAd5) vaccine regimen. We assessed antibody responses measured 1 month after final vaccination (month 7) as correlates of HIV-1 acquisition risk. Methods: Binding antibody responses were quantified in serum samples from 25 primary endpoint vaccine cases (diagnosed with HIV-1 infection between month 7 and month 24) and 125 randomly sampled frequency-matched vaccine controls (HIV-1 negative at month 24). We prespecified for a primary analysis tier 6 antibody response biomarkers that measure immunoglobulin G (IgG) and immunoglobulin A (IgA) binding to Env proteins and 2 previously assessed T-cell response biomarkers. Results: Envelope-specific IgG responses were significantly correlated with decreased HIV-1 risk. Moreover, the interaction of IgG responses and Env-specific CD8+ T-cell polyfunctionality score had a highly significant association with HIV-1 risk after adjustment for multiple comparisons. Conclusions: Vaccinees with higher levels of Env IgG have significantly decreased HIV-1 risk when CD8+ T-cell responses are low. Moreover, vaccinees with high CD8+ T-cell responses generally have low risk, and those with low CD8+ T-cell and low Env antibody responses have high risk. These findings suggest the critical importance of inducing a robust IgG Env response when the CD8+ T-cell response is low.


Assuntos
Vacinas contra a AIDS/imunologia , Linfócitos T CD8-Positivos/fisiologia , Infecções por HIV/prevenção & controle , Formação de Anticorpos/imunologia , Anticorpos Anti-HIV/sangue , HIV-1/imunologia , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/classificação , Masculino
4.
J Virol ; 88(5): 2489-507, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24352443

RESUMO

UNLABELLED: Standardized assessments of HIV-1 vaccine-elicited neutralizing antibody responses are complicated by the genetic and antigenic variability of the viral envelope glycoproteins (Envs). To address these issues, suitable reference strains are needed that are representative of the global epidemic. Several panels have been recommended previously, but no clear answers have been available on how many and which strains are best suited for this purpose. We used a statistical model selection method to identify a global panel of reference Env clones from among 219 Env-pseudotyped viruses assayed in TZM-bl cells with sera from 205 HIV-1-infected individuals. The Envs and sera were sampled globally from diverse geographic locations and represented all major genetic subtypes and circulating recombinant forms of the virus. Assays with a panel size of only nine viruses adequately represented the spectrum of HIV-1 serum neutralizing activity seen with the larger panel of 219 viruses. An optimal panel of nine viruses was selected and augmented with three additional viruses for greater genetic and antigenic coverage. The spectrum of HIV-1 serum neutralizing activity seen with the final 12-virus panel closely approximated the activity seen with subtype-matched viruses. Moreover, the final panel was highly sensitive for detection of many of the known broadly neutralizing antibodies. For broader assay applications, all 12 Env clones were converted to infectious molecular clones using a proviral backbone carrying a Renilla luciferase reporter gene (Env.IMC.LucR viruses). This global panel should facilitate highly standardized assessments of vaccine-elicited neutralizing antibodies across multiple HIV-1 vaccine platforms in different parts of the world. IMPORTANCE: An effective HIV-1 vaccine will need to overcome the extraordinary genetic variability of the virus, where most variation occurs in the viral envelope glycoproteins that are the sole targets for neutralizing antibodies. Efforts to elicit broadly cross-reactive neutralizing antibodies that will protect against infection by most circulating strains of the virus are guided in part by in vitro assays that determine the ability of vaccine-elicited antibodies to neutralize genetically diverse HIV-1 variants. Until now, little information was available on how many and which strains of the virus are best suited for this purpose. We applied robust statistical methods to evaluate a large neutralization data set and identified a small panel of viruses that are a good representation of the global epidemic. The neutralization properties of this new panel of reference strains should facilitate the development of an effective HIV-1 vaccine.


Assuntos
Vacinas contra a AIDS/imunologia , Vacinas contra a AIDS/normas , Anticorpos Neutralizantes/imunologia , Anticorpos Anti-HIV/imunologia , HIV-1/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Sequência de Aminoácidos , Especificidade de Anticorpos/imunologia , Linhagem Celular , Análise por Conglomerados , Reações Cruzadas/imunologia , Epitopos/imunologia , HIV-1/classificação , HIV-1/genética , Humanos , Dados de Sequência Molecular , Testes de Neutralização/normas , Filogenia , Receptores de HIV , Reprodutibilidade dos Testes , Alinhamento de Sequência , Tropismo Viral , Produtos do Gene env do Vírus da Imunodeficiência Humana/química , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética
5.
J Clin Immunol ; 33(1): 96-110, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23001410

RESUMO

PURPOSE: Severe combined immunodeficiency (SCID) is a syndrome of diverse genetic cause characterized by profound deficiencies of T, B and sometimes NK cell function. Non-ablative HLA-identical or rigorously T cell-depleted haploidentical parental bone marrow transplantation (BMT) results in thymus-dependent genetically donor T cell development in the recipients, leading to a high rate of long-term survival. However, the development of B cell function has been more problematic. We report here results of analyses of B cell function in 125 SCID recipients prior to and long-term after non-ablative BMT, according to their molecular type. METHODS: Studies included blood immunoglobulin measurements; antibody titers to standard vaccines, blood group antigens and bacteriophage Φ X 174; flow cytometry to examine for markers of immaturity, memory, switched memory B cells and BAFF receptor expression; B cell chimerism; B cell spectratyping; and B cell proliferation. RESULTS: The results showed that B cell chimerism was not required for normal B cell function in IL7Rα-Def, ADA-Def and CD3-Def SCIDs. In X-linked-SCID, Jak3-Def SCID and those with V-D-J recombination defects, donor B cell chimerism was necessary for B cell function to develop. CONCLUSION: The most important factor determining whether B cell function develops in SCID T cell chimeras is the underlying molecular defect. In some types, host B cells function normally. In those molecular types where host B cell function did not develop, donor B cell chimerism was necessary to achieve B cell function. 236 words.


Assuntos
Subpopulações de Linfócitos B/imunologia , Subpopulações de Linfócitos B/transplante , Transplante de Medula Óssea/imunologia , Transplante de Medula Óssea/patologia , Imunodeficiência Combinada Severa/imunologia , Imunodeficiência Combinada Severa/patologia , Adulto , Subpopulações de Linfócitos B/patologia , Transplante de Medula Óssea/métodos , Transformação Celular Viral/imunologia , Células Cultivadas , Criança , Feminino , Humanos , Imunofenotipagem , Lactente , Células Jurkat , Depleção Linfocítica , Transfusão de Linfócitos/métodos , Masculino , Período Pós-Operatório , Quimera por Radiação/imunologia , Imunodeficiência Combinada Severa/cirurgia , Cariotipagem Espectral , Subpopulações de Linfócitos T/patologia , Quimeras de Transplante/imunologia , Células Tumorais Cultivadas
6.
Front Immunol ; 14: 1155880, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37090729

RESUMO

Introduction: Hemagglutination inhibition (HAI) antibody titers to seasonal influenza strains are important surrogates for vaccine-elicited protection. However, HAI assays can be variable across labs, with low sensitivity across diverse viruses due to lack of standardization. Performing qualification of these assays on a strain specific level enables the precise and accurate quantification of HAI titers. Influenza A (H3N2) continues to be a predominant circulating subtype in most countries in Europe and North America since 1968 and is thus a focus of influenza vaccine research. Methods: As a part of the National Institutes of Health (NIH)-funded Collaborative Influenza Vaccine Innovation Centers (CIVICs) program, we report on the identification of a robust assay design, rigorous statistical analysis, and complete qualification of an HAI assay using A/Texas/71/2017 as a representative H3N2 strain and guinea pig red blood cells and neuraminidase (NA) inhibitor oseltamivir to prevent NA-mediated agglutination. Results: This qualified HAI assay is precise (calculated by the geometric coefficient of variation (GCV)) for intermediate precision and intra-operator variability, accurate calculated by relative error, perfectly linear (slope of -1, R-Square 1), robust (<25% GCV) and depicts high specificity and sensitivity. This HAI method was successfully qualified for another H3N2 influenza strain A/Singapore/INFIMH-16-0019/2016, meeting all pre-specified acceptance criteria. Discussion: These results demonstrate that HAI qualification and data generation for new influenza strains can be achieved efficiently with minimal extra testing and development. We report on a qualified and adaptable influenza serology method and analysis strategy to measure quantifiable HAI titers to define correlates of vaccine mediated protection in human clinical trials.


Assuntos
Vacinas contra Influenza , Influenza Humana , Estados Unidos , Humanos , Animais , Cobaias , Vírus da Influenza A Subtipo H3N2 , Hemaglutinação , Anticorpos Antivirais
7.
EBioMedicine ; 93: 104590, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37300931

RESUMO

BACKGROUND: The phase 2b proof-of-concept Antibody Mediated Prevention (AMP) trials showed that VRC01, an anti-HIV-1 broadly neutralising antibody (bnAb), prevented acquisition of HIV-1 sensitive to VRC01. To inform future study design and dosing regimen selection of candidate bnAbs, we investigated the association of VRC01 serum concentration with HIV-1 acquisition using AMP trial data. METHODS: The case-control sample included 107 VRC01 recipients who acquired HIV-1 and 82 VRC01 recipients who remained without HIV-1 during the study. We measured VRC01 serum concentrations with a qualified pharmacokinetic (PK) Binding Antibody Multiplex Assay. We employed nonlinear mixed effects PK modelling to estimate daily-grid VRC01 concentrations. Cox regression models were used to assess the association of VRC01 concentration at exposure and baseline body weight, with the hazard of HIV-1 acquisition and prevention efficacy as a function of VRC01 concentration. We also compared fixed dosing vs. body weight-based dosing via simulations. FINDINGS: Estimated VRC01 concentrations in VRC01 recipients without HIV-1 were higher than those in VRC01 recipients who acquired HIV-1. Body weight was inversely associated with HIV-1 acquisition among both placebo and VRC01 recipients but did not modify the prevention efficacy of VRC01. VRC01 concentration was inversely correlated with HIV-1 acquisition, and positively correlated with prevention efficacy of VRC01. Simulation studies suggest that fixed dosing may be comparable to weight-based dosing in overall predicted prevention efficacy. INTERPRETATION: These findings suggest that bnAb serum concentration may be a useful marker for dosing regimen selection, and operationally efficient fixed dosing regimens could be considered for future trials of HIV-1 bnAbs. FUNDING: Was provided by the National Institutes of Health, National Institute of Allergy and Infectious Diseases (NIAID) (UM1 AI068614, to the HIV Vaccine Trials Network [HVTN]; UM1 AI068635, to the HVTN Statistical Data and Management Center [SDMC], Fred Hutchinson Cancer Center [FHCC]; 2R37 054165 to the FHCC; UM1 AI068618, to HVTN Laboratory Center, FHCC; UM1 AI068619, to the HPTN Leadership and Operations Center; UM1 AI068613, to the HIV Prevention Trials Network [HPTN] Laboratory Center; UM1 AI068617, to the HPTN SDMC; and P30 AI027757, to the Center for AIDS Research, Duke University (AI P30 AI064518) and University of Washington (P30 AI027757) Centers for AIDS Research; R37AI054165 from NIAID to the FHCC; and OPP1032144 CA-VIMC Bill & Melinda Gates Foundation.


Assuntos
Vacinas contra a AIDS , Síndrome da Imunodeficiência Adquirida , Infecções por HIV , Soropositividade para HIV , HIV-1 , Humanos , Anticorpos Amplamente Neutralizantes , Anticorpos Neutralizantes , Síndrome da Imunodeficiência Adquirida/tratamento farmacológico , Soropositividade para HIV/tratamento farmacológico , Anticorpos Anti-HIV
8.
Sci Transl Med ; 15(692): eade9078, 2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-37075127

RESUMO

The best assay or marker to define mRNA-1273 vaccine-induced antibodies as a correlate of protection (CoP) is unclear. In the COVE trial, participants received two doses of the mRNA-1273 COVID-19 vaccine or placebo. We previously assessed IgG binding antibodies to the spike protein (spike IgG) or receptor binding domain (RBD IgG) and pseudovirus neutralizing antibody 50 or 80% inhibitory dilution titer measured on day 29 or day 57, as correlates of risk (CoRs) and CoPs against symptomatic COVID-19 over 4 months after dose. Here, we assessed a new marker, live virus 50% microneutralization titer (LV-MN50), and compared and combined markers in multivariable analyses. LV-MN50 was an inverse CoR, with a hazard ratio of 0.39 (95% confidence interval, 0.19 to 0.83) at day 29 and 0.51 (95% confidence interval, 0.25 to 1.04) at day 57 per 10-fold increase. In multivariable analyses, pseudovirus neutralization titers and anti-spike binding antibodies performed best as CoRs; combining antibody markers did not improve correlates. Pseudovirus neutralization titer was the strongest independent correlate in a multivariable model. Overall, these results supported pseudovirus neutralizing and binding antibody assays as CoRs and CoPs, with the live virus assay as a weaker correlate in this sample set. Day 29 markers performed as well as day 57 markers as CoPs, which could accelerate immunogenicity and immunobridging studies.


Assuntos
Vacina de mRNA-1273 contra 2019-nCoV , COVID-19 , Humanos , Eficácia de Vacinas , COVID-19/prevenção & controle , Anticorpos Neutralizantes , Imunoglobulina G , Anticorpos Antivirais
9.
Viruses ; 15(10)2023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-37896806

RESUMO

The COVE trial randomized participants to receive two doses of mRNA-1273 vaccine or placebo on Days 1 and 29 (D1, D29). Anti-SARS-CoV-2 Spike IgG binding antibodies (bAbs), anti-receptor binding domain IgG bAbs, 50% inhibitory dilution neutralizing antibody (nAb) titers, and 80% inhibitory dilution nAb titers were measured at D29 and D57. We assessed these markers as correlates of protection (CoPs) against COVID-19 using stochastic interventional vaccine efficacy (SVE) analysis and principal surrogate (PS) analysis, frameworks not used in our previous COVE immune correlates analyses. By SVE analysis, hypothetical shifts of the D57 Spike IgG distribution from a geometric mean concentration (GMC) of 2737 binding antibody units (BAU)/mL (estimated vaccine efficacy (VE): 92.9% (95% CI: 91.7%, 93.9%)) to 274 BAU/mL or to 27,368 BAU/mL resulted in an overall estimated VE of 84.2% (79.0%, 88.1%) and 97.6% (97.4%, 97.7%), respectively. By binary marker PS analysis of Low and High subgroups (cut-point: 2094 BAU/mL), the ignorance interval (IGI) and estimated uncertainty interval (EUI) for VE were [85%, 90%] and (78%, 93%) for Low compared to [95%, 96%] and (92%, 97%) for High. By continuous marker PS analysis, the IGI and 95% EUI for VE at the 2.5th percentile (519.4 BAU/mL) vs. at the 97.5th percentile (9262.9 BAU/mL) of D57 Spike IgG concentration were [92.6%, 93.4%] and (89.2%, 95.7%) vs. [94.3%, 94.6%] and (89.7%, 97.0%). Results were similar for other D29 and D57 markers. Thus, the SVE and PS analyses additionally support all four markers at both time points as CoPs.


Assuntos
Vacina de mRNA-1273 contra 2019-nCoV , COVID-19 , Humanos , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Imunoglobulina G , Eficácia de Vacinas
10.
J Gen Virol ; 93(Pt 10): 2267-2278, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22791603

RESUMO

Broadly neutralizing antibodies (NAbs) such as those generated in chronic human immunodeficiency virus type 1 (HIV-1) infection are considered a key component for an effective HIV-1 vaccine. Here, we measured NAb responses using a panel of 25 Env-pseudotyped viruses, including clade B, C, A, CRF07_BC and CRF01_AE strains, against plasma samples from 103 subjects in a former plasma donor cohort in central China, who were infected with HIV-1 clade B' for at least 10 years and naïve to antiretroviral therapy at the time of sampling. We found that 64 % of samples (n = 66) neutralized at least half of the viruses tested and 2 % (n = 2) neutralized all of the viruses, while 5 % (n = 5) neutralized none of the viruses tested. Strikingly, 29 % of plasma samples (n = 30) neutralized >80 % of the viral strains tested, indicating the presence of broadly reactive NAbs in these patients. When the magnitude (geometric mean ID(50) titres, GMTs) or breadth of neutralization was assessed for correlation with CD4 count or plasma viral load, the only significant positive correlations were observed between viral load and neutralization magnitude (r = 0.2189, P = 0.0263) and between viral load and neutralization breadth (r = 0.1970, P = 0.0461). A moderate difference between progressors and long-term non-progressors was observed in both the breadth (P = 0.0316) and the potency (P = 0.0300). A significant difference was found in the GMTs between intra-clade and inter-clade strains (P<0.001). Heat-map analysis based on k-means clustering of plasma determined a statistically stable cluster of plasma with cross-reactive and potent neutralizing reactivity. These samples could provide physical biomaterials for further virological and serological studies from which useful insights into rational HIV-1 vaccine development and therapeutic design might be derived.


Assuntos
Anticorpos Neutralizantes/imunologia , Doadores de Sangue , Infecções por HIV/imunologia , Infecções por HIV/virologia , HIV-1/imunologia , HIV-1/isolamento & purificação , Adulto , Anticorpos Neutralizantes/sangue , Terapia Antirretroviral de Alta Atividade/métodos , Contagem de Linfócito CD4/métodos , Linhagem Celular Tumoral , China , Estudos de Coortes , Reações Cruzadas/imunologia , Feminino , Anticorpos Anti-HIV/sangue , Anticorpos Anti-HIV/imunologia , Infecções por HIV/sangue , Células HeLa , Humanos , Masculino , Pessoa de Meia-Idade , Testes de Neutralização/métodos , Carga Viral/imunologia , Vacinas Virais/imunologia
11.
Science ; 375(6576): 43-50, 2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-34812653

RESUMO

In the coronavirus efficacy (COVE) phase 3 clinical trial, vaccine recipients were assessed for neutralizing and binding antibodies as correlates of risk for COVID-19 disease and as correlates of protection. These immune markers were measured at the time of second vaccination and 4 weeks later, with values reported in standardized World Health Organization international units. All markers were inversely associated with COVID-19 risk and directly associated with vaccine efficacy. Vaccine recipients with postvaccination 50% neutralization titers 10, 100, and 1000 had estimated vaccine efficacies of 78% (95% confidence interval, 54 to 89%), 91% (87 to 94%), and 96% (94 to 98%), respectively. These results help define immune marker correlates of protection and may guide approval decisions for messenger RNA (mRNA) COVID-19 vaccines and other COVID-19 vaccines.


Assuntos
Vacina de mRNA-1273 contra 2019-nCoV/imunologia , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , COVID-19/prevenção & controle , SARS-CoV-2/imunologia , Eficácia de Vacinas , Adolescente , Adulto , Idoso , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Ensaios Clínicos Fase III como Assunto , Feminino , Humanos , Imunogenicidade da Vacina , Masculino , Pessoa de Meia-Idade , Ensaios Clínicos Controlados Aleatórios como Assunto , Sensibilidade e Especificidade , Glicoproteína da Espícula de Coronavírus/imunologia , Adulto Jovem
12.
Blood ; 114(7): 1445-53, 2009 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-19433858

RESUMO

Severe combined immunodeficiency (SCID) is a syndrome of diverse genetic cause characterized by profound deficiencies of T, B, and sometimes NK-cell function. Nonablative human leukocyte antigen-identical or rigorously T cell-depleted haploidentical parental bone marrow transplantation (BMT) results in thymus-dependent genetically donor T-cell development in the recipients, leading to long-term survival. We reported previously that normal T-cell numbers, function, and repertoire developed by 3 to 4 months after transplantation in SCID patients, and the repertoire remained highly diverse for the first 10 years after BMT. The T-cell receptor diversity positively correlated with T-cell receptor excision circle levels, a reflection of thymic output. However, the fate of thymic function in SCID patients beyond 10 to 12 years after BMT remained to be determined. In this greater than 25-year follow-up study of 128 patients with 11 different molecular types of SCID after nonconditioned BMT, we provide evidence that T-cell function, thymic output, and T-cell clonal diversity are maintained long-term.


Assuntos
Transplante de Medula Óssea , Imunodeficiência Combinada Severa/imunologia , Imunodeficiência Combinada Severa/terapia , Linfócitos T/imunologia , Timo/imunologia , Quimeras de Transplante/imunologia , Feminino , Seguimentos , Humanos , Lactente , Masculino , Receptores de Antígenos de Linfócitos T , Estudos Retrospectivos , Imunodeficiência Combinada Severa/sangue , Timo/metabolismo , Fatores de Tempo , Quimeras de Transplante/sangue , Transplante Homólogo
13.
Front Immunol ; 12: 709994, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34504492

RESUMO

The outcome of the recent Antibody Mediated Prevention (AMP) trials that tested infusion of the broadly neutralizing antibody (bnAb) VRC01 provides proof of concept for blocking infection from sensitive HIV-1 strains. These results also open up the possibility that triple combinations of bnAbs such as PGT121, PGDM1400, as well as long-lasting LS variants such as VRC07-523 LS, have immunoprophylactic potential. PGT121 and PGDM1400 target the HIV-1 V3 and V2 glycan regions of the gp120 envelope protein, respectively, while VRC07-523LS targets the HIV-1 CD4 binding site. These bnAbs demonstrate neutralization potency and complementary breadth of HIV-1 strain coverage. An important clinical trial outcome is the accurate measurement of in vivo concentrations of passively infused bnAbs to determine effective doses for therapy and/or prevention. Standardization and validation of this testing method is a key element for clinical studies as is the ability to simultaneously detect multiple bnAbs in a specific manner. Here we report the development of a sensitive, specific, accurate, and precise multiplexed microsphere-based assay that simultaneously quantifies the respective physiological concentrations of passively infused bnAbs in human serum to ultimately define the threshold needed for protection from HIV-1 infection.


Assuntos
Anticorpos Amplamente Neutralizantes/sangue , Anticorpos Anti-HIV/sangue , HIV-1/imunologia , Humanos , Limite de Detecção , Microesferas , Reprodutibilidade dos Testes
14.
medRxiv ; 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34545372

RESUMO

Vaccine-induced neutralizing antibodies (nAbs) are key biomarkers considered to be associated with vaccine efficacy. In United States Government-sponsored phase 3 efficacy trials of COVID-19 vaccines, nAbs are measured by two different validated pseudovirus-based SARS-CoV-2 neutralization assays, with each trial using one of the two assays. Here we describe and compare the nAb titers obtained in the two assays. We observe that one assay consistently yielded higher nAb titers than the other when both assays were performed on the World Health Organization’s anti-SARS-CoV-2 immunoglobulin International Standard, COVID-19 convalescent sera, and mRNA-1273 vaccinee sera. To overcome the challenge this difference in readout poses in comparing/combining data from the two assays, we evaluate three calibration approaches and show that readouts from the two assays can be calibrated to a common scale. These results may aid decision-making based on data from these assays for the evaluation and licensure of new or adapted COVID-19 vaccines.

15.
Sci Rep ; 11(1): 23921, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34907214

RESUMO

Vaccine-induced neutralizing antibodies (nAbs) are key biomarkers considered to be associated with vaccine efficacy. In United States government-sponsored phase 3 efficacy trials of COVID-19 vaccines, nAbs are measured by two different validated pseudovirus-based SARS-CoV-2 neutralization assays, with each trial using one of the two assays. Here we describe and compare the nAb titers obtained in the two assays. We observe that one assay consistently yielded higher nAb titers than the other when both assays were performed on the World Health Organization's anti-SARS-CoV-2 immunoglobulin International Standard, COVID-19 convalescent sera, and mRNA-1273 vaccinee sera. To overcome the challenge this difference in readout poses in comparing/combining data from the two assays, we evaluate three calibration approaches and show that readouts from the two assays can be calibrated to a common scale. These results may aid decision-making based on data from these assays for the evaluation and licensure of new or adapted COVID-19 vaccines.


Assuntos
Anticorpos Neutralizantes/sangue , COVID-19/imunologia , Testes de Neutralização/normas , SARS-CoV-2/imunologia , Vacina de mRNA-1273 contra 2019-nCoV/imunologia , Anticorpos Antivirais/sangue , COVID-19/sangue , Tomada de Decisão Clínica , Ensaios Clínicos como Assunto , Testes Diagnósticos de Rotina , Humanos , Testes de Neutralização/métodos , Organização Mundial da Saúde
16.
Res Sq ; 2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-34494017

RESUMO

Vaccine-induced neutralizing antibodies (nAbs) are key biomarkers considered to be associated with vaccine efficacy. In United States Government-sponsored phase 3 efficacy trials of COVID-19 vaccines, nAbs are measured by two different validated pseudovirus-based SARS-CoV-2 neutralization assays, with each trial using one of the two assays. Here we describe and compare the nAb titers obtained in the two assays. We observe that one assay consistently yielded higher nAb titers than the other when both assays were performed on the World Health Organization’s anti-SARS-CoV-2 immunoglobulin International Standard, COVID-19 convalescent sera, and mRNA-1273 vaccinee sera. To overcome the challenge this difference in readout poses in comparing/combining data from the two assays, we evaluate three calibration approaches and show that readouts from the two assays can be calibrated to a common scale. These results may aid decision-making based on data from these assays for the evaluation and licensure of new or adapted COVID-19 vaccines.

17.
medRxiv ; 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34401888

RESUMO

BACKGROUND: In the Coronavirus Efficacy (COVE) trial, estimated mRNA-1273 vaccine efficacy against coronavirus disease-19 (COVID-19) was 94%. SARS-CoV-2 antibody measurements were assessed as correlates of COVID-19 risk and as correlates of protection. METHODS: Through case-cohort sampling, participants were selected for measurement of four serum antibody markers at Day 1 (first dose), Day 29 (second dose), and Day 57: IgG binding antibodies (bAbs) to Spike, bAbs to Spike receptor-binding domain (RBD), and 50% and 80% inhibitory dilution pseudovirus neutralizing antibody titers calibrated to the WHO International Standard (cID50 and cID80). Participants with no evidence of previous SARS-CoV-2 infection were included. Cox regression assessed in vaccine recipients the association of each Day 29 or 57 serologic marker with COVID-19 through 126 or 100 days of follow-up, respectively, adjusting for risk factors. RESULTS: Day 57 Spike IgG, RBD IgG, cID50, and cID80 neutralization levels were each inversely correlated with risk of COVID-19: hazard ratios 0.66 (95% CI 0.50, 0.88; p=0.005); 0.57 (0.40, 0.82; p=0.002); 0.42 (0.27, 0.65; p<0.001); 0.35 (0.20, 0.61; p<0.001) per 10-fold increase in marker level, respectively, multiplicity adjusted P-values 0.003-0.010. Results were similar for Day 29 markers (multiplicity adjusted P-values <0.001-0.003). For vaccine recipients with Day 57 reciprocal cID50 neutralization titers that were undetectable (<2.42), 100, or 1000, respectively, cumulative incidence of COVID-19 through 100 days post Day 57 was 0.030 (0.010, 0.093), 0.0056 (0.0039, 0.0080), and 0.0023 (0.0013, 0.0036). For vaccine recipients at these titer levels, respectively, vaccine efficacy was 50.8% (-51.2, 83.0%), 90.7% (86.7, 93.6%), and 96.1% (94.0, 97.8%). Causal mediation analysis estimated that the proportion of vaccine efficacy mediated through Day 29 cID50 titer was 68.5% (58.5, 78.4%). CONCLUSIONS: Binding and neutralizing antibodies correlated with COVID-19 risk and vaccine efficacy and likely have utility in predicting mRNA-1273 vaccine efficacy against COVID-19. TRIAL REGISTRATION NUMBER: COVE ClinicalTrials.gov number, NCT04470427.

18.
J Immunol Methods ; 479: 112764, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32070674

RESUMO

The ability to detect, quantify, and interrogate the properties of immune responses raised against biological therapeutics is not only important to our understanding of these molecules, but also to their success in the clinic. A tiered assay approach to identify the presence, specificity, and titer of anti-drug antibody (ADA) responses has been adopted as a gold standard by industry leaders, the FDA, and the EMA. In order to support pre-clinical and clinical trials, these assays must be standardized, and their performance sufficiently characterized to ensure the accuracy and reproducibility of results under relevant testing conditions. Here we present implementation of electrochemiluminiscence assays that fit into the tiered paradigm of ADA testing for five HIV broadly neutralizing antibodies (3BNC117, 3BNC117-LS, 10-1074, PGT121, and PGDM1400) in compliance with Good Clinical Laboratory practices. Assay sensitivities and matrix effects were evaluated and used to inform the development of positivity cut points. Once cut points were established, assay precision, specificity, free-drug tolerance, and robustness were defined. In all cases, assay characteristics met or surpassed recommendations set forth by the FDA. To further evaluate the performance of these assays and the tiered approach, samples from non-human primates that had received a subset of the five therapeutics were evaluated. In sum, this study reports qualification of a set of ADA assays available to the scientific community as pre-clinical and clinical trials of broadly HIV-neutralizing antibodies proceed, and a framework that is easily adapted as new drug products are advanced in the clinic.


Assuntos
Anticorpos Anti-Idiotípicos/sangue , Anticorpos Amplamente Neutralizantes/imunologia , Anticorpos Anti-HIV/imunologia , Infecções por HIV/terapia , HIV-1/imunologia , Imunoterapia/métodos , Medições Luminescentes/métodos , Animais , Anticorpos Amplamente Neutralizantes/uso terapêutico , Técnicas Eletroquímicas , Anticorpos Anti-HIV/uso terapêutico , Infecções por HIV/imunologia , Humanos , Padrões de Referência , Sensibilidade e Especificidade
19.
J Immunol Methods ; 479: 112736, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31917969

RESUMO

The recent identification of human monoclonal antibodies with broad and potent neutralizing activity against HIV-1 (bnAbs) has resulted in substantial efforts to develop these molecules for clinical use in the prevention and treatment of HIV-1 infection. As with any protein therapeutic drug product, it is imperative to have qualified assays that can accurately detect and quantify anti-drug antibodies (ADA) that may develop in patients receiving passive administration of HIV-1 bnAbs. Here, we have optimized and qualified a functional assay to assess the potential of ADA to inhibit the neutralizing function of HIV-1 bnAbs. Using a modified version of the validated TZM-bl HIV-1 neutralization assay, murine anti-idiotype antibodies were utilized to optimize and evaluate parameters of linearity, range, limit of detection, specificity, and precision for measuring inhibitory ADA activity against multiple HIV-1 bnAbs that are in clinical development. We further demonstrate the utility of this assay for detecting naturally occurring ADA responses in non-human primates receiving passive administration of human bnAbs. This functional assay format complements binding-antibody ADA strategies being developed for HIV-1 bnAbs, and when utilized together, will support a multi-tiered approach for ADA testing that is compliant with Good Clinical Laboratory Practice (GCLP) procedures and FDA guidance.


Assuntos
Anticorpos Anti-Idiotípicos/análise , Anticorpos Monoclonais Murinos/análise , Anticorpos Amplamente Neutralizantes/uso terapêutico , Anticorpos Anti-HIV/uso terapêutico , Infecções por HIV/terapia , HIV-1/fisiologia , Testes de Neutralização/métodos , Animais , Anticorpos Amplamente Neutralizantes/imunologia , Anticorpos Anti-HIV/imunologia , Humanos , Camundongos
20.
Account Res ; 26(5): 288-310, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31155934

RESUMO

Academic medical centers rarely require all of their research faculty and staff to participate in educational programs on the responsible conduct of research (RCR). There is also little published evidence of RCR programs addressing high-profile, internal cases of misconduct as a way of promoting deliberation and learning. In the wake of major research misconduct, Duke University School of Medicine (DUSoM) expanded its RCR education activities to include all DUSoM faculty and staff engaged in research. The program included formal deliberation of the Translational Omics misconduct case, which occurred at Duke. Over 5,000 DUSoM faculty and staff participated in the first phase of this new program, with a 100% completion rate. The article reports on the program's development, challenges and successes, and future directions. This experience at Duke University illustrates that, although challenging and resource intensive, engagement with RCR activities can be integrated into programs for all research faculty and staff. Formal, participatory deliberation of recent cases of internal misconduct can add a novel dimension of reflection and openness to RCR educational activities.


Assuntos
Currículo , Faculdades de Medicina , Má Conduta Científica , North Carolina , Desenvolvimento de Programas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA