Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Physiol ; 193(1): 229-233, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37186777

RESUMO

Extrachromosomal circular DNAs (eccDNAs) are found in many eukaryotic organisms. EccDNA-powered copy number variation plays diverse roles, from oncogenesis in humans to herbicide resistance in crop weeds. Here, we report interspecific eccDNA flow and its dynamic behavior in soma cells of natural populations and F1 hybrids of Amaranthus sp. The glyphosate-resistance (GR) trait is controlled by eccDNA-based amplification harboring the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene (eccDNA replicon), the molecular target of glyphosate. We documented pollen-mediated transfer of eccDNA in experimental hybrids between glyphosate-susceptible Amaranthus tuberculatus and GR Amaranthus palmeri. Experimental hybridization and fluorescence in situ hybridization (FISH) analysis revealed that the eccDNA replicon in Amaranthus spinosus derived from GR A. palmeri by natural hybridization. FISH analysis also revealed random chromosome anchoring and massive eccDNA replicon copy number variation in soma cells of weedy hybrids. The results suggest that eccDNAs are inheritable across compatible species, contributing to genome plasticity and rapid adaptive evolution.


Assuntos
Amaranthus , Herbicidas , Humanos , Amaranthus/genética , Resistência a Herbicidas/genética , Variações do Número de Cópias de DNA , Hibridização in Situ Fluorescente , DNA , DNA Circular , Herbicidas/farmacologia
2.
Physiol Plant ; 175(5): e13992, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37882292

RESUMO

Water-saving attempts for rice cultivation often reduce yields. Maintaining productivity under drought is possible when rice genotypes are bred with improved metabolism and spikelet fertility. Although attempts have been made to introgress water mining and water use efficiency traits, combining acquired tolerance traits (ATTs), that is, specific traits induced or upregulated to better tolerate severe stress, appears equally important. In our study, we screened 90 rice germplasm accessions that represented the molecular and phenotypic variations of 851 lines of the 3 K rice panel. Utilising phenomics, we identified markers linked to ATTs through association analysis of over 0.2 million SNPs derived from whole-genome sequences. Propensity to respond to 'induction' stress varied significantly among genotypes, reflecting differences in cellular protection against oxidative stress. Among the ATTs, the hydroxyl radical and proline contents exhibited the highest variability. Furthermore, these significant variations in ATTs were strongly correlated with spikelet fertility. The 43 significant markers associated with ATTs were further validated using a different subset of contrasting genotypes. Gene expression studies and metabolomic profiling of two well-known contrasting genotypes, APO (tolerant) and IR64 (sensitive), identified two ATT genes: AdoMetDC and Di19. Our study highlights the relevance of polyamine biosynthesis in modulating ATTs in rice. Genotypes with superior ATTs and the associated markers can be effectively employed in breeding rice varieties with sustained spikelet fertility and grain yield under drought.


Assuntos
Oryza , Oryza/genética , Oryza/metabolismo , Secas , Genótipo , Água/metabolismo , Metaboloma
3.
Cytogenet Genome Res ; 161(12): 578-584, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35021177

RESUMO

In agriculture, various chemicals are used to control the weeds. Out of which, glyphosate is an important herbicide invariably used in the cultivation of glyphosate-resistant crops to control weeds. Overuse of glyphosate results in the evolution of glyphosate-resistant weeds. Evolution of glyphosate resistance (GR) in Amaranthus palmeri (AP) is a serious concern in the USA. Investigation of the mechanism of GR in AP identified different resistance mechanisms of which 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene amplification is predominant. Molecular analysis of GR AP identified the presence of a 5- to >160-fold increase in copies of the EPSPS gene than in a glyphosate-susceptible (GS) population. This increased copy number of the EPSPS gene increased the genome size ranging from 3.5 to 11.8%, depending on the copy number compared to the genome size of GS AP. FISH analysis using a 399-kb EPSPS cassette derived from bacterial artificial chromosomes (BACs) as probes identified that amplified EPSPS copies in GR AP exist in extrachromosomal circular DNA (eccDNA) in addition to the native copy in the chromosome. The EPSPS gene-containing eccDNA having a size of ∼400 kb is termed EPSPS-eccDNA and showed somatic mosacism in size and copy number. EPSPS-eccDNA has a genetic mechanism to tether randomly to mitotic or meiotic chromosomes during cell division or gamete formation and is inherited to daughter cells or progeny generating copy number variation. These eccDNAs are stable genetic elements that can replicate and exist independently. The genomic characterization of the EPSPS locus, along with the flanking regions, identified the presence of a complex array of repeats and mobile genetic elements. The cytogenomics approach in understanding the biology of EPSPS-eccDNA sheds light on various characteristics of EPSPS-eccDNA that favor GR in AP.


Assuntos
Amaranthus/efeitos dos fármacos , Amaranthus/genética , Citogenética , Genoma de Planta/genética , Glicina/análogos & derivados , Resistência a Herbicidas/genética , 3-Fosfoshikimato 1-Carboxiviniltransferase/genética , Amaranthus/citologia , Variações do Número de Cópias de DNA/genética , Glicina/farmacologia , Plantas Daninhas/efeitos dos fármacos , Plantas Daninhas/genética , Glifosato
4.
Planta ; 253(2): 48, 2021 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-33484360

RESUMO

MAIN CONCLUSION: This study confirms a high level of metabolic resistance to the herbicide chlorsulfuron, inherited by a single dominant gene in a sorghum genotype (GL-1). Chlorsulfuron, an acetolactate synthase (ALS)-inhibitor, effectively controls post-emergence grass and broadleaf weeds but is not registered for use in sorghum because of crop injury. The objectives of this study were to characterize the inheritance and mechanism of chlorsulfuron resistance in the sorghum genotype GL-1. Chlorsulfuron dose-response experiments were conducted using GL-1 along with BTx623 (susceptible check), and Pioneer 84G62 (commercial sorghum hybrid). The F1 and F2 progeny were generated by crossing GL-1 with BTx623. To assess if the target site alterations bestow resistance, the ALS gene, the molecular target of chlorsulfuron, was sequenced from GL-1. The role of cytochrome P450 (CYP) in metabolizing chlorsulfuron, using malathion, a CYP-inhibitor was tested. The chlorsulfuron dose-response assay indicated that GL-1 and F1 progeny were ~ 20-fold more resistant to chlorsulfuron relative to BTx623. The F2 progenies segregated 3:1 (resistance: susceptibility) suggesting that chlorsulfuron resistance in GL-1 is a single dominant trait. No mutations in the ALS gene were detected in the GL-1; however, a significant reduction in biomass accumulation was found in plants pre-treated with malathion indicating that metabolism of chlorsulfuron contributes to resistance in GL-1. Also, GL-1 is highly susceptible to other herbicides (e.g., mesotrione and tembotrione) compared to Pioneer 84G62, suggesting the existence of a negative cross-resistance in GL-1. Overall, these results confirm a high level of metabolic resistance to chlorsulfuron inherited by a single dominant gene in GL-1 sorghum. These results have potential for developing chlorsulfuron-tolerant sorghum hybrids, with the ability to improve post-emergence weed control.


Assuntos
Resistência a Herbicidas , Sorghum , Sulfonamidas , Triazinas , Acetolactato Sintase/genética , Resistência a Herbicidas/genética , Herbicidas/toxicidade , Sorghum/efeitos dos fármacos , Sorghum/genética , Sulfonamidas/toxicidade , Triazinas/toxicidade
5.
Field Crops Res ; 203: 238-242, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28260830

RESUMO

Higher spikelet sterility due to heat stress exposure during flowering in rice is becoming a major threat for sustaining productivity in tropical and sub-tropical regions. Therefore, exploiting and incorporating early morning flowering (EMF) trait into ongoing breeding pipelines could be an effective strategy to minimize the damage. In this study, we have focused on quantifying the time of day of flowering traits such as first spikelet opening time (FSOT) and peak spikelet opening time (PSOT) in a diverse set of cultivars (n = 289) representing major rice growing regions (13 tropical and 20 subtropical countries) over three years (wet season; WS-2012, dry season; DS-2013 and 2014), under field conditions. EMF traits (FSOT and PSOT) and spikelet sterility displayed significant (p < 0.001) variations among cultivars, both within and between seasons (WS and DS). Averaged across two dry seasons, the FSOT ranged between 2.35 h and 5.08 h after dawn compared to 3.05 h and 5.50 h during the WS, while, PSOT varied from 3.32 to 6.27 h in DS and from 3.50 to 7.05 h in WS. On average, PSOT was strongly associated with FSOT both in WS (R2 = 0.78) and DS (R2 = 0.77). A near-isogenic line (IR64 + qEMF3) effectively minimized the spikelet sterility by 71% during dry seasons under field conditions compared to 289 tropical and subtropical cultivars. None of the tropical and subtropical originated cultivars possess EMF trait including the popular IR64, thus indicating the usefulness of incorporating this trait to reduce heat stress damage under hotter climate. Our findings provide evidence for the effectiveness of the EMF trait in overcoming heat stress induced sterility under field conditions. Hence, it sounds logical to introgress EMF trait into currently growing popular rice cultivars for improving their resilience to heat stress episodes coinciding with flowering.

6.
Pest Manag Sci ; 79(11): 4290-4294, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37345512

RESUMO

BACKGROUND: An Italian ryegrass population from Arkansas, USA developed glyphosate resistance due to 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene amplification. The plants in this population with approximately 70 EPSPS copies were used in the present study for the physical mapping of amplified copies of EPSPS gene to determine the possible mechanism of EPSPS gene amplification conferring glyphosate resistance in Italian ryegrass. RESULT: Fluorescence in situ hybridization (FISH) analysis of glyphosate resistant (GR) Italian ryegrass plants with approximately 70 EPSPS copies displayed EPSPS hybridization signals randomly on most of the metaphase chromosomes. Glyphosate susceptible (GS) Italian ryegrass plants with one EPSPS copy displayed single prominent EPSPS hybridization signal, which was co-localized with 5S rDNA locus along with few additional signals on the outside of chromosomes. Pulsed-field gel electrophoresis (PFGE) followed by DNA blot using EPSPS gene as a probe identified a prominent EPSPS hybridization around the 400 kb region in GR DNA samples, but not in GS DNA samples. CONCLUSION: We report the extrachromosomal DNA-mediated glyphosate resistance in Italian ryegrass. Physical mapping of amplified copies of EPSPS gene in Italian ryegrass by FISH gives us a clue that the amplified copies of EPSPS gene may be present in the extrachromosomal DNA elements. Further analysis by PFGE followed by DNA blotting revealed that the extrachromosomal DNA containing EPSPS is approximately 400 kb similar in size with that of eccDNA replicon in Amaranthus palmeri. © 2023 Society of Chemical Industry.

7.
Antioxidants (Basel) ; 9(5)2020 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-32466087

RESUMO

Cytochrome P450s (CYPs) are the largest enzyme family involved in NADPH- and/or O2-dependent hydroxylation reactions across all the domains of life. In plants and animals, CYPs play a central role in the detoxification of xenobiotics. In addition to this function, CYPs act as versatile catalysts and play a crucial role in the biosynthesis of secondary metabolites, antioxidants, and phytohormones in higher plants. The molecular and biochemical processes catalyzed by CYPs have been well characterized, however, the relationship between the biochemical process catalyzed by CYPs and its effect on several plant functions was not well established. The advent of next-generation sequencing opened new avenues to unravel the involvement of CYPs in several plant functions such as plant stress response. The expression of several CYP genes are regulated in response to environmental stresses, and they also play a prominent role in the crosstalk between abiotic and biotic stress responses. CYPs have an enormous potential to be used as a candidate for engineering crop species resilient to biotic and abiotic stresses. The objective of this review is to summarize the latest research on the role of CYPs in plant stress response.

8.
Front Plant Sci ; 11: 596581, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33362828

RESUMO

Postemergence grass weed control continues to be a major challenge in grain sorghum [Sorghum bicolor (L.) Moench], primarily due to lack of herbicide options registered for use in this crop. The development of herbicide-resistant sorghum technology to facilitate broad-spectrum postemergence weed control can be an economical and viable solution. The 4-hydroxyphenylpyruvate dioxygenase-inhibitor herbicides (e.g., mesotrione or tembotrione) can control a broad spectrum of weeds including grasses, which, however, are not registered for postemergence application in sorghum due to crop injury. In this study, we identified two tembotrione-resistant sorghum genotypes (G-200, G-350) and one susceptible genotype (S-1) by screening 317 sorghum lines from a sorghum association panel (SAP). These tembotrione-resistant and tembotrione-susceptible genotypes were evaluated in a tembotrione dose-response [0, 5.75, 11.5, 23, 46, 92 (label recommended dose), 184, 368, and 736 g ai ha-1] assay. Compared with S-1, the genotypes G-200 and G-350 exhibited 10- and seven fold more resistance to tembotrione, respectively. To understand the inheritance of tembotrione-resistant trait, crosses were performed using S-1 and G-200 or G-350 to generate F1 and F2 progeny. The F1 and F2 progeny were assessed for their response to tembotrione treatment. Genetic analyses of the F1 and F2 progeny demonstrated that the tembotrione resistance in G-200 and G-350 is a partially dominant polygenic trait. Furthermore, cytochrome P450 (CYP)-inhibitor assay using malathion and piperonyl butoxide suggested possible CYP-mediated metabolism of tembotrione in G-200 and G-350. Genotype-by-sequencing based quantitative trait loci (QTL) mapping revealed QTLs associated with tembotrione resistance in G-200 and G-350 genotypes. Overall, the genotypes G-200 and G-350 confer a high level of metabolic resistance to tembotrione and controlled by a polygenic trait. There is an enormous potential to introgress the tembotrione resistance into breeding lines to develop agronomically desirable sorghum hybrids.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA