Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cardiovasc Res ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38832935

RESUMO

AIMS: Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) are increasingly used to treat type 2 diabetes and obesity. Albeit cardiovascular outcomes generally improve, treatment with GLP-1 RAs is associated with increased heart rate, the mechanism of which is unclear. METHODS AND RESULTS: We employed a large animal model, the female landrace pig, and used multiple in-vivo and ex-vivo approaches including pharmacological challenges, electrophysiology and high-resolution mass spectrometry to explore how GLP-1 elicits an increase in heart rate. In anaesthetized pigs, neither cervical vagotomy, adrenergic blockers (alpha, beta or combined alpha-beta blockade), ganglionic blockade (hexamethonium) nor inhibition of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels (ivabradine) abolished the marked chronotropic effect of GLP-1. GLP-1 administration to isolated perfused pig hearts also increased heart rate, which was abolished by GLP-1 receptor blockade. Electrophysiological characterization of GLP-1 effects in vivo and in isolated perfused hearts localized electrical modulation to the atria and conduction system. In isolated sinus nodes, GLP-1 administration shortened action potential cycle length of pacemaker cells and shifted the site of earliest activation. The effect was independent of HCN blockade. Collectively, these data support a direct effect of GLP-1 on GLP-1 receptors within the heart. Consistently, single nucleus RNA sequencing (snRNAseq) showed GLP-1 receptor expression in porcine pacemaker cells. Quantitative phosphoproteomics analyses of sinus node samples revealed that GLP-1 administration leads to phosphorylation changes of calcium cycling proteins of the sarcoplasmic reticulum, known to regulate heart rate. CONCLUSION: GLP-1 has direct chronotropic effects on the heart mediated by GLP-1 receptors in pacemaker cells of the sinus node, inducing changes in action potential morphology and the leading pacemaker site through a calcium signaling response characterized by PKA-dependent phosphorylation of Ca2+ cycling proteins involved in pace making. Targeting the pacemaker calcium clock may be a strategy to lower heart rate in GLP-1 RA recipients.

2.
J Cardiovasc Transl Res ; 16(5): 1205-1219, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37014465

RESUMO

Atrial fibrillation (AF) is more prevalent in athletes, and currently, the mechanisms are not fully understood. Atrial fibrillation inducibility and stability was investigated in trained and untrained Standardbred racehorses. The horses underwent echocardiography for evaluation of atrial size. High-density mapping during AF was performed, and the presence of structural remodeling, as well as the expression of inflammatory and pro-inflammatory markers in the atria, was studied. Atrial fibrillation sustained significantly longer after tachypacing in the trained horses, whereas no difference in AF inducibility was found. The untrained horses displayed a significant difference in the AF complexity when comparing right and left atria, whereas such difference was not observed in the trained animals. No evidence of increased structural remodeling or inflammation could be identified. Left atrial dimensions were not significantly increased. The increased AF sustainability in trained horses was not related to fibrosis or inflammation as seen in other animal exercise models.


Assuntos
Fibrilação Atrial , Humanos , Cavalos , Animais , Átrios do Coração , Ecocardiografia , Inflamação
3.
Front Cardiovasc Med ; 10: 1139364, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36970354

RESUMO

Aim: To propose a standardized workflow for 3D-electroanatomical mapping guided pulmonary vein isolation in pigs. Materials and methods: Danish female landrace pigs were anaesthetized. Ultrasound-guided puncture of both femoral veins was performed and arterial access for blood pressure measurement established. Fluoroscopy- and intracardiac ultrasound-guided passage of the patent foramen ovale or transseptal puncture was performed. Then, 3D-electroanatomical mapping of the left atrium was conducted using a high-density mapping catheter. After mapping all pulmonary veins, an irrigated radiofrequency ablation catheter was used to perform ostial ablation to achieve electrical pulmonary vein isolation. Entrance- and exit-block were confirmed and re-assessed after a 20-min waiting period. Lastly, animals were sacrificed to perform left atrial anatomical gross examination. Results: We present data from 11 consecutive pigs undergoing pulmonary vein isolation. Passage of the fossa ovalis or transseptal puncture was uneventful and successful in all animals. Within the inferior pulmonary trunk 2-4 individual veins as well as 1-2 additional left and right pulmonary veins could be cannulated. Electrical isolation by point-by-point ablation of all targeted veins was successful. However, pitfalls including phrenic nerve capture during ablation, ventricular arrhythmias during antral isolation close to the mitral valve annulus and difficulties in accessing right pulmonary veins were encountered. Conclusion: Fluoroscopy- and intracardiac ultrasound-guided transseptal puncture, high-density electroanatomical mapping of all pulmonary veins and complete electrical pulmonary vein isolation can be achieved reproducibly and safely in pigs when using current technologies and a step-by-step approach.

4.
Front Cardiovasc Med ; 9: 868603, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35592401

RESUMO

Introduction: Increased left ventricular mass (LVM) is one of the most powerful predictors of adverse cardiovascular events. Clinical evaluation requires reliable, accurate and reproducible echocardiographic LVM-quantification to manage patients. For this purpose, we have developed a novel two-dimensional (2D) method based on adding the mean wall thickness to the left ventricular volume acquired by the biplane method of disks, which has recently been validated in humans using cardiac magnetic resonance as reference value. We assessed the hypothesis that the novel method has better accuracy than conventional one-dimensional (1D) methods, when compared to necropsy LVM in pigs. Materials and Methods: Echocardiography was performed during anesthesia in 34 Danish Landrace pigs, weight 47-59 kg. All pigs were euthanized, cardiac necropsy was performed and the left ventricle was trimmed and weighed for necropsy LVM. Trans-thoracic echocardiography was applied for parasternal images. Transdiaphragmal echocardiography was applied for the apical images, which are otherwise difficult to obtain in pigs. We compared the conventional 1D- and 2D-methods and the novel 2D-method to the LVM from cardiac necropsy. Results: Necropsy LVM was 132 ± 11 g (mean ± SD). The novel method had better accuracy than other methods (mean difference ± 95% limits of agreement; coefficients of variation; standard error of the estimate, Pearson's correlation). Novel (-1 ± 20 g; 8%; 11 g; r = 0.70), Devereux (+26 ± 37 g; 15%; 33 g; r = 0.52), Area-Length (+27 ± 34 g; 13 %; 33 g; r = 0.63), Truncated Ellipsoid (+10 ± 30 g; 12%; 19 g; r = 0.63), biplane endo-/epicardial tracing (-3 ± 2 g; 10%; 14 g; r = 0.57). No proportional bias in linear regression was detected for any method, when compared to necropsy LVM. Conclusion: We confirm high accuracy of the novel 2D-based method compared to conventional 1D/2D-methods.

5.
Heart Rhythm ; 18(8): 1384-1391, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33722764

RESUMO

BACKGROUND: Obstructive sleep apnea is associated with increased risk of sudden cardiac death. OBJECTIVE: The purpose of this study was to elucidate changes in ventricular repolarization and electromechanical interaction during obstructive respiratory events simulated by intermittent negative upper airway pressure (INAP) in pigs. We also investigated the effect of a reduced repolarization reserve in drug-induced long QT (LQT) following INAP-induced changes in ventricular repolarization. METHODS: In sedated spontaneously breathing pigs, 75 seconds of INAP was applied by a negative pressure device connected to the endotracheal tube. Ventricular electromechanical coupling was determined by the electromechanical window (EMW) before (pre-INAP), during (INAP), and after INAP (post-INAP). Incidence rates of premature ventricular contractions (PVCs) were measured respectively. A drug-induced LQT was modeled by treating the pigs with the hERG1 blocker dofetilide (DOF). RESULTS: Whereas QT interval increased during and decreased after INAP (pre-INAP: 273 ± 5 ms; INAP 281 ± 6 ms; post-INAP 254 ± 9 ms), EMW shortened progressively throughout INAP and post-INAP periods (pre-INAP 81 ± 4 ms; post-INAP 44 ± 7 ms). DOF shortened EMW at baseline. Throughout INAP, EMW decreased in a comparable fashion as before DOF (pre-INAP/+DOF 61 ± 7 ms; post-INAP/+DOF 14 ± 9 ms) but resulted in shorter absolute EMW levels. Short EMW levels were associated with increased occurrence of PVCs (pre-INAP 7 ± 2 ms vs post-INAP 26 ± 6 ms; P = .02), which were potentiated in DOF pigs (pre-INAP/+DOF 5 ± 2 ms vs post-INAP/+DOF 40 ± 8 ms; P = .006). Administration of atenolol prevented post-INAP EMW shortening and decreased occurrence of PVCs. CONCLUSION: Transient dissociation of ventricular electromechanical coupling during simulated obstructive respiratory events creates a dynamic ventricular arrhythmogenic substrate, which is sympathetically mediated and aggravated by drug-induced LQT.


Assuntos
Eletrocardiografia , Frequência Cardíaca/fisiologia , Síndrome do QT Longo/fisiopatologia , Apneia Obstrutiva do Sono/fisiopatologia , Animais , Modelos Animais de Doenças , Feminino , Síndrome do QT Longo/induzido quimicamente , Síndrome do QT Longo/complicações , Apneia Obstrutiva do Sono/etiologia , Suínos
6.
Front Pharmacol ; 11: 556, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32435191

RESUMO

BACKGROUND: Inhibition of KCa2 channels, conducting IKCa, can convert atrial fibrillation (AF) to sinus rhythm and protect against its induction. IKCa inhibition has been shown to possess functional atrial selectivity with minor effects on ventricles. Under pathophysiological conditions with ventricular remodeling, however, inhibiting IKCa can exhibit both proarrhythmic and antiarrhythmic ventricular effects. The aim of this study was to evaluate the effects of the IKCa inhibitor AP14145, when given before or after the IKr blocker dofetilide, on cardiac function and ventricular proarrhythmia markers in pigs with or without left ventricular dysfunction (LVD). METHODS: Landrace pigs were randomized into an AF group (n = 6) and two control groups: SHAM1 (n = 8) and SHAM2 (n = 4). AF pigs were atrially tachypaced (A-TP) for 43 ± 4 days until sustained AF and LVD developed. A-TP and SHAM1 pigs received 20 mg/kg AP14145 followed by 100 µg/kg dofetilide whereas SHAM2 pigs received the same drugs in the opposite order. Proarrhythmic markers such as short-term variability of QT (STVQT) and RR (STVRR) intervals, and the number of premature ventricular complexes (PVCs) were measured at baseline and after administration of drugs. The influence on cardiac function was assessed by measuring cardiac output, stroke volume, and relevant echocardiographic parameters. RESULTS: IKCa inhibition by AP14145 did not increase STVQT or STVRR in any of the pigs. IKr inhibition by dofetilide markedly increased STVQT in the A-TP pigs, but not in SHAM operated pigs. Upon infusion of AP14145 the number of PVCs decreased or remained unchanged both when AP14145 was infused after baseline and after dofetilide. Conversely, the number of PVCs increased or remained unchanged upon dofetilide infusion. Neither AP14145 nor dofetilide affected relevant echocardiographic parameters, cardiac output, or stroke volume in any of the groups. CONCLUSION: IKCa inhibition with AP14145 was not proarrhythmic in healthy pigs, or in the presence of LVD resulting from A-TP. In pigs already challenged with 100 µg/kg dofetilide there were no signs of proarrhythmia when 20 mg/kg AP14145 were infused. KCa2 channel inhibition did not affect cardiac function, implying that KCa2 inhibitors can be administered safely also in the presence of LV dysfunction.

7.
Front Vet Sci ; 7: 179, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32328502

RESUMO

Background: Atrial fibrillation (AF) is characterized by electrical and structural remodeling. Irregular and/or fast atrio-ventricular (AV) conduction during AF can result in AV dyssynchrony, tachymyopathy, pressure and volume overload with subsequent dilatation, valve regurgitation, and ventricular dysfunction with progression to heart failure. Objective: To gain further insight into the myocardial pathophysiological changes induced by right atrial tachypacing (A-TP) in a large animal model. Methods: A total of 28 Landrace pigs were randomized as 14 into AF-induced A-TP group and 14 pigs to control group. AF pigs were tachypaced for 43 ± 4 days until in sustained AF. Functional remodeling was investigated by echocardiography (after cardioversion to sinus rhythm). Structural remodeling was quantified by histological preparations with picrosirius red and immunohistochemical stainings. Results: A-TP resulted in decreased left ventricular ejection fraction (LVEF) accompanied by increased end-diastolic and end-systolic left atrium (LA) volume and area. In addition, A-TP was associated with mitral valve (MV) regurgitation, diastolic dysfunction and increased atrial and ventricular fibrotic extracellular matrix (ECM). Conclusions: A-TP induced AF with concomitant LV systolic and diastolic dysfunction, increased LA volume and area, and atrial and ventricular fibrosis.

8.
Br J Pharmacol ; 177(16): 3778-3794, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32436234

RESUMO

BACKGROUND AND PURPOSE: Inhibition of the G-protein gated ACh-activated inward rectifier potassium current, IK,ACh may be an effective atrial selective treatment strategy for atrial fibrillation (AF). Therefore, the anti-arrhythmic and electrophysiological properties of a novel putatively potent and highly specific IK,ACh inhibitor, XAF-1407 (3-methyl-1-[5-phenyl-4-[4-(2-pyrrolidin-1-ylethoxymethyl)-1-piperidyl]thieno[2,3-d]pyrimidin-6-yl]azetidin-3-ol), were characterised for the first time in vitro and investigated in horses with persistent AF. EXPERIMENTAL APPROACH: The pharmacological ion channel profile of XAF-1407 was investigated using cell lines expressing relevant ion channels. In addition, eleven horses were implanted with implantable cardioverter defibrillators enabling atrial tachypacing into self-sustained AF. The electrophysiological effects of XAF-1407 were investigated after serial cardioversions over a period of 1 month. Cardioversion success, drug-induced changes of atrial tissue refractoriness, and ventricular electrophysiology were assessed at baseline (day 0) and days 3, 5, 11, 17, and 29 after AF induction. KEY RESULTS: XAF-1407 potently and selectively inhibited Kir 3.1/3.4 and Kir 3.4/3.4, underlying the IK,ACh current. XAF-1407 treatment in horses prolonged atrial effective refractory period as well as decreased atrial fibrillatory rate significantly (~20%) and successfully cardioverted AF, although with a decreasing efficacy over time. XAF-1407 shortened atrioventricular-nodal refractoriness, without effect on QRS duration. QTc prolongation (4%) within 15 min of drug infusion was observed, however, without any evidence of ventricular arrhythmia. CONCLUSION AND IMPLICATIONS: XAF-1407 efficiently cardioverted sustained tachypacing-induced AF of short duration in horses without notable side effects. This supports IK,ACh inhibition as a potentially safe treatment of paroxysmal AF in horses, suggesting potential clinical value for other species including humans.


Assuntos
Fibrilação Atrial , Animais , Antiarrítmicos/farmacologia , Fibrilação Atrial/tratamento farmacológico , Átrios do Coração , Cavalos , Potássio
9.
Front Cardiovasc Med ; 6: 158, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31750317

RESUMO

Ventricular arrhythmia and subsequent sudden cardiac death (SCD) due to acute myocardial infarction (AMI) is one of the most frequent causes of death in humans. Lethal ventricular arrhythmias like ventricular fibrillation (VF) prior to hospitalization have been reported to occur in more than 10% of all AMI cases and survival in these patients is poor. Identification of risk factors and mechanisms for VF following AMI as well as implementing new risk stratification models and therapeutic approaches is therefore an important step to reduce mortality in people with high cardiovascular risk. Studying spontaneous VF following AMI in humans is challenging as it often occurs unexpectedly in a low risk subgroup. Large animal models of AMI can help to bridge this knowledge gap and are utilized to investigate occurrence of arrhythmias, involved mechanisms and therapeutic options. Comparable anatomy and physiology allow for this translational approach. Through experimental focus, using state-of-the-art technologies, including refined electrical mapping equipment and novel pharmacological investigations, valuable insights into arrhythmia mechanisms and possible interventions for arrhythmia-induced SCD during the early phase of AMI are now beginning to emerge. This review describes large experimental animal models of AMI with focus on first AMI-associated ventricular arrhythmias. In this context, epidemiology of first AMI, arrhythmogenic mechanisms and various potential therapeutic pharmacological targets will be discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA