Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 25(70): 16128-16140, 2019 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-31596974

RESUMO

Innovative monocyclic ß-lactam entities create opportunities in the battle against resistant bacteria because of their PBP acylation potential, intrinsically high ß-lactamase stability and compact scaffold. α-Benzylidene-substituted 3-amino-1-carboxymethyl-ß-lactams were recently shown to be potent PBP inhibitors and constitute eligible anchor points for synthetic elaboration of the chemical space around the central ß-lactam ring. The present study discloses a 12-step synthesis of ten α-arylmethylidenecarboxylates using a microwave-assisted Wittig olefination as the crucial reaction step. The library was designed aiming at enhanced ß-lactam electrophilicity and extended electron flow after enzymatic attack. Additionally, increased ß-lactamase stability and intermolecular target interaction were envisioned by tackling both the substitution pattern of the aromatic ring and the ß-lactam C4-position. The significance of α-unsaturation was validated and the R39/PBP3 inhibitory potency shown to be augmented the most through decoration of the aromatic ring with electron-withdrawing groups. Furthermore, ring cleavage by representative ß-lactamases was ruled out, providing new insights in the SAR landscape of monocyclic ß-lactams as eligible PBP or ß-lactamase inhibitors.

2.
Chemistry ; 24(57): 15254-15266, 2018 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-29882610

RESUMO

As a complement to the renowned bicyclic ß-lactam antibiotics, monocyclic analogues provide a breath of fresh air in the battle against resistant bacteria. In that framework, the present study discloses the in silico design and unprecedented ten-step synthesis of eleven nocardicin-like enantiomerically pure 2-{3-[2-(2-aminothiazol-4-yl)-2-(methoxyimino)acetamido]-2-oxoazetidin-1-yl}acetic acids starting from serine as a readily accessible precursor. The capability of this novel class of monocyclic 3-amino-ß-lactams to inhibit penicillin-binding proteins (PBPs) of various (resistant) bacteria was assessed, revealing the potential of α-benzylidenecarboxylates as interesting leads in the pursuit of novel PBP inhibitors. No deactivation by representative enzymes belonging to the four ß-lactamase classes was observed, while weak inhibition of class C ß-lactamase P99 was demonstrated.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Enterococcus faecium/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Proteínas de Ligação às Penicilinas/antagonistas & inibidores , beta-Lactamas/química , beta-Lactamas/farmacologia , Aminação , Antibacterianos/síntese química , Infecções Bacterianas/tratamento farmacológico , Simulação por Computador , Desenho Assistido por Computador , Desenho de Fármacos , Farmacorresistência Bacteriana/efeitos dos fármacos , Enterococcus faecium/metabolismo , Escherichia coli/metabolismo , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Bactérias Gram-Positivas/tratamento farmacológico , Humanos , Simulação de Acoplamento Molecular , Proteínas de Ligação às Penicilinas/metabolismo , beta-Lactamas/síntese química
3.
Cell Mol Life Sci ; 74(12): 2319-2332, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28168443

RESUMO

Type 2 phosphatidic acid phosphatases (PAP2s) can be either soluble or integral membrane enzymes. In bacteria, integral membrane PAP2s play major roles in the metabolisms of glycerophospholipids, undecaprenyl-phosphate (C55-P) lipid carrier and lipopolysaccharides. By in vivo functional experiments and biochemical characterization we show that the membrane PAP2 coded by the Bacillus subtilis yodM gene is the principal phosphatidylglycerol phosphate (PGP) phosphatase of B. subtilis. We also confirm that this enzyme, renamed bsPgpB, has a weaker activity on C55-PP. Moreover, we solved the crystal structure of bsPgpB at 2.25 Å resolution, with tungstate (a phosphate analog) in the active site. The structure reveals two lipid chains in the active site vicinity, allowing for PGP substrate modeling and molecular dynamic simulation. Site-directed mutagenesis confirmed the residues important for substrate specificity, providing a basis for predicting the lipids preferentially dephosphorylated by membrane PAP2s.


Assuntos
Bacillus subtilis/enzimologia , Membrana Celular/enzimologia , Fosfatidato Fosfatase/química , Fosfatidato Fosfatase/metabolismo , Bacillus subtilis/genética , Domínio Catalítico , Cristalografia por Raios X , Escherichia coli/metabolismo , Genes Bacterianos , Teste de Complementação Genética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Fosfatidato Fosfatase/genética , Fosfatidilgliceróis/metabolismo , Solubilidade , Especificidade por Substrato
4.
Artigo em Inglês | MEDLINE | ID: mdl-28320728

RESUMO

PER-2 accounts for up to 10% of oxyimino-cephalosporin resistance in Klebsiella pneumoniae and Escherichia coli in Argentina and hydrolyzes both cefotaxime and ceftazidime with high catalytic efficiencies (kcat/Km ). Through crystallographic analyses, we recently proposed the existence of a hydrogen bond network connecting Ser70-Gln69-oxyanion water-Thr237-Arg220 that might be important for the activity and inhibition of the enzyme. Mutations at Arg244 in most class A ß-lactamases (such as TEM and SHV) reduce susceptibility to mechanism-based inactivators, and Arg220 in PER ß-lactamases is equivalent to Arg244. Alterations in the hydrogen bond network of the active site in PER-2, through modifications in key residues such as Arg220 and (to a much lesser extent) Thr237, dramatically impact the overall susceptibility to inactivation, with up to ∼300- and 500-fold reductions in the rate constant of inactivation (kinact)/Ki values for clavulanic acid and tazobactam, respectively. Hydrolysis on cephalosporins and aztreonam was also affected, although to different extents compared to with wild-type PER-2; for cefepime, only an Arg220Gly mutation resulted in a strong reduction in the catalytic efficiency. Mutations at Arg220 entail modifications in the catalytic activity of PER-2 and probably local perturbations in the protein, but not global conformational changes. Therefore, the apparent structural stability of the mutants suggests that these enzymes could be possibly selected in vivo.


Assuntos
Inibidores de beta-Lactamases/farmacologia , beta-Lactamases/genética , Cefepima , Cefotaxima/farmacologia , Ceftazidima/farmacologia , Cefalosporinas/farmacologia , Ácido Clavulânico/farmacologia , Escherichia coli/efeitos dos fármacos , Klebsiella pneumoniae/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Mutação/genética , beta-Lactamases/metabolismo
5.
Plant Physiol ; 170(2): 1000-13, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26697894

RESUMO

Ser/Arg-rich (SR) proteins are essential nucleus-localized splicing factors. Our prior studies showed that Arabidopsis (Arabidopsis thaliana) RSZ22, a homolog of the human SRSF7 SR factor, exits the nucleus through two pathways, either dependent or independent on the XPO1 receptor. Here, we examined the expression profiles and shuttling dynamics of the Arabidopsis SRSF1 subfamily (SR30, SR34, SR34a, and SR34b) under control of their endogenous promoter in Arabidopsis and in transient expression assay. Due to its rapid nucleocytoplasmic shuttling and high expression level in transient assay, we analyzed the multiple determinants that regulate the localization and shuttling dynamics of SR34. By site-directed mutagenesis of SR34 RNA-binding sequences and Arg/Ser-rich (RS) domain, we further show that functional RRM1 or RRM2 are dispensable for the exclusive protein nuclear localization and speckle-like distribution. However, mutations of both RRMs induced aggregation of the protein whereas mutation in the RS domain decreased the stability of the protein and suppressed its nuclear accumulation. Furthermore, the RNA-binding motif mutants are defective for their export through the XPO1 (CRM1/Exportin-1) receptor pathway, but retain nucleocytoplasmic mobility. We performed a yeast two hybrid screen with SR34 as bait and discovered SR45 as a new interactor. SR45 is an unusual SR splicing factor bearing two RS domains. These interactions were confirmed in planta by FLIM-FRET and BiFC and the roles of SR34 domains in protein-protein interactions were further studied. Altogether, our report extends our understanding of shuttling dynamics of Arabidopsis SR splicing factors.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Splicing de RNA/genética , Transporte Ativo do Núcleo Celular , Arabidopsis/genética , Proteínas de Arabidopsis/química , Núcleo Celular/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Mutação/genética , Folhas de Planta/citologia , Plantas Geneticamente Modificadas , Ligação Proteica , Mapeamento de Interação de Proteínas , Estrutura Terciária de Proteína , Relação Estrutura-Atividade , Nicotiana/citologia , Técnicas do Sistema de Duplo-Híbrido
6.
Biochemistry ; 54(32): 5072-82, 2015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-26228623

RESUMO

Diversification of the CTX-M ß-lactamases led to the emergence of variants responsible for decreased susceptibility to ceftazidime, like the Asp240Gly-harboring "ceftazidimases". We solved the crystallographic structure of the Asp240Gly variant CTX-M-96 at 1.2 Å and evaluated the role of Asp240 in the activity toward oxyimino-cephalosporins through simulated models and kinetics. There seem to be subtle changes in the conformation of the active site cavity of CTX-M-96, compared to enzyme variants harboring the Asp240, and these small rearrangements could be due to localized shifts in the environment of the ß3 strand. According to the crystallographic evidence, CTX-M-96 presents a "compact" active site, which in spite of its reduced cavity seems to allow the proper interaction with oxyimino-cephalosporins, as suggested by simulated models. The term "ceftazidimases" that is currently applied for the Asp240Gly-harboring CTX-M variants should be used carefully. Structural differences between CTX-M harboring the Asp240Gly mutation (and also probably others like those at Pro167) do not seem to be conclusive to determine the "ceftazidimase" behavior observed in vivo, which is in turn partially supported by the mild improvement in the catalytic efficiency toward ceftazidime by CTX-M-96 and similar enzymes, compared to "parental" Asp240-harboring variants. In addition, it is observed that alterations in OmpF expression could act synergistically with CTX-M-96 for yielding clinical resistance toward ceftazidime. We therefore propose that the observed resistance in vivo is due to the sum of synergic mechanisms, and the term "cefotaximases associated with ceftazidime resistance" could be conveniently used to describe CTX-M harboring the Asp240Gly substitution.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Ceftazidima/metabolismo , Klebsiella pneumoniae/enzimologia , beta-Lactamases/química , beta-Lactamases/metabolismo , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Domínio Catalítico , Ceftazidima/farmacologia , Resistência às Cefalosporinas/genética , Cristalografia por Raios X , Genes Bacterianos , Variação Genética , Cinética , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/genética , Modelos Moleculares , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , beta-Lactamases/genética
7.
Mol Microbiol ; 90(2): 267-77, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23927005

RESUMO

Binary fission is the ultimate step of the prokaryotic cell cycle. In Gram-negative bacteria like Escherichia coli, this step implies the invagination of three biological layers (cytoplasmic membrane, peptidoglycan and outer membrane), biosynthesis of the new poles and eventually, daughter cells separation. The latter requires the coordinated action of the N-acetylmuramyl-L-alanine amidases AmiA/B/C and their LytM activators EnvC and NlpD to cleave the septal peptidoglycan. We present here the 2.5 Å crystal structure of AmiC which includes the first report of an AMIN domain structure, a ß-sandwich of two symmetrical four-stranded ß-sheets exposing highly conserved motifs on the two outer faces. We show that this N-terminal domain, involved in the localization of AmiC at the division site, is a new peptidoglycan-binding domain. The C-terminal catalytic domain shows an auto-inhibitory alpha helix obstructing the active site. AmiC lacking this helix exhibits by itself an activity comparable to that of the wild type AmiC activated by NlpD. We also demonstrate the interaction between AmiC and NlpD by microscale thermophoresis and confirm the importance of the active site blocking alpha helix in the regulation of the amidase activity.


Assuntos
Divisão Celular , Escherichia coli/metabolismo , N-Acetil-Muramil-L-Alanina Amidase/química , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Peptidoglicano/metabolismo , Motivos de Aminoácidos , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Lipoproteínas/metabolismo , N-Acetil-Muramil-L-Alanina Amidase/genética , Conformação Proteica , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
8.
Antimicrob Agents Chemother ; 58(10): 5994-6002, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25070104

RESUMO

PER-2 belongs to a small (7 members to date) group of extended-spectrum ß-lactamases. It has 88% amino acid identity with PER-1 and both display high catalytic efficiencies toward most ß-lactams. In this study, we determined the X-ray structure of PER-2 at 2.20 Å and evaluated the possible role of several residues in the structure and activity toward ß-lactams and mechanism-based inhibitors. PER-2 is defined by the presence of a singular trans bond between residues 166 to 167, which generates an inverted Ω loop, an expanded fold of this domain that results in a wide active site cavity that allows for efficient hydrolysis of antibiotics like the oxyimino-cephalosporins, and a series of exclusive interactions between residues not frequently involved in the stabilization of the active site in other class A ß-lactamases. PER ß-lactamases might be included within a cluster of evolutionarily related enzymes harboring the conserved residues Asp136 and Asn179. Other signature residues that define these enzymes seem to be Gln69, Arg220, Thr237, and probably Arg/Lys240A ("A" indicates an insertion according to Ambler's scheme for residue numbering in PER ß-lactamases), with structurally important roles in the stabilization of the active site and proper orientation of catalytic water molecules, among others. We propose, supported by simulated models of PER-2 in combination with different ß-lactams, the presence of a hydrogen-bond network connecting Ser70-Gln69-water-Thr237-Arg220 that might be important for the proper activity and inhibition of the enzyme. Therefore, we expect that mutations occurring in these positions will have impacts on the overall hydrolytic behavior.


Assuntos
Cristalografia por Raios X/métodos , Inibidores de beta-Lactamases/metabolismo , beta-Lactamases/química , beta-Lactamases/metabolismo , beta-Lactamas/metabolismo , Sequência de Aminoácidos , Cefalosporinas/química , Cefalosporinas/metabolismo , Dados de Sequência Molecular , Ligação Proteica , Estrutura Secundária de Proteína , Homologia de Sequência de Aminoácidos
9.
Biochemistry ; 52(12): 2128-38, 2013 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-23484909

RESUMO

Inhibitors of bacterial DD-peptidases represent potential antibiotics. In the search for alternatives to ß-lactams, we have investigated a series of compounds designed to generate transition state analogue structures upon reaction with DD-peptidases. The compounds contain a combination of a peptidoglycan-mimetic specificity handle and a warhead capable of delivering a tetrahedral anion to the enzyme active site. The latter includes a boronic acid, two alcohols, an aldehyde, and a trifluoroketone. The compounds were tested against two low-molecular mass class C DD-peptidases. As expected from previous observations, the boronic acid was a potent inhibitor, but rather unexpectedly from precedent, the trifluoroketone [D-α-aminopimelyl(1,1,1-trifluoro-3-amino)butan-2-one] was also very effective. Taking into account competing hydration, we found the trifluoroketone was the strongest inhibitor of the Actinomadura R39 DD-peptidase, with a subnanomolar (free ketone) inhibition constant. A crystal structure of the complex between the trifluoroketone and the R39 enzyme showed that a tetrahedral adduct had indeed formed with the active site serine nucleophile. The trifluoroketone moiety, therefore, should be considered along with boronic acids and phosphonates as a warhead that can be incorporated into new and effective DD-peptidase inhibitors and therefore, perhaps, antibiotics.


Assuntos
Actinomycetales/enzimologia , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , D-Ala-D-Ala Carboxipeptidase Tipo Serina/antagonistas & inibidores , D-Ala-D-Ala Carboxipeptidase Tipo Serina/química , Antibacterianos/química , Antibacterianos/farmacologia , Butanonas/química , Butanonas/farmacologia , Domínio Catalítico , Cristalografia por Raios X , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Modelos Moleculares , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , beta-Lactamas/farmacologia
10.
J Antimicrob Chemother ; 67(10): 2379-87, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22773738

RESUMO

OBJECTIVES: Our aim was to unravel the inactivation pathway of the class A ß-lactamase produced by Bacillus licheniformis BS3 (BS3) by clavulanate. METHODS: The interaction between clavulanate and BS3 was studied by X-ray crystallography, pre-steady-state kinetics and mass spectrometry. RESULTS: The analysis of the X-ray structure of the complex yielded by the reaction between clavulanate and BS3 indicates that the transient inactivated form, namely the cis-trans enamine complex, is hydrolysed to an ethane-imine ester covalently linked to the active site serine and a pentan-3-one-5-ol acid. It is the first time that this mechanism has been observed in an inactivated ß-lactamase. Furthermore, the ionic interactions made by the carboxylic group of pentan-3-one-5-ol may provide an understanding of the decarboxylation process of the trans-enamine observed in the non-productive complex observed for the interaction between clavulanate and SHV-1 and Mycobacterium tuberculosis ß-lactamase (Mtu). CONCLUSIONS: This work provides a comprehensive clavulanate hydrolysis pathway accounting for the observed acyl-enzyme structures of class A ß-lactamase/clavulanate adducts.


Assuntos
Bacillus/enzimologia , Ácido Clavulânico/química , Ácido Clavulânico/metabolismo , Inibidores Enzimáticos/metabolismo , Inibidores de beta-Lactamases , beta-Lactamases/química , Cristalografia por Raios X , Hidrólise , Cinética , Espectrometria de Massas , Modelos Moleculares , Ligação Proteica , Conformação Proteica
11.
Bioorg Med Chem ; 20(12): 3915-24, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22579615

RESUMO

In response to the widespread use of ß-lactam antibiotics bacteria have evolved drug resistance mechanisms that include the production of resistant Penicillin Binding Proteins (PBPs). Boronic acids are potent ß-lactamase inhibitors and have been shown to display some specificity for soluble transpeptidases and PBPs, but their potential as inhibitors of the latter enzymes is yet to be widely explored. Recently, a (2,6-dimethoxybenzamido)methylboronic acid was identified as being a potent inhibitor of Actinomadura sp. R39 transpeptidase (IC(50): 1.3 µM). In this work, we synthesized and studied the potential of a number of acylaminomethylboronic acids as inhibitors of PBPs from different classes. Several derivatives inhibited PBPs of classes A, B and C from penicillin sensitive strains. The (2-nitrobenzamido)methylboronic acid was identified as a good inhibitor of a class A PBP (PBP1b from Streptococcus pneumoniae, IC(50) = 26 µM), a class B PBP (PBP2xR6 from Streptococcus pneumoniae, IC(50) = 138 µM) and a class C PBP (R39 from Actinomadura sp., IC(50) = 0.6 µM). This work opens new avenues towards the development of molecules that inhibit PBPs, and eventually display bactericidal effects, on distinct bacterial species.


Assuntos
Ácidos Borônicos/síntese química , Ácidos Borônicos/farmacologia , Proteínas de Ligação às Penicilinas/antagonistas & inibidores , Proteínas de Ligação às Penicilinas/classificação , Actinomycetales/química , Ácidos Borônicos/química , Relação Dose-Resposta a Droga , Estrutura Molecular , Streptococcus pneumoniae/química , Relação Estrutura-Atividade
12.
Molecules ; 17(11): 12478-505, 2012 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-23095893

RESUMO

The widespread use of β-lactam antibiotics has led to the worldwide appearance of drug-resistant strains. Bacteria have developed resistance to β-lactams by two main mechanisms: the production of β-lactamases, sometimes accompanied by a decrease of outer membrane permeability, and the production of low-affinity, drug resistant Penicillin Binding Proteins (PBPs). PBPs remain attractive targets for developing new antibiotic agents because they catalyse the last steps of the biosynthesis of peptidoglycan, which is unique to bacteria, and lies outside the cytoplasmic membrane. Here we summarize the “current state of the art” of non-β-lactam inhibitors of PBPs, which have being developed in an attempt to counter the emergence of β-lactam resistance. These molecules are not susceptible to hydrolysis by β-lactamases and thus present a real alternative to β-lactams. We present transition state analogs such as boronic acids, which can covalently bind to the active serine residue in the catalytic site. Molecules containing ring structures different from the β-lactam-ring like lactivicin are able to acylate the active serine residue. High throughput screening methods, in combination with virtual screening methods and structure based design, have allowed the development of new molecules. Some of these novel inhibitors are active against major pathogens, including methicillin-resistant Staphylococcus aureus (MRSA) and thus open avenues new for the discovery of novel antibiotics.


Assuntos
Antibacterianos/farmacologia , Proteínas de Ligação às Penicilinas/antagonistas & inibidores , Penicilinas/farmacologia , Inibidores de beta-Lactamases , Animais , Antibacterianos/química , Bactérias/efeitos dos fármacos , Domínio Catalítico , Descoberta de Drogas , Ensaios Enzimáticos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Humanos , Testes de Sensibilidade Microbiana , Resistência às Penicilinas , Proteínas de Ligação às Penicilinas/química , Penicilinas/química , Ligação Proteica , beta-Lactamases/química
13.
Genes (Basel) ; 13(2)2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35205421

RESUMO

The very nature of the last bacterial common ancestor (LBCA), in particular the characteristics of its cell wall, is a critical issue to understand the evolution of life on earth. Although knowledge of the relationships between bacterial phyla has made progress with the advent of phylogenomics, many questions remain, including on the appearance or disappearance of the outer membrane of diderm bacteria (also called Gram-negative bacteria). The phylogenetic transition between monoderm (Gram-positive bacteria) and diderm bacteria, and the associated peptidoglycan expansion or reduction, requires clarification. Herein, using a phylogenomic tree of cultivated and characterized bacteria as an evolutionary framework and a literature review of their cell-wall characteristics, we used Bayesian ancestral state reconstruction to infer the cell-wall architecture of the LBCA. With the same phylogenomic tree, we further revisited the evolution of the division and cell-wall synthesis (dcw) gene cluster using homology- and model-based methods. Finally, extensive similarity searches were carried out to determine the phylogenetic distribution of the genes involved with the biosynthesis of the outer membrane in diderm bacteria. Quite unexpectedly, our analyses suggest that all cultivated and characterized bacteria might have evolved from a common ancestor with a monoderm cell-wall architecture. If true, this would indicate that the appearance of the outer membrane was not a unique event and that selective forces have led to the repeated adoption of such an architecture. Due to the lack of phenotypic information, our methodology cannot be applied to all extant bacteria. Consequently, our conclusion might change once enough information is made available to allow the use of an even more diverse organism selection.


Assuntos
Bactérias , Bactérias Gram-Positivas , Bactérias/genética , Teorema de Bayes , Bactérias Gram-Negativas/genética , Bactérias Gram-Positivas/genética , Filogenia
14.
Biochemistry ; 50(3): 376-87, 2011 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-21182324

RESUMO

The Actinomadura R39 DD-peptidase catalyzes the hydrolysis and aminolysis of a number of small peptides and depsipeptides. Details of its substrate specificity and the nature of its in vivo substrate are not, however, well understood. This paper describes the interactions of the R39 enzyme with two peptidoglycan-mimetic substrates 3-(D-cysteinyl)propanoyl-D-alanyl-D-alanine and 3-(D-cysteinyl)propanoyl-D-alanyl-D-thiolactate. A detailed study of the reactions of the former substrate, catalyzed by the enzyme, showed DD-carboxypeptidase, DD-transpeptidase, and DD-endopeptidase activities. These results confirm the specificity of the enzyme for a free D-amino acid at the N-terminus of good substrates and indicated a preference for extended D-amino acid leaving groups. The latter was supported by determination of the structural specificity of amine nucleophiles for the acyl-enzyme generated by reaction of the enzyme with the thiolactate substrate. It was concluded that a specific substrate for this enzyme, and possibly the in vivo substrate, may consist of a partly cross-linked peptidoglycan polymer where a free side chain N-terminal un-cross-linked amino acid serves as the specific acyl group in an endopeptidase reaction. The enzyme is most likely a DD-endopeptidase in vivo. pH-rate profiles for reactions of the enzyme with peptides, the thiolactate named above, and ß-lactams indicated the presence of complex proton dissociation pathways with sticky substrates and/or protons. The local structure of the active site may differ significantly for reactions of peptides and ß-lactams. Solvent kinetic deuterium isotope effects indicate the presence of classical general acid/base catalysis in both acylation and deacylation; there is no evidence of the low fractionation factor active site hydrogen found previously in class A and C ß-lactamases.


Assuntos
Actinomycetales/enzimologia , Modelos Químicos , D-Ala-D-Ala Carboxipeptidase Tipo Serina/química , Acilação , Alanina/análogos & derivados , Alanina/química , Alanina/metabolismo , Cinética , Mimetismo Molecular , Peptidoglicano/química , Peptidoglicano/metabolismo , Especificidade por Substrato , Compostos de Sulfidrila/química , Compostos de Sulfidrila/metabolismo , beta-Lactamas/química , beta-Lactamas/metabolismo
15.
J Am Chem Soc ; 133(28): 10839-48, 2011 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-21574608

RESUMO

Boronic acids bearing appropriate side chains are good inhibitors of serine amidohydrolases. The boron usually adopts a tetrahedral conformation, bound to the nucleophilic serine of the active site and mimicking the transition state of the enzymatic reaction. We have solved the structures of complexes of a penicillin-binding protein, the DD-peptidase from Actinomadura sp. R39, with four amidomethylboronic acids (2,6-dimethoxybenzamidomethylboronic acid, phenylacetamidomethylboronic acid, 2-chlorobenzamidomethylboronic acid, and 2-nitrobenzamidomethylboronic acid) and the pinacol ester derived from phenylacetamidomethylboronic acid. We found that, in each case, the boron forms a tricovalent adduct with Oγ of Ser49, Ser298, and the terminal amine group of Lys410, three key residues involved in the catalytic mechanism of penicillin-binding proteins. This represents the first tricovalent enzyme-inhibitor adducts observed by crystallography. In two of the five R39-boronate structures, the boronic acid is found as a tricovalent adduct in two monomers of the asymmetric unit and as a monocovalent adduct with the active serine in the two remaining monomers of the asymmetric unit. Formation of the tricovalent complex from a classical monocovalent complex may involve rotation around the Ser49 Cα-Cß bond to place the boron in a position to interact with Ser298 and Lys410, and a twisting of the side-chain amide such that its carbonyl oxygen is able to hydrogen bond to the oxyanion hole NH of Thr413. Biphasic kinetics were observed in three of the five cases, and details of the reaction between R39 and 2,6-dimethoxybenzamidomethylboronic acid were studied. Observation of biphasic kinetics was not, however, thought to be correlated to formation of tricovalent complexes, assuming that the latter do form in solution. On the basis of the crystallographic and kinetic results, a reaction scheme for this unexpected inhibition by boronic acids is proposed.


Assuntos
Ácidos Borônicos/metabolismo , Domínio Catalítico , Proteínas de Ligação às Penicilinas/química , Proteínas de Ligação às Penicilinas/metabolismo , Ácidos Borônicos/química , Ácidos Borônicos/farmacologia , Cristalografia por Raios X , Cinética , Modelos Moleculares , Proteínas de Ligação às Penicilinas/antagonistas & inibidores , Inibidores de Proteases/química , Inibidores de Proteases/metabolismo , Inibidores de Proteases/farmacologia , Ligação Proteica , D-Ala-D-Ala Carboxipeptidase Tipo Serina/antagonistas & inibidores , D-Ala-D-Ala Carboxipeptidase Tipo Serina/química , D-Ala-D-Ala Carboxipeptidase Tipo Serina/metabolismo , Solventes/química
16.
Biochem J ; 432(3): 495-504, 2010 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-21108605

RESUMO

The activity of class D ß-lactamases is dependent on Lys70 carboxylation in the active site. Structural, kinetic and affinity studies show that this post-translational modification can be affected by the presence of a poor substrate such as moxalactam but also by the V117T substitution. Val117 is a strictly conserved hydrophobic residue located in the active site. In addition, inhibition of class D ß-lactamases by chloride ions is due to a competition between the side chain carboxylate of the modified Lys70 and chloride ions. Determination of the individual kinetic constants shows that the deacylation of the acyl-enzyme is the rate-limiting step for the wild-type OXA-10 ß-lactamase.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Lisina/metabolismo , Processamento de Proteína Pós-Traducional , beta-Lactamases/química , beta-Lactamases/metabolismo , Acilação , Sequência de Aminoácidos , Substituição de Aminoácidos , Antibacterianos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Cloretos/química , Sequência Conservada , Cristalografia por Raios X , Inibidores Enzimáticos/química , Interações Hidrofóbicas e Hidrofílicas , Cinética , Moxalactam/metabolismo , Proteínas Mutantes/antagonistas & inibidores , Proteínas Mutantes/química , Proteínas Mutantes/isolamento & purificação , Proteínas Mutantes/metabolismo , Concentração Osmolar , Ligação Proteica , Conformação Proteica , Pseudomonas aeruginosa/enzimologia , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , beta-Lactamases/genética , beta-Lactamases/isolamento & purificação
17.
Proc Natl Acad Sci U S A ; 105(44): 16876-81, 2008 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-18971341

RESUMO

We solved the crystal structure of a secreted protein, EXLX1, encoded by the yoaJ gene of Bacillus subtilis. Its structure is remarkably similar to that of plant beta-expansins (group 1 grass pollen allergens), consisting of 2 tightly packed domains (D1, D2) with a potential polysaccharide-binding surface spanning the 2 domains. Domain D1 has a double-psi beta-barrel fold with partial conservation of the catalytic site found in family 45 glycosyl hydrolases and in the MltA family of lytic transglycosylases. Domain D2 has an Ig-like fold similar to group 2/3 grass pollen allergens, with structural features similar to a type A carbohydrate-binding domain. EXLX1 bound to plant cell walls, cellulose, and peptidoglycan, but it lacked lytic activity against a variety of plant cell wall polysaccharides and peptidoglycan. EXLX1 promoted plant cell wall extension similar to, but 10 times weaker than, plant beta-expansins, which synergistically enhanced EXLX1 activity. Deletion of the gene encoding EXLX1 did not affect growth or peptidoglycan composition of B. subtilis in liquid medium, but slowed lysis upon osmotic shock and greatly reduced the ability of the bacterium to colonize maize roots. The presence of EXLX1 homologs in a small but diverse set of plant pathogens further supports a role in plant-bacterial interactions. Because plant expansins have proved difficult to express in active form in heterologous systems, the discovery of a bacterial homolog opens the door for detailed structural studies of expansin function.


Assuntos
Bacillus subtilis/metabolismo , Proteínas de Bactérias/química , Raízes de Plantas/microbiologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Parede Celular/metabolismo , Cristalografia por Raios X , Genes Bacterianos , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Alinhamento de Sequência , Zea mays/metabolismo
18.
Biochemistry ; 49(30): 6411-9, 2010 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-20608745

RESUMO

The Actinomadura R39 DD-peptidase is a bacterial low molecular weight class C penicillin-binding protein. It has previously been shown to catalyze hydrolysis and aminolysis of small D-alanyl-D-alanine terminating peptides, especially those with a side chain that mimics the amino terminus of the stem peptide precursor to the bacterial cell wall. This paper describes the synthesis of (D-alpha-aminopimelylamino)-D-1-ethylboronic acid, designed to be a peptidoglycan-mimetic transition state analogue inhibitor of the R39 DD-peptidase. The boronate was found to be a potent inhibitor of the peptidase with a K(i) value of 32 +/- 6 nM. Since it binds some 30 times more strongly than the analogous peptide substrate, the boronate may well be a transition state analogue. A crystal structure of the inhibitory complex shows the boronate covalently bound to the nucleophilic active site Ser 49. The aminopimelyl side chain is bound into the site previously identified as specific for this moiety. One boronate oxygen is held in the oxyanion hole; the other, occupying the leaving group site of acylation or the nucleophile site of deacylation, appears to be hydrogen-bonded to the hydroxyl group of Ser 298. The Ser 49 oxygen appears to be hydrogen bonded to Lys 52. If it is assumed that this structure does resemble a high-energy tetrahedral intermediate in catalysis, it seems likely that Ser 298 participates as part of a proton transfer chain initiated by Lys 52 or Lys 410 as the primary proton donor/acceptor. The structure, therefore, supports a particular class of mechanism that employs this proton transfer device.


Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Ácidos Borônicos/síntese química , D-Ala-D-Ala Carboxipeptidase Tipo Serina/antagonistas & inibidores , D-Ala-D-Ala Carboxipeptidase Tipo Serina/química , Actinomycetales/enzimologia , Proteínas de Bactérias/química , Ácidos Borônicos/farmacologia , Catálise , Cristalografia por Raios X , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Ligação de Hidrogênio , Cinética , Mimetismo Molecular , Proteínas de Ligação às Penicilinas , Peptidoglicano/química , Prótons , Relação Estrutura-Atividade
19.
FEMS Microbiol Rev ; 32(2): 234-58, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18266856

RESUMO

Penicillin-binding proteins (PBPs) have been scrutinized for over 40 years. Recent structural information on PBPs together with the ongoing long-term biochemical experimental investigations, and results from more recent techniques such as protein localization by green fluorescent protein-fusion immunofluorescence or double-hybrid assay, have brought our understanding of the last stages of the peptidoglycan biosynthesis to an outstanding level that allows a broad outlook on the properties of these enzymes. Details are emerging regarding the interaction between the peptidoglycan-synthesizing PBPs and the peptidoglycan, their mesh net-like product that surrounds and protects bacteria. This review focuses on the detailed structure of PBPs and their implication in peptidoglycan synthesis, maturation and recycling. An overview of the content in PBPs of some bacteria is provided with an emphasis on comparing the biochemical properties of homologous PBPs (orthologues) belonging to different bacteria.


Assuntos
Bactérias/metabolismo , Proteínas de Ligação às Penicilinas/química , Proteínas de Ligação às Penicilinas/metabolismo , Peptidoglicano/biossíntese , Bactérias/química , Proteínas de Bactérias/química , Proteínas de Bactérias/classificação , Proteínas de Bactérias/metabolismo , Glicosiltransferases/química , Glicosiltransferases/metabolismo , Complexos Multienzimáticos/química , Complexos Multienzimáticos/classificação , Complexos Multienzimáticos/metabolismo , Proteínas de Ligação às Penicilinas/classificação , Peptídeo Hidrolases/química , Peptídeo Hidrolases/metabolismo , Peptidoglicano Glicosiltransferase/química , Peptidoglicano Glicosiltransferase/metabolismo , Peptidil Transferases/química , Peptidil Transferases/metabolismo , Estrutura Terciária de Proteína , beta-Lactamases/metabolismo , beta-Lactamas/farmacologia
20.
Biochemistry ; 48(47): 11252-63, 2009 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-19860471

RESUMO

The catalytic efficiency of the class D beta-lactamase OXA-10 depends critically on an unusual carboxylated lysine as the general base residue for both the enzyme acylation and deacylation steps of catalysis. Evidence is presented that the interaction between the indole group of Trp154 and the carboxylated lysine is essential for the stability of the posttranslationally modified Lys70. Substitution of Trp154 by Gly, Ala, or Phe yielded noncarboxylated enzymes which displayed poor catalytic efficiencies and reduced stability when compared to the wild-type OXA-10. The W154H mutant was partially carboxylated. In addition, the maximum values of k(cat) and k(cat)/K(M) were shifted toward pH 7, indicating that the carboxylation state of Lys70 is dependent on the protonation level of the histidine. A comparison of the three-dimensional structures of the different proteins also indicated that the Trp154 mutations did not modify the overall structures of OXA-10 but induced an increased flexibility of the Omega-loop in the active site. Finally, the deacylation-impaired W154A mutant was used to determine the structure of the acyl-enzyme complex with benzylpenicillin. These results indicate a role of the Lys70 carboxylation during the deacylation step and emphasize the importance of Trp154 for the ideal positioning of active site residues leading to an optimum activity.


Assuntos
Triptofano/metabolismo , beta-Lactamases/química , beta-Lactamases/metabolismo , Acilação , Substituição de Aminoácidos/genética , Varredura Diferencial de Calorimetria , Catálise , Domínio Catalítico , Cristalografia por Raios X , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Focalização Isoelétrica , Cinética , Conformação Proteica , Relação Estrutura-Atividade , Triptofano/genética , beta-Lactamases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA