Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
2.
Nature ; 555(7697): 497-501, 2018 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-29565365

RESUMO

Metal halide perovskites are of great interest for various high-performance optoelectronic applications. The ability to tune the perovskite bandgap continuously by modifying the chemical composition opens up applications for perovskites as coloured emitters, in building-integrated photovoltaics, and as components of tandem photovoltaics to increase the power conversion efficiency. Nevertheless, performance is limited by non-radiative losses, with luminescence yields in state-of-the-art perovskite solar cells still far from 100 per cent under standard solar illumination conditions. Furthermore, in mixed halide perovskite systems designed for continuous bandgap tunability (bandgaps of approximately 1.7 to 1.9 electronvolts), photoinduced ion segregation leads to bandgap instabilities. Here we demonstrate substantial mitigation of both non-radiative losses and photoinduced ion migration in perovskite films and interfaces by decorating the surfaces and grain boundaries with passivating potassium halide layers. We demonstrate external photoluminescence quantum yields of 66 per cent, which translate to internal yields that exceed 95 per cent. The high luminescence yields are achieved while maintaining high mobilities of more than 40 square centimetres per volt per second, providing the elusive combination of both high luminescence and excellent charge transport. When interfaced with electrodes in a solar cell device stack, the external luminescence yield-a quantity that must be maximized to obtain high efficiency-remains as high as 15 per cent, indicating very clean interfaces. We also demonstrate the inhibition of transient photoinduced ion-migration processes across a wide range of mixed halide perovskite bandgaps in materials that exhibit bandgap instabilities when unpassivated. We validate these results in fully operating solar cells. Our work represents an important advance in the construction of tunable metal halide perovskite films and interfaces that can approach the efficiency limits in tandem solar cells, coloured-light-emitting diodes and other optoelectronic applications.

3.
Nat Mater ; 16(8): 826-833, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28671663

RESUMO

Organic-inorganic halide perovskites (OIHPs) bring an unprecedented opportunity for radiation detection with their defect-tolerance nature, large mobility-lifetime product, and simple crystal growth from solution. Here we report a dopant compensation in alloyed OIHP single crystals to overcome limitations of device noise and charge collection, enabling γ-ray spectrum collection at room temperature. CH3NH3PbBr3 and CH3NH3PbCl3 are found to be p-type and n-type doped, respectively, whereas dopant-compensated CH3NH3PbBr2.94Cl0.06 alloy has over tenfold improved bulk resistivity of 3.6 × 109 Ω cm. Alloying also increases the hole mobility to 560 cm2 V-1 s-1, yielding a high mobility-lifetime product of 1.8 × 10-2 cm2 V-1. The use of a guard ring electrode in the detector reduces the crystal surface leakage current and device dark current. A distinguishable 137Cs energy spectrum with comparable or better resolution than standard scintillator detectors is collected under a small electric field of 1.8 V mm-1 at room temperature.

4.
Nat Mater ; 16(1): 115-120, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27698354

RESUMO

Metal halide perovskites such as methylammonium lead iodide (CH3NH3PbI3) are generating great excitement due to their outstanding optoelectronic properties, which lend them to application in high-efficiency solar cells and light-emission devices. However, there is currently debate over what drives the second-order electron-hole recombination in these materials. Here, we propose that the bandgap in CH3NH3PbI3 has a direct-indirect character. Time-resolved photo-conductance measurements show that generation of free mobile charges is maximized for excitation energies just above the indirect bandgap. Furthermore, we find that second-order electron-hole recombination of photo-excited charges is retarded at lower temperature. These observations are consistent with a slow phonon-assisted recombination pathway via the indirect bandgap. Interestingly, in the low-temperature orthorhombic phase, fast quenching of mobile charges occurs independent of the temperature and photon excitation energy. Our work provides a new framework to understand the optoelectronic properties of metal halide perovskites and analyse spectroscopic data.

5.
Angew Chem Int Ed Engl ; 57(39): 12765-12770, 2018 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-30088309

RESUMO

Despite their compositional versatility, most halide double perovskites feature large band gaps. Herein, we describe a strategy for achieving small band gaps in this family of materials. The new double perovskites Cs2 AgTlX6 (X=Cl (1) and Br (2)) have direct band gaps of 2.0 and 0.95 eV, respectively, which are approximately 1 eV lower than those of analogous perovskites. To our knowledge, compound 2 displays the lowest band gap for any known halide perovskite. Unlike in AI BII X3 perovskites, the band-gap transition in AI2 BB'X6 double perovskites can show substantial metal-to-metal charge-transfer character. This band-edge orbital composition is used to achieve small band gaps through the selection of energetically aligned B- and B'-site metal frontier orbitals. Calculations reveal a shallow, symmetry-forbidden region at the band edges for 1, which results in long (µs) microwave conductivity lifetimes. We further describe a facile self-doping reaction in 2 through Br2 loss at ambient conditions.

6.
J Am Chem Soc ; 139(14): 5015-5018, 2017 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-28353345

RESUMO

Halide double perovskites have recently been developed as less toxic analogs of the lead perovskite solar-cell absorbers APbX3 (A = monovalent cation; X = Br or I). However, all known halide double perovskites have large bandgaps that afford weak visible-light absorption. The first halide double perovskite evaluated as an absorber, Cs2AgBiBr6 (1), has a bandgap of 1.95 eV. Here, we show that dilute alloying decreases 1's bandgap by ca. 0.5 eV. Importantly, time-resolved photoconductivity measurements reveal long-lived carriers with microsecond lifetimes in the alloyed material, which is very promising for photovoltaic applications. The alloyed perovskite described herein is the first double perovskite to show comparable bandgap energy and carrier lifetime to those of (CH3NH3)PbI3. By describing how energy- and symmetry-matched impurity orbitals, at low concentrations, dramatically alter 1's band edges, we open a potential pathway for the large and diverse family of halide double perovskites to compete with APbX3 absorbers.

7.
J Am Chem Soc ; 137(51): 16043-8, 2015 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-26636183

RESUMO

Despite the unprecedented interest in organic-inorganic metal halide perovskite solar cells, quantitative information on the charge transfer dynamics into selective electrodes is still lacking. In this paper, we report the time scales and mechanisms of electron and hole injection and recombination dynamics at organic PCBM and Spiro-OMeTAD electrode interfaces. On the one hand, hole transfer is complete on the subpicosecond time scale in MAPbI3/Spiro-OMeTAD, and its recombination rate is similar to that in neat MAPbI3. This was found to be due to a high concentration of dark charges, i.e., holes brought about by unintentional p-type doping of MAPbI3. Hence, the total concentration of holes in the perovskite is hardly affected by optical excitation, which manifested as similar decay kinetics. On the other hand, the decay of the photoinduced conductivity in MAPbI3/PCBM is on the time scale of hundreds of picoseconds to several nanoseconds, due to electron injection into PCBM and electron-hole recombination at the interface occurring at similar rates. These results highlight the importance of understanding the role of dark carriers in deconvoluting the complex photophysical processes in these materials. Moreover, optimizing the preparation processes wherein undesired doping is minimized could prompt the use of organic molecules as a more viable electrode substitute for perovskite solar cell devices.

8.
J Am Chem Soc ; 136(14): 5189-92, 2014 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-24654882

RESUMO

Organometal halide perovskite-based solar cells have recently been reported to be highly efficient, giving an overall power conversion efficiency of up to 15%. However, much of the fundamental photophysical properties underlying this performance has remained unknown. Here, we apply photoluminescence, transient absorption, time-resolved terahertz and microwave conductivity measurements to determine the time scales of generation and recombination of charge carriers as well as their transport properties in solution-processed CH3NH3PbI3 perovskite materials. We found that electron-hole pairs are generated almost instantaneously after photoexcitation and dissociate in 2 ps forming highly mobile charges (25 cm(2) V(-1) s(-1)) in the neat perovskite and in perovskite/alumina blends; almost balanced electron and hole mobilities remain very high up to the microsecond time scale. When the perovskite is introduced into a TiO2 mesoporous structure, electron injection from perovskite to the metal oxide is efficient in less than a picosecond, but the lower intrinsic electron mobility of TiO2 leads to unbalanced charge transport. Microwave conductivity measurements showed that the decay of mobile charges is very slow in CH3NH3PbI3, lasting up to tens of microseconds. These results unravel the remarkable intrinsic properties of CH3NH3PbI3 perovskite material if used as light absorber and charge transport layer. Moreover, finding a metal oxide with higher electron mobility may further increase the performance of this class of solar cells.


Assuntos
Fontes de Energia Elétrica , Iodetos/química , Chumbo/química , Metilaminas/química , Energia Solar , Micro-Ondas , Fatores de Tempo
9.
Energy Environ Sci ; 17(11): 3832-3847, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38841317

RESUMO

The technique of alloying FA+ with Cs+ is often used to promote structural stabilization of the desirable α-FAPbI3 phase in halide perovskite devices. However, the precise mechanisms by which these alloying approaches improve the optoelectronic quality and enhance the stability have remained elusive. In this study, we advance that understanding by investigating the effect of cationic alloying in CsxFA1-xPbI3 perovskite thin-films and solar-cell devices. Selected-area electron diffraction patterns combined with microwave conductivity measurements reveal that fine Cs+ tuning (Cs0.15FA0.85PbI3) leads to a minimization of stacking faults and an increase in the photoconductivity of the perovskite films. Ultra-sensitive external quantum efficiency, kelvin-probe force microscopy and photoluminescence quantum yield measurements demonstrate similar Urbach energy values, comparable surface potential fluctuations and marginal impact on radiative emission yields, respectively, irrespective of Cs content. Despite this, these nanoscopic defects appear to have a detrimental impact on inter-grains'/domains' carrier transport, as evidenced by conductive-atomic force microscopy and corroborated by drastically reduced solar cell performance. Importantly, encapsulated Cs0.15FA0.85PbI3 devices show robust operational stability retaining 85% of the initial steady-state power conversion efficiency for 1400 hours under continuous 1 sun illumination at 35 °C, in open-circuit conditions. Our findings provide nuance to the famous defect tolerance of halide perovskites while providing solid evidence about the detrimental impact of these subtle structural imperfections on the long-term operational stability.

10.
J Phys Chem Lett ; 14(39): 8787-8795, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37747434

RESUMO

The preferential orientation of the perovskite (PVK) is typically accomplished by manipulation of the mixed cation/halide composition of the solution used for wet processing. However, for PVKs grown by thermal evaporation, this has been rarely addressed. It is unclear how variation in crystal orientation affects the optoelectronic properties of thermally evaporated films, including the charge carrier mobility, lifetime, and trap densities. In this study, we use different intermediate annealing temperatures Tinter between two sequential evaporation cycles to control the Cs0.15FA0.85PbI2.85Br0.15 orientation of the final PVK layer. XRD and 2D-XRD measurements reveal that when using no intermediate annealing primarily the (110) orientation is obtained, while when using Tinter = 100 °C a nearly isotropic orientation is found. Most interestingly for Tinter > 130 °C a highly oriented PVK (100) is formed. We found that although bulk electronic properties like photoconductivity are independent of the preferential orientation, surface related properties differ substantially. The highly oriented PVK (100) exhibits improved photoluminescence in terms of yield and lifetime. In addition, high spatial resolution mappings of the contact potential difference (CPD) as measured by KPFM for the highly oriented PVK show a more homogeneous surface potential distribution than those of the nonoriented PVK. These observations suggest that a highly oriented growth of thermally evaporated PVK is preferred to improve the charge extraction at the device level.

11.
Nano Lett ; 11(10): 4485-9, 2011 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-21939229

RESUMO

We show that in films of strongly coupled PbSe quantum dots multiple electron-hole pairs can be efficiently produced by absorption of a single photon (carrier multiplication). Moreover, in these films carrier multiplication leads to the generation of free, highly mobile charge carriers rather than excitons. Using the time-resolved microwave conductivity technique, we observed the production of more than three electron-hole pairs upon absorption of a single highly energetic photon (5.7E(g)). Free charge carriers produced via carrier multiplication are readily available for use in optoelectronic devices even without employing any complex donor/acceptor architecture or electric fields.

12.
Phys Chem Chem Phys ; 13(37): 16579-84, 2011 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-21863147

RESUMO

From a fundamental and application point of view it is of importance to understand how charge carrier generation and transport in a conjugated polymer (CP):fullerene blend are affected by the blend morphology. In this work light-induced electron spin resonance (LESR) spectra and transient ESR response signals are recorded on non-annealed and annealed blend layers consisting of alkyl substituted thieno[3,2-b]thiophene copolymers (pATBT) and the soluble fullerene derivative [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) at temperatures ranging from 10 to 180 K. Annealing of the blend sample leads to a reduction of the steady state concentration of light-induced PCBM anions within the blend at low temperatures (T = 10 K) and continuous illumination. This is explained on the basis of the reducing interfacial area of the blend composite on annealing, and the high activation energy for electron diffusion in PCBM blends leading to trapped electrons near the interface with the CP. As a consequence, these trapped electrons block consecutive electron transfer from an exciton on a CP to the PCBM domain, resulting in a relatively low concentration charge carriers in the annealed blend. Analysis of the transient ESR data allows us to conclude that in annealed samples diamagnetic bi-polaronic states on the CPs are generated at low temperature. The formation of these states is related to the generation and interaction of multiple positive polarons in the large crystalline polymer domains present in the annealed sample.


Assuntos
Fulerenos/química , Polímeros/química , Espectroscopia de Ressonância de Spin Eletrônica
13.
ACS Appl Mater Interfaces ; 13(14): 16309-16316, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33787206

RESUMO

Wide-band-gap perovskites such as methylammonium lead bromide (MAPB) are promising materials for tandem solar cells because of their potentially high open-circuit voltage, which is yet still far below the maximum limit. The relatively short charge-carrier lifetimes deduced from time-resolved photoluminescence (TRPL) measurements seem in strong contrast with the long lifetimes observed with time-resolved photoconductance measurements. This is explained by a large amount of hole defect states, NT > 1016 cm-3, in spin-coated layers of MAPB residing at or near the grain boundaries. The introduction of hypophosphorous acid (HPA) increases the average grain size by a factor of 3 and reduces the total concentration of the trap states by a factor of 10. The introduction of HPA also increases the fraction of initially generated holes that undergo charge transfer to the selective contact, Spiro-OMeTAD (SO), by an order of magnitude. In contrast to methylammonium lead iodide (MAPI)/SO bilayers, a reduction of the carrier lifetime is observed in MAPB/SO bilayers, which is attributed to the fact that injected holes undergo interfacial recombination via these trap states. Our findings provide valuable insight into the optoelectronic properties of bromide-containing lead halide perovskites essential for designing efficient tandem solar cells.

14.
ACS Energy Lett ; 5(1): 124-129, 2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31956696

RESUMO

In this contribution we demonstrate a solid-state approach to triplet-triplet annihilation upconversion for application in a solar cell device in which absorption of near-infrared light is followed by direct electron injection into an inorganic substrate. We use time-resolved microwave photoconductivity experiments to study the injection of electrons into the electron-accepting substrate (TiO2) in a trilayer device consisting of a triplet sensitizer (fluorinated zinc phthalocyanine), triplet acceptor (methyl subsituted perylenediimide), and smooth polycrystalline TiO2. Absorption of light at 700 nm leads to the almost quantitative generation of triplet excited states by intersystem crossing. This is followed by Dexter energy transfer to the triplet acceptor layer where triplet annihilation occurs and concludes by injection of an electron into TiO2 from the upconverted singlet excited state.

15.
Chem Commun (Camb) ; (16): 2163-5, 2009 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-19360180

RESUMO

Newly developed conjugated terthiophene surfactants are able to aggregate in water and to act as a host for hydrophobic chromophores, creating a multiple donor-acceptor energy transfer (ET) system by self-assembly.


Assuntos
Tiofenos/química , Água/química
16.
ACS Energy Lett ; 4(10): 2360-2367, 2019 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-31633033

RESUMO

The highest reported efficiencies of metal halide perovskite (MHP) solar cells are all based on mixed perovskites, such as (FA,MA,Cs)Pb(I1-x Br x )3. Despite demonstrated structural changes induced by light soaking, it is unclear how the charge carrier dynamics are affected across this entire material family. Here, various (FA,MA,Cs)Pb(I1-x Br x )3 perovskite films are light-soaked in nitrogen, and changes in optoelectronic properties are investigated through time-resolved microwave conductivity (TRMC) and optical and structural techniques. To fit the TRMC decay kinetics obtained for pristine (FA,MA,Cs)Pb(I1-x Br x )3 for various excitation densities, additional shallow states have to be included, which are not required for describing TRMC traces of single-cation MHPs. These shallow states can, independently of x, be removed by light soaking, which leads to a reduction in the imbalance between the diffusional motion of electrons and holes. We interpret the shallow states as a result of initially well-intermixed halide distributions, which upon light soaking segregate into domains with distinct band gaps.

17.
Nat Commun ; 10(1): 5342, 2019 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-31767841

RESUMO

Despite intense research into the optoelectronic properties of metal halide perovskites (MHPs), sub-bandgap absorption in MHPs remains largely unexplored. Here we recorded two-photon absorption spectra of MHPs using the time-resolved microwave conductivity technique. A two-step upward trend is observed in the two-photon absorption spectrum for methylammonium lead iodide, and some analogues, which implies that the commonly used scaling law is not applicable to MHPs. This aspect is further confirmed by temperature-dependent conductivity measurements. Using an empirical multiband tight binding model, spectra for methylammonium lead iodide were calculated by integration over the entire Brillouin zone, showing compelling similarity with experimental results. We conclude that the second upward trend in the two-photon absorption spectrum originates from additional optical transitions to the heavy and light electron bands formed by the strong spin-orbit coupling. Hence, valuable insight can be obtained in the opto-electronic properties of MHPs by sub-bandgap spectroscopy, complemented by modelling.

18.
J Phys Chem Lett ; 10(20): 6010-6018, 2019 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-31542932

RESUMO

Growing large, oriented grains of perovskite often leads to efficient devices, but it is unclear if properties of the grains are responsible for the efficiency. Domains observed in SEM are commonly misidentified with crystallographic grains, but SEM images do not provide diffraction information. We study methylammoinium lead iodide (MAPbI3) films fabricated via flash infrared annealing (FIRA) and the conventional antisolvent (AS) method by measuring grain size and orientation using electron back-scattered diffraction (EBSD) and studying how these affect optoelectronic properties such as local photoluminescence (PL), charge carrier lifetimes, and mobilities. We observe a local enhancement and shift of the PL emission at different regions of the FIRA clusters, but we observe no effect of crystal orientation on the optoelectronic properties. Additionally, despite substantial differences in grain size between the two systems, we find similar optoelectronic properties. These findings show that optoelectronic quality is not necessarily related to the orientation and size of crystalline domains.

19.
ACS Appl Energy Mater ; 2(11): 8010-8021, 2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31788664

RESUMO

Two of the key parameters that characterize the usefulness of organic semiconductors for organic or hybrid organic/inorganic solar cells are the mobility of charges and the diffusion length of excitons. Both parameters are strongly related to the supramolecular organization in the material. In this work we have investigated the relation between the solid-state molecular packing and the exciton diffusion length, charge carrier mobility, and charge carrier separation yield using two perylene diimide (PDI) derivatives which differ in their substitution. We have used the time-resolved microwave photoconductivity technique and measured charge carrier mobilities of 0.32 and 0.02 cm2/(Vs) and determined exciton diffusion lengths of 60 and 18 nm for octyl- and bulky hexylheptyl-imide substituted PDIs, respectively. This diffusion length is independent of substrate type and aggregate domain size. The differences in charge carrier mobility and exciton diffusion length clearly reflect the effect of solid-state packing of PDIs on their optoelectronic properties and show that significant improvements can be obtained by effectively controlling the solid-state packing.

20.
J Phys Chem Lett ; 10(17): 5128-5134, 2019 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-31398042

RESUMO

Recently, several studies have investigated dielectric properties as a possible origin of the exceptional optoelectronic properties of metal halide perovskites (MHPs). In this study we investigated the temperature-dependent dielectric behavior of different MHP films at different frequencies. In the gigahertz regime, dielectric losses in methylammonium-based samples are dominated by the rotational dynamics of the organic cation. Upon increasing the temperature from 160 to 300 K, the rotational relaxation time, τ, decreases from 400 (200) to 6 (1) ps for MAPb-I3 (-Br3). By contrast, we found negligible temperature-dependent variations in τ for a mixed cation/mixed halide FA0.85MA0.15Pb(I0.85Br0.15)3. From temperature-dependent time-resolved microwave conductance measurements we conclude that the dipolar reorientation of the MA cation does not affect charge carrier mobility and lifetime in MHPs. Therefore, charge carriers do not feel the relatively slow-moving MA cations, despite their great impact on the dielectric constants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA