Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Development ; 151(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38682273

RESUMO

Neurulation is a highly synchronized biomechanical process leading to the formation of the brain and spinal cord, and its failure leads to neural tube defects (NTDs). Although we are rapidly learning the genetic mechanisms underlying NTDs, the biomechanical aspects are largely unknown. To understand the correlation between NTDs and tissue stiffness during neural tube closure (NTC), we imaged an NTD murine model using optical coherence tomography (OCT), Brillouin microscopy and confocal fluorescence microscopy. Here, we associate structural information from OCT with local stiffness from the Brillouin signal of embryos undergoing neurulation. The stiffness of neuroepithelial tissues in Mthfd1l null embryos was significantly lower than that of wild-type embryos. Additionally, exogenous formate supplementation improved tissue stiffness and gross embryonic morphology in nullizygous and heterozygous embryos. Our results demonstrate the significance of proper tissue stiffness in normal NTC and pave the way for future studies on the mechanobiology of normal and abnormal embryonic development.


Assuntos
Tubo Neural , Neurulação , Tomografia de Coerência Óptica , Animais , Feminino , Camundongos , Fenômenos Biomecânicos , Embrião de Mamíferos/metabolismo , Formiato-Tetra-Hidrofolato Ligase/genética , Formiato-Tetra-Hidrofolato Ligase/metabolismo , Formiatos/metabolismo , Metilenotetra-Hidrofolato Desidrogenase (NADP)/genética , Metilenotetra-Hidrofolato Desidrogenase (NADP)/metabolismo , Camundongos Knockout , Microscopia Confocal , Mutação/genética , Tubo Neural/metabolismo , Defeitos do Tubo Neural/genética , Defeitos do Tubo Neural/metabolismo , Defeitos do Tubo Neural/patologia , Neurulação/genética , Tomografia de Coerência Óptica/métodos
2.
Nat Methods ; 20(5): 677-681, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36894684

RESUMO

Brillouin microscopy is a technique for mechanical characterization of biological material without contact at high three-dimensional resolution. Here, we introduce dual line-scanning Brillouin microscopy (dLSBM), which improves acquisition speed and reduces irradiation dose by more than one order of magnitude with selective illumination and single-shot analysis of hundreds of points along the incident beam axis. Using tumor spheroids, we demonstrate the ability to capture the sample response to rapid mechanical perturbations as well as the spatially resolved evolution of the mechanical properties in growing spheroids.


Assuntos
Iluminação , Neoplasias , Humanos , Microscopia Confocal/métodos
3.
Dev Dyn ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38501709

RESUMO

BACKGROUND: The brain and spinal cord formation is initiated in the earliest stages of mammalian pregnancy in a highly organized process known as neurulation. Environmental or genetic interferences can impair neurulation, resulting in clinically significant birth defects known collectively as neural tube defects. The Fuz gene encodes a subunit of the CPLANE complex, a macromolecular planar polarity effector required for ciliogenesis. Ablation of Fuz in mouse embryos results in exencephaly and spina bifida, including dysmorphic craniofacial structures due to defective cilia formation and impaired Sonic Hedgehog signaling. RESULTS: We demonstrate that knocking Fuz out during embryonic mouse development results in a hypoplastic hindbrain phenotype, displaying abnormal rhombomeres with reduced length and width. This phenotype is associated with persistent reduction of ventral neuroepithelial stiffness in a notochord adjacent area at the level of the rhombomere 5. The formation of cranial and paravertebral ganglia is also impaired in these embryos. CONCLUSIONS: This study reveals that hypoplastic hindbrain development, identified by abnormal rhombomere morphology and persistent loss of ventral neuroepithelial stiffness, precedes exencephaly in Fuz ablated murine mutants, indicating that the gene Fuz has a critical function sustaining normal neural tube development and neuronal differentiation.

4.
Ophthalmology ; 131(3): 310-321, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37839561

RESUMO

PURPOSE: To characterize focal biomechanical alterations in subclinical keratoconus (SKC) using motion-tracking (MT) Brillouin microscopy and evaluate the ability of MT Brillouin metrics to differentiate eyes with SKC from normal control eyes. DESIGN: Prospective cross-sectional study. PARTICIPANTS: Thirty eyes from 30 patients were evaluated, including 15 eyes from 15 bilaterally normal patients and 15 eyes with SKC from 15 patients. METHODS: All patients underwent Scheimpflug tomography and MT Brillouin microscopy using a custom-built device. Mean and minimum MT Brillouin values within the anterior plateau region and anterior 150 µm were generated. Scheimpflug metrics evaluated included inferior-superior (IS) value, maximum keratometry (Kmax), thinnest corneal thickness, asymmetry indices, Belin/Ambrosio display total deviation, and Ambrosio relational thickness. Receiver operating characteristic (ROC) curves were generated for all Scheimpflug and MT Brillouin metrics evaluated to determine the area under the ROC curve (AUC), sensitivity, and specificity for each variable. MAIN OUTCOME MEASURES: Discriminative performance based on AUC, sensitivity, and specificity. RESULTS: No significant differences were found between groups for age, sex, manifest refraction spherical equivalent, corrected distance visual acuity, Kmax, or KISA% index. Among Scheimpflug metrics, significant differences were found between groups for thinnest corneal thickness (556 µm vs. 522 µm; P < 0.001), IS value (0.29 diopter [D] vs. 1.05 D; P < 0.001), index of vertical asymmetry (IVA; 0.10 vs. 0.19; P < 0.001), and keratoconus index (1.01 vs. 1.05; P < 0.001), and no significant differences were found for any other Scheimpflug metric. Among MT Brillouin metrics, clear differences were found between control eyes and eyes with SKC for mean plateau (5.71 GHz vs. 5.68 GHz; P < 0.0001), minimum plateau (5.69 GHz vs. 5.65 GHz; P < 0.0001), mean anterior 150 µm (5.72 GHz vs. 5.68 GHz; P < 0.0001), and minimum anterior 150 µm (5.70 GHz vs. 5.66 GHz; P < 0.001). All MT Brillouin plateau and anterior 150 µm mean and minimum metrics fully differentiated groups (AUC, 1.0 for each), whereas the best performing Scheimpflug metrics were keratoconus index (AUC, 0.91), IS value (AUC, 0.89), and IVA (AUC, 0.88). CONCLUSIONS: Motion-tracking Brillouin microscopy metrics effectively characterize focal corneal biomechanical alterations in eyes with SKC and clearly differentiated these eyes from control eyes, including eyes that were not differentiated accurately using Scheimpflug metrics. FINANCIAL DISCLOSURE(S): Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.


Assuntos
Ceratocone , Humanos , Ceratocone/diagnóstico , Topografia da Córnea/métodos , Microscopia , Estudos Transversais , Estudos Prospectivos , Paquimetria Corneana
5.
Opt Express ; 32(11): 18572-18581, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38859010

RESUMO

Brillouin spectrometers, used for characterizing material mechanical properties, traditionally employ etalons such as Fabry-Pérot interferometers and virtually imaged phased arrays (VIPA) that use spatial dispersion of the spectrum for measurement. Here, we introduce what we believe to be a novel approach to Brillouin spectroscopy using hot atomic vapors. Using laser induced circular dichroism of the rubidium D2 line in a ladder-type configuration, we developed a narrow-band monochromator for Brillouin analysis. Unlike etalon-based spectrometers, atomic line monochromators operate in free-space, facilitating Brillouin spectroscopy integration with microscopy instruments. We report the transmission and spectral resolution performances of the spectrometer and demonstrate Brillouin spectra measurements in liquids.

6.
Biomacromolecules ; 25(2): 955-963, 2024 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-38156622

RESUMO

Even though the physical nature of shear and longitudinal moduli are different, empirical correlations between them have been reported in several biological systems. This correlation is of fundamental interest and immense practical value in biomedicine due to the importance of the shear modulus and the possibility to map the longitudinal modulus at high-resolution with all-optical spectroscopy. We investigate the origin of such a correlation in hydrogels. We hypothesize that both moduli are influenced in the same direction by underlying physicochemical properties, which leads to the observed material-dependent correlation. Matching theoretical models with experimental data, we quantify the scenarios in which the correlation holds. For polymerized hydrogels, a correlation was found across different hydrogels through a common dependence on the effective polymer volume fraction. For hydrogels swollen to equilibrium, the correlation is valid only within a given hydrogel system, as the moduli are found to have different scalings on the swelling ratio. The observed correlation allows one to extract one modulus from another in relevant scenarios.


Assuntos
Hidrogéis , Polímeros , Hidrogéis/química , Polímeros/química , Análise Espectral , Modelos Teóricos , Viscosidade
7.
Opt Express ; 31(3): 4334-4346, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36785404

RESUMO

Spectral imaging techniques extract spectral information using dispersive elements in combination with optical microscopes. For rapid acquisition, multiplexing spectral information along one dimension of imaged pixels has been demonstrated in hyperspectral imaging, as well as in Raman and Brillouin imaging. Full-field spectroscopy, i.e., multiplexing where imaged pixels are collected in 2D simultaneously while spectral analysis is performed sequentially, can increase spectral imaging speed, but so far has been attained at low spectral resolutions. Here, we extend 2D multiplexing to high spectral resolutions of ∼80 MHz (∼0.0001 nm) using high-throughput spectral discrimination based on atomic transitions.

8.
Biophys J ; 121(19): 3586-3599, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36059196

RESUMO

The mechanical phenotype of the cell is critical for survival following deformations due to confinement and fluid flow. One idea is that cancer cells are plastic and adopt different mechanical phenotypes under different geometries that aid in their survival. Thus, an attractive goal is to disrupt cancer cells' ability to adopt multiple mechanical states. To begin to address this question, we aimed to quantify the diversity of these mechanical states using in vitro biomimetics to mimic in vivo two-dimensional (2D) and 3D extracellular matrix environments. Here, we used two modalities Brillouin microscopy (∼GHz) and broadband frequency (7-15 kHz) optical tweezer microrheology to measure microscale cell mechanics. We measured the response of intracellular mechanics of cancer cells cultured in 2D and 3D environments where we modified substrate stiffness, dimensionality (2D versus 3D), and presence of fibrillar topography. We determined that there was good agreement between two modalities despite the difference in timescale of the two measurements. These findings on cell mechanical phenotype in different environments confirm a correlation between modalities that employ different mechanisms at different temporal scales (Hz-kHz versus GHz). We also determined that observed heterogeneity in cell shape is more closely linked to the cells' mechanical state. Moreover, individual cells in multicellular spheroids exhibit a lower degree of mechanical heterogeneity when compared with single cells cultured in monodisperse 3D cultures. The observed decreased heterogeneity among cells in spheroids suggested that there is mechanical cooperativity between cells that make up a single spheroid.


Assuntos
Neoplasias , Esferoides Celulares , Biomimética , Matriz Extracelular , Plásticos
9.
Opt Lett ; 47(6): 1347-1350, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35290310

RESUMO

To understand the dynamics of tissue stiffness during neural tube formation and closure in a murine model, we have developed a multimodal, coaligned imaging system combining optical coherence tomography (OCT) and Brillouin microscopy. Brillouin microscopy can map the longitudinal modulus of tissue but cannot provide structural images. Thus, it is limited for imaging dynamic processes such as neural tube formation and closure. To overcome this limitation, we have combined Brillouin microscopy and OCT in one coaligned instrument. OCT provided depth-resolved structural imaging with a micrometer-scale spatial resolution to guide stiffness mapping by Brillouin modality. 2D structural and Brillouin frequency shift maps were acquired of mouse embryos at gestational day (GD) 8.5, 9.5, and 10.5 with the multimodal system. The results demonstrate the capability of the system to obtain structural and stiffness information simultaneously.


Assuntos
Microscopia , Tomografia de Coerência Óptica , Animais , Camundongos , Microscopia/métodos , Imagem Multimodal , Tubo Neural , Tomografia de Coerência Óptica/métodos
11.
Opt Lett ; 46(4): 781-784, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33577513

RESUMO

Spectral contrast, the ability to measure frequency components of vastly different intensity, is critical in optical spectroscopy. For high spectral contrast at high spectral resolution, scanning etalons are generally used, as they allow cascading multiple dispersive elements. However, scanning instruments are inherently limited in terms of acquisition speed. Here we report a single-shot cascaded spectrometer design, in which light is dispersed along a single dispersion direction at every stage and thus can be recirculated in the same etalon multiple times. Using this design principle, we demonstrate single-shot spectral measurements at sub-gigahertz resolution and unprecedented spectral contrast (∼80dB).

12.
Small ; 16(18): e1907688, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32243075

RESUMO

The mechanical properties of the cellular nucleus are extensively studied as they play a critical role in important processes, such as cell migration, gene transcription, and stem cell differentiation. While the mechanical properties of the isolated nucleus have been tested, there is a lack of measurements about the mechanical behavior of the nucleus within intact cells and specifically about the interplay of internal nuclear components with the intracellular microenvironment, because current testing methods are based on contact and only allow studying the nucleus after isolation from a cell or disruption of cytoskeleton. Here, all-optical Brillouin microscopy and 3D chemomechanical modeling are used to investigate the regulation of nuclear mechanics in physiological conditions. It is observed that the nuclear modulus can be modulated by epigenetic regulation targeting internal nuclear nanostructures such as lamin A/C and chromatin. It is also found that nuclear modulus is strongly regulated by cytoskeletal behavior through a robust mechanism conserved in different culturing conditions. Given the active role of cytoskeletal modulation in nearly all cell functions, this work will enable to reveal highly relevant mechanisms of nuclear mechanical regulations in physiological and pathological conditions.


Assuntos
Núcleo Celular , Citoesqueleto , Epigênese Genética , Nanoestruturas , Citoplasma
13.
Plant Physiol ; 181(1): 127-141, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31363005

RESUMO

Simple plant cell morphologies, such as cylindrical shoot cells, are determined by the extensibility pattern of the primary cell wall, which is thought to be largely dominated by cellulose microfibrils, but the mechanism leading to more complex shapes, such as the interdigitated patterns in the epidermis of many eudicotyledon leaves, is much less well understood. Details about the manner in which cell wall polymers at the periclinal wall regulate the morphogenetic process in epidermal pavement cells and mechanistic information about the initial steps leading to the characteristic undulations in the cell borders are elusive. Here, we used genetics and recently developed cell mechanical and imaging methods to study the impact of the spatio-temporal dynamics of cellulose and homogalacturonan pectin distribution during lobe formation in the epidermal pavement cells of Arabidopsis (Arabidopsis thaliana) cotyledons. We show that nonuniform distribution of cellulose microfibrils and demethylated pectin coincides with spatial differences in cell wall stiffness but may intervene at different developmental stages. We also show that lobe period can be reduced when demethyl-esterification of pectins increases under conditions of reduced cellulose crystallinity. Our data suggest that lobe initiation involves a modulation of cell wall stiffness through local enrichment in demethylated pectin, whereas subsequent increase in lobe amplitude is mediated by the stress-induced deposition of aligned cellulose microfibrils. Our results reveal a key role of noncellulosic polymers in the biomechanical regulation of cell morphogenesis.


Assuntos
Arabidopsis/metabolismo , Celulose/metabolismo , Pectinas/metabolismo , Arabidopsis/crescimento & desenvolvimento , Fenômenos Biomecânicos , Parede Celular/metabolismo , Cotilédone/crescimento & desenvolvimento , Cotilédone/metabolismo , Esterificação , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo
14.
Ophthalmology ; 131(5): e23-e24, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38219143
15.
Phys Rev Lett ; 122(10): 103901, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30932682

RESUMO

We developed a microscopy technique that can measure the local refractive index without sampling the optical phase delay of the electromagnetic radiation. To do this, we designed and experimentally demonstrated a setup with two colocalized Brillouin scattering interactions that couple to a common acoustic phonon axis; in this scenario, the ratio of Brillouin frequency shifts depends on the refractive index, but not on any other mechanical and/or optical properties of the sample. Integrating the spectral measurement within a confocal microscope, the refractive index is mapped at micron-scale three-dimensional resolution. As the refractive index is probed in epidetection and without assumptions on the geometrical dimensions of the sample, this method may prove useful to characterize biological cells and tissues.

16.
Nat Methods ; 12(12): 1132-4, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26436482

RESUMO

Current measurements of the biomechanical properties of cells require physical contact with cells or lack subcellular resolution. Here we developed a label-free microscopy technique based on Brillouin light scattering that is capable of measuring an intracellular longitudinal modulus with optical resolution. The 3D Brillouin maps we obtained of cells in 2D and 3D microenvironments revealed mechanical changes due to cytoskeletal modulation and cell-volume regulation.


Assuntos
Citoesqueleto/química , Matriz Extracelular/química , Microscopia Confocal/métodos , Animais , Fenômenos Biomecânicos , Tamanho Celular , Citoesqueleto/ultraestrutura , Módulo de Elasticidade , Matriz Extracelular/ultraestrutura , Imageamento Tridimensional , Camundongos , Microscopia Confocal/instrumentação , Células NIH 3T3 , Pressão Osmótica
17.
Opt Express ; 26(26): 33865-33877, 2018 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-30650818

RESUMO

Adaptive optics systems have been integrated in many imaging modalities in order to correct for aberrations that are introduced by samples and optical elements. Usually, the optical system has access to a guide star (i.e., a point-like structure that is smaller than the diffraction limit). This guide star can be used as a beacon for adaptive optics enhancement. In contrast, for spectroscopy and densely-labeled fluorescent samples, the signal is diffused throughout the entire beam path and is not confined to a well-defined point-like structure. Here, we show analytically and experimentally that, in these scenarios, adaptive optics systems are expected to yield significantly lower signal enhancement than when a guide star is available. We discuss adaptive optics' performance degradation for different imaging modalities (e.g., confocal, multi-photon microscopy) and identify solutions to overcome low signal enhancements.

18.
Biomacromolecules ; 19(2): 364-373, 2018 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-29244943

RESUMO

The growing importance of hydrogels in translational medicine has stimulated the development of top-down fabrication methods, yet often these methods lack the capabilities to generate the complex matrix architectures observed in biology. Here we show that temporally varying electrical signals can cue a self-assembling polysaccharide to controllably form a hydrogel with complex internal patterns. Evidence from theory and experiment indicate that internal structure emerges through a subtle interplay between the electrical current that triggers self-assembly and the electrical potential (or electric field) that recruits and appears to orient the polysaccharide chains at the growing gel front. These studies demonstrate that short sequences (minutes) of low-power (∼1 V) electrical inputs can provide the program to guide self-assembly that yields hydrogels with stable, complex, and spatially varying structure and properties.


Assuntos
Eletricidade , Hidrogéis/química , Polimerização , Quitosana/análogos & derivados
19.
Adv Exp Med Biol ; 1092: 351-364, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30368760

RESUMO

In the past decades, there has been increased awareness that mechanical properties of tissues and cells are closely associated with disease physiology and pathology. Recognizing this importance, Brillouin spectroscopy instrumentation, already utilized in physics and material science, has been adopted for cell and tissue biomechanics. For biomedical applications, progress of Brillouin spectrometer technology has been crucial, mainly improvement in the acquisition speed and combination with confocal microscopy, to enable measurement of material longitudinal modulus in three dimensions with high spatial resolution. Micron spatial resolution and high sensitivity allow mapping intracellular modulus and distinguishing between nuclear and cytoplasmic mechanical properties as well as detecting changes due to perturbations of individual cellular components. In cancer, environmental mechanical factors and intracellular mechanics are expected to play an integral role in cancer progression and treatment success. Brillouin confocal microscopy is appealing for many studies in cancer mechanobiology involving both primary tumors and metastatic dissemination. Specifically, Brillouin technology is suitable for experimental scenarios where noncontact mechanical measurements are required such as 3D tumor models, interactions with the extracellular matrix (ECM), investigation of nuclear mechanical properties, or analysis of cells within microfluidic chips.


Assuntos
Núcleo Celular , Citoplasma , Matriz Extracelular , Microscopia Confocal/métodos , Humanos , Dispositivos Lab-On-A-Chip , Neoplasias/patologia , Análise Espectral
20.
Phys Biol ; 14(6): 065006, 2017 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-28406094

RESUMO

Cells in the central nervous system (CNS) respond to the stiffness of their environment. CNS tissue is mechanically highly heterogeneous, thus providing motile cells with region-specific mechanical signals. While CNS mechanics has been measured with a variety of techniques, reported values of tissue stiffness vary greatly, and the morphological structures underlying spatial changes in tissue stiffness remain poorly understood. We here exploited two complementary techniques, contact-based atomic force microscopy and contact-free Brillouin microscopy, to determine the mechanical properties of ruminant retinae, which are built up by different tissue layers. As in all vertebrate retinae, layers of high cell body densities ('nuclear layers') alternate with layers of low cell body densities ('plexiform layers'). Different tissue layers varied significantly in their mechanical properties, with the photoreceptor layer being the stiffest region of the retina, and the inner plexiform layer belonging to the softest regions. As both techniques yielded similar results, our measurements allowed us to calibrate the Brillouin microscopy measurements and convert the Brillouin shift into a quantitative assessment of elastic tissue stiffness with optical resolution. Similar as in the mouse spinal cord and the developing Xenopus brain, we found a strong correlation between nuclear densities and tissue stiffness. Hence, the cellular composition of retinae appears to strongly contribute to local tissue stiffness, and Brillouin microscopy shows a great potential for the application in vivo to measure the mechanical properties of transparent tissues.


Assuntos
Retina/fisiologia , Carneiro Doméstico/fisiologia , Animais , Fenômenos Biomecânicos , Módulo de Elasticidade , Microscopia de Força Atômica/métodos , Reprodutibilidade dos Testes , Retina/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA