Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Cell ; 146(5): 813-25, 2011 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-21884939

RESUMO

Phytochrome A (phyA) is the only photoreceptor in plants, initiating responses in far-red light and, as such, essential for survival in canopy shade. Although the absorption and the ratio of active versus total phyA are maximal in red light, far-red light is the most efficient trigger of phyA-dependent responses. Using a joint experimental-theoretical approach, we unravel the mechanism underlying this shift of the phyA action peak from red to far-red light and show that it relies on specific molecular interactions rather than on intrinsic changes to phyA's spectral properties. According to our model, the dissociation rate of the phyA-FHY1/FHL nuclear import complex is a principle determinant of the phyA action peak. The findings suggest how higher plants acquired the ability to sense far-red light from an ancestral photoreceptor tuned to respond to red light.


Assuntos
Transporte Ativo do Núcleo Celular , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fitocromo A/metabolismo , Arabidopsis/citologia , Proteínas de Arabidopsis/genética , Núcleo Celular/metabolismo , Luz , Modelos Biológicos , Fitocromo A/genética
2.
New Phytol ; 225(4): 1635-1650, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31596952

RESUMO

Phytochrome B (phyB) is an excellent light quality and quantity sensor that can detect subtle changes in the light environment. The relative amounts of the biologically active photoreceptor (phyB Pfr) are determined by the light conditions and light independent thermal relaxation of Pfr into the inactive phyB Pr, termed thermal reversion. Little is known about the regulation of thermal reversion and how it affects plants' light sensitivity. In this study we identified several serine/threonine residues on the N-terminal extension (NTE) of Arabidopsis thaliana phyB that are differentially phosphorylated in response to light and temperature, and examined transgenic plants expressing nonphosphorylatable and phosphomimic phyB mutants. The NTE of phyB is essential for thermal stability of the Pfr form, and phosphorylation of S86 particularly enhances the thermal reversion rate of the phyB Pfr-Pr heterodimer in vivo. We demonstrate that S86 phosphorylation is especially critical for phyB signaling compared with phosphorylation of the more N-terminal residues. Interestingly, S86 phosphorylation is reduced in light, paralleled by a progressive Pfr stabilization under prolonged irradiation. By investigating other phytochromes (phyD and phyE) we provide evidence that acceleration of thermal reversion by phosphorylation represents a general mechanism for attenuating phytochrome signaling.


Assuntos
Arabidopsis/metabolismo , Fitocromo B/metabolismo , Sequência de Aminoácidos , Apoproteínas/genética , Apoproteínas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fosforilação , Fitocromo/genética , Fitocromo/metabolismo , Fitocromo B/genética , Plantas Geneticamente Modificadas , Transdução de Sinais
3.
New Phytol ; 211(2): 584-98, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27027866

RESUMO

The photoreceptor phytochrome A acts as a light-dependent molecular switch and regulates responses initiated by very low fluences of light (VLFR) and high fluences (HIR) of far-red light. PhyA is expressed ubiquitously, but how phyA signaling is orchestrated to regulate photomorphogenesis is poorly understood. To address this issue, we generated transgenic Arabidopsis thaliana phyA-201 mutant lines expressing the biologically active phyA-YFP photoreceptor in different tissues, and analyzed the expression of several reporter genes, including ProHY5:HY5-GFP and Pro35S:CFP-PIF1, and various FR-HIR-dependent physiological responses. We show that phyA action in one tissue is critical and sufficient to regulate flowering time and root growth; control of cotyledon and hypocotyl growth requires simultaneous phyA activity in different tissues; and changes detected in the expression of reporters are not restricted to phyA-containing cells. We conclude that FR-HIR-controlled morphogenesis in Arabidopsis is mediated partly by tissue-specific and partly by intercellular signaling initiated by phyA. Intercellular signaling is critical for many FR-HIR induced responses, yet it appears that phyA modulates the abundance and activity of key regulatory transcription factors in a tissue-autonomous fashion.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/efeitos da radiação , Luz , Morfogênese/efeitos da radiação , Especificidade de Órgãos , Fitocromo A/metabolismo , Transdução de Sinais/efeitos da radiação , Arabidopsis/genética , Flores/fisiologia , Flores/efeitos da radiação , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Células do Mesofilo/citologia , Células do Mesofilo/metabolismo , Especificidade de Órgãos/efeitos da radiação , Fenótipo , Fototropismo , Estômatos de Plantas/citologia , Estômatos de Plantas/metabolismo , Plantas Geneticamente Modificadas , Proteólise/efeitos da radiação , Proteínas Recombinantes de Fusão/metabolismo , Plântula/metabolismo , Transcrição Gênica/efeitos da radiação
4.
Plant Cell ; 25(2): 535-44, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23378619

RESUMO

The photoreceptor phytochrome B (phyB) interconverts between the biologically active Pfr (λmax = 730 nm) and inactive Pr (λmax = 660 nm) forms in a red/far-red-dependent fashion and regulates, as molecular switch, many aspects of light-dependent development in Arabidopsis thaliana. phyB signaling is launched by the biologically active Pfr conformer and mediated by specific protein-protein interactions between phyB Pfr and its downstream regulatory partners, whereas conversion of Pfr to Pr terminates signaling. Here, we provide evidence that phyB is phosphorylated in planta at Ser-86 located in the N-terminal domain of the photoreceptor. Analysis of phyB-9 transgenic plants expressing phospho-mimic and nonphosphorylatable phyB-yellow fluorescent protein (YFP) fusions demonstrated that phosphorylation of Ser-86 negatively regulates all physiological responses tested. The Ser86Asp and Ser86Ala substitutions do not affect stability, photoconversion, and spectral properties of the photoreceptor, but light-independent relaxation of the phyB(Ser86Asp) Pfr into Pr, also termed dark reversion, is strongly enhanced both in vivo and in vitro. Faster dark reversion attenuates red light-induced nuclear import and interaction of phyB(Ser86Asp)-YFP Pfr with the negative regulator PHYTOCHROME INTERACTING FACTOR3 compared with phyB-green fluorescent protein. These data suggest that accelerated inactivation of the photoreceptor phyB via phosphorylation of Ser-86 represents a new paradigm for modulating phytochrome-controlled signaling.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Fitocromo B/metabolismo , Transdução de Sinais , Proteínas de Arabidopsis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Escuridão , Luz , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Fosforilação , Fitocromo B/genética , Plantas Geneticamente Modificadas/metabolismo , Estabilidade Proteica , Estrutura Terciária de Proteína , Plântula/genética , Plântula/crescimento & desenvolvimento , Serina/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
5.
New Phytol ; 206(3): 965-71, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-26042244

RESUMO

The photoreceptors phytochromes monitor the red/far-red part of the spectrum, exist in the biologically active Pfr (far-red absorbing) or inactive Pr (red absorbing) forms, and function as red/far-red light-regulated molecular switches to modulate plant development and growth. Phytochromes are synthesized in the cytoplasm, and light induces translocation of the Pfr conformer into the nucleus. Nuclear import of phytochromes is a highly regulated process and is fine-tuned by the quality and quantity of light. It appears that phytochrome A (phyA) and phytochrome B (phyB) do not possess active endogenous nuclear import signals (NLSs), thus light-induced translocation of these photoreceptors into the nucleus requires direct protein­protein interactions with their NLS-containing signaling partners. Sub-cellular partitioning of the various phytochrome species is mediated by different molecular machineries. Translocation of phyA into the nucleus is promoted by FAR-RED ELONGATED HYPOCOTYL 1 (FHY1) and FHY1-LIKE (FHL), but the identity of nuclear transport facilitators mediating the import of phyB-E into the nucleus remains elusive. Phytochromes localized in the nucleus are associated with specific protein complexes, termed photobodies. The size and distribution of these structures are regulated by the intensity and duration of irradiation, and circumstantial evidence indicates that they are involved in fine-tuning phytochrome signaling.


Assuntos
Transdução de Sinal Luminoso , Fitocromo/metabolismo , Plantas/metabolismo , Transporte Biológico , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Fitocromo/fisiologia , Desenvolvimento Vegetal/efeitos da radiação , Plantas/efeitos da radiação
6.
Proc Natl Acad Sci U S A ; 109(15): 5892-7, 2012 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-22451940

RESUMO

Phytochromes (phy) are red/far-red-absorbing photoreceptors that regulate the adaption of plant growth and development to changes in ambient light conditions. The nuclear transport of the phytochromes upon light activation is regarded as a key step in phytochrome signaling. Although nuclear import of phyA is regulated by the transport facilitators far red elongated hypocotyl 1 (FHY1) and fhy1-like, an intrinsic nuclear localization signal was proposed to be involved in the nuclear accumulation of phyB. We recently showed that nuclear import of phytochromes can be analyzed in a cell-free system consisting of isolated nuclei of the unicellular green algae Acetabularia acetabulum. We now show that this system is also versatile to elucidate the mechanism of the nuclear transport of phyB. We tested the nuclear transport characteristics of full-length phyB as well as N- and C-terminal phyB fragments in vitro and showed that the nuclear import of phyB can be facilitated by phytochrome-interacting factor 3 (PIF3). In vivo measurements of phyB nuclear accumulation in the absence of PIF1, -3, -4, and -5 indicate that these PIFs are the major transport facilitators during the first hours of deetiolation. Under prolonged irradiations additional factors might be responsible for phyB nuclear transport in the plant.


Assuntos
Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Núcleo Celular/metabolismo , Fitocromo B/metabolismo , Acetabularia/metabolismo , Transporte Ativo do Núcleo Celular , Arabidopsis/metabolismo , Sinais de Localização Nuclear , Ligação Proteica , Proteínas Recombinantes de Fusão/metabolismo
7.
Photochem Photobiol Sci ; 13(12): 1671-9, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25297540

RESUMO

Low-temperature fluorescence investigations of phyA-GFP used in experiments on its nuclear-cytoplasmic partitioning were carried out. In etiolated hypocotyls of phyA-deficient Arabidopsis thaliana expressing phyA-GFP, it was found that it is similar to phyA in spectroscopic parameters with both its native types, phyA' and phyA'', present and their ratio shifted towards phyA'. In transgenic tobacco hypocotyls, native phyA and rice phyA-GFP were also identical to phyA in the wild type whereas phyA-GFP belonged primarily to the phyA' type. Finally, truncated oat Δ6-12 phyA-GFP expressed in phyA-deficient Arabidopsis was represented by the phyA' type in contrast to full-length oat phyA-GFP with an approximately equal proportion of the two phyA types. This correlates with a previous observation that Δ6-12 phyA-GFP can form only numerous tiny subnuclear speckles while its wild-type counterpart can also localize into bigger and fewer subnuclear protein complexes. Thus, phyA-GFP is spectroscopically and photochemically similar or identical to the native phyA, suggesting that the GFP tag does not affect the chromophore. phyA-GFP comprises phyA'-GFP and phyA''-GFP, suggesting that both of them are potential participants in nuclear-cytoplasmic partitioning, which may contribute to its complexity.


Assuntos
Proteínas de Fluorescência Verde/metabolismo , Fitocromo A/metabolismo , Proteínas de Plantas/metabolismo , Arabidopsis , Fluorescência , Proteínas de Fluorescência Verde/genética , Hipocótilo/metabolismo , Oryza , Fitocromo A/genética , Proteínas de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Plântula/metabolismo , Análise Espectral , Temperatura , Nicotiana
8.
Nature ; 451(7177): 475-9, 2008 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-18216856

RESUMO

Light and gibberellins (GAs) mediate many essential and partially overlapping plant developmental processes. DELLA proteins are GA-signalling repressors that block GA-induced development. GA induces degradation of DELLA proteins via the ubiquitin/proteasome pathway, but light promotes accumulation of DELLA proteins by reducing GA levels. It was proposed that DELLA proteins restrain plant growth largely through their effect on gene expression. However, the precise mechanism of their function in coordinating GA signalling and gene expression remains unknown. Here we characterize a nuclear protein interaction cascade mediating transduction of GA signals to the activity regulation of a light-responsive transcription factor. In the absence of GA, nuclear-localized DELLA proteins accumulate to higher levels, interact with phytochrome-interacting factor 3 (PIF3, a bHLH-type transcription factor) and prevent PIF3 from binding to its target gene promoters and regulating gene expression, and therefore abrogate PIF3-mediated light control of hypocotyl elongation. In the presence of GA, GID1 proteins (GA receptors) elevate their direct interaction with DELLA proteins in the nucleus, trigger DELLA protein's ubiquitination and proteasome-mediated degradation, and thus release PIF3 from the negative effect of DELLA proteins.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/efeitos da radiação , Giberelinas/farmacologia , Luz , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/antagonistas & inibidores , Fatores de Transcrição Hélice-Alça-Hélice Básicos/antagonistas & inibidores , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Hipocótilo/efeitos dos fármacos , Hipocótilo/crescimento & desenvolvimento , Hipocótilo/efeitos da radiação , Proteínas Nucleares/metabolismo , Ligação Proteica , Proteínas Repressoras/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/efeitos da radiação
9.
New Phytol ; 200(1): 86-96, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23772959

RESUMO

Phytochromes (phy) C, D and E are involved in the regulation of red/far-red light-induced photomorphogenesis of Arabidopsis thaliana, but only limited data are available on the mode of action and biological function of these lesser studied phytochrome species. We fused N-terminal fragments or full-length PHYC, D and E to YELLOW FLUORESCENT PROTEIN (YFP), and analyzed the function, stability and intracellular distribution of these fusion proteins in planta. The activity of the constitutively nuclear-localized homodimers of N-terminal fragments was comparable with that of full-length PHYC, D, E-YFP, and resulted in the regulation of various red light-induced photomorphogenic responses in the studied genetic backgrounds. PHYE-YFP was active in the absence of phyB and phyD, and PHYE-YFP controlled responses, as well as accumulation, of the fusion protein in the nuclei, was saturated at low fluence rates of red light and did not require functional FAR-RED ELONGATED HYPOCOTYL1 (FHY-1) and FHY-1-like proteins. Our data suggest that PHYC-YFP, PHYD-YFP and PHYE-YFP fusion proteins, as well as their truncated N-terminal derivatives, are biologically active in the modulation of red light-regulated photomorphogenesis. We propose that PHYE-YFP can function as a homodimer and that low-fluence red light-induced translocation of phyE and phyA into the nuclei is mediated by different molecular mechanisms.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Luz , Morfogênese , Fitocromo/metabolismo , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Transporte Biológico , Núcleo Celular , Dimerização , Fitocromo/genética , Transdução de Sinais
10.
Plant Physiol ; 158(1): 107-18, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21969386

RESUMO

Phytochromes are the red/far-red photoreceptors in higher plants. Among them, phytochrome A (PHYA) is responsible for the far-red high-irradiance response and for the perception of very low amounts of light, initiating the very-low-fluence response. Here, we report a detailed physiological and molecular characterization of the phyA-5 mutant of Arabidopsis (Arabidopsis thaliana), which displays hyposensitivity to continuous low-intensity far-red light and shows reduced very-low-fluence response and high-irradiance response. Red light-induced degradation of the mutant phyA-5 protein appears to be normal, yet higher residual amounts of phyA-5 are detected in seedlings grown under low-intensity far-red light. We show that (1) the phyA-5 mutant harbors a new missense mutation in the PHYA amino-terminal extension domain and that (2) the complex phenotype of the mutant is caused by reduced nuclear import of phyA-5 under low fluences of far-red light. We also demonstrate that impaired nuclear import of phyA-5 is brought about by weakened binding affinity of the mutant photoreceptor to nuclear import facilitators FHY1 (for FAR-RED ELONGATED HYPOCOTYL1) and FHL (for FHY1-LIKE). Finally, we provide evidence that the signaling and degradation kinetics of constitutively nuclear-localized phyA-5 and phyA are identical. Taken together, our data show that aberrant nucleo/cytoplasmic distribution impairs light-induced degradation of this photoreceptor and that the amino-terminal extension domain mediates the formation of the FHY1/FHL/PHYA far-red-absorbing form complex, whereby it plays a role in regulating the nuclear import of phyA.


Assuntos
Transporte Ativo do Núcleo Celular/genética , Proteínas de Arabidopsis/genética , Mutação de Sentido Incorreto , Fitocromo A/genética , Fitocromo A/metabolismo , Arabidopsis/fisiologia , Proteínas de Arabidopsis/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Luz , Fotorreceptores de Plantas/metabolismo , Fitocromo/genética , Fitocromo/metabolismo , Plantas Geneticamente Modificadas , Estabilidade Proteica , Estrutura Terciária de Proteína , Plântula/genética , Plântula/crescimento & desenvolvimento , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Técnicas do Sistema de Duplo-Híbrido
11.
Plant Physiol ; 160(1): 289-307, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22760208

RESUMO

Arabidopsis (Arabidopsis thaliana) mutants hypersensitive to far-red light were isolated under a light program of alternating red and far-red light pulses and were named eid (for empfindlicher im dunkelroten Licht). The dominant eid3 mutant carries a missense mutation in a conserved domain of PHYTOCHROME AND FLOWERING TIME1 (PFT1), an important component of the plant mediator coactivator complex, which links promoter-bound transcriptional regulators to RNA polymerase II complexes. Epistatic analyses were performed to obtain information about the coaction between the mutated PFT1(eid3) and positively and negatively acting components of light signaling cascades. The data presented here provide clear evidence that the mutation mainly enhances light sensitivity downstream of phytochrome A (phyA) and modulates phyB function. Our results demonstrate that the Mediator component cooperates with CONSTITUTIVE PHOTORMORPHOGENIC1 in the regulation of light responses and that the hypersensitive phenotype strictly depends on the presence of the ELONGATED HYPOCOTYL5 transcription factor, an important positive regulator of light-dependent gene expression. Expression profile analyses revealed that PFT1(eid3) alters the transcript accumulation of light-regulated genes even in darkness. Our data further indicate that PFT1 regulates the floral transition downstream of phyA. The PFT1 missense mutation seems to create a constitutively active transcription factor by mimicking an early step in light signaling.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/efeitos da radiação , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Luz , Proteínas Nucleares/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Antocianinas/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética , Mapeamento Cromossômico , Sequência Conservada , Proteínas de Ligação a DNA , Epistasia Genética , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Mutação de Sentido Incorreto , Proteínas Nucleares/genética , Fenótipo , Fotoperíodo , Fitocromo A/genética , Fitocromo A/metabolismo , Fitocromo B/genética , Fitocromo B/metabolismo , Estrutura Terciária de Proteína , Proteólise , Transdução de Sinais , Transcrição Gênica , Ubiquitina-Proteína Ligases/genética
13.
Genome Biol ; 24(1): 256, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37936225

RESUMO

BACKGROUND: Daylength is a key seasonal cue for animals and plants. In cereals, photoperiodic responses are a major adaptive trait, and alleles of clock genes such as PHOTOPERIOD1 (PPD1) and EARLY FLOWERING3 (ELF3) have been selected for in adapting barley and wheat to northern latitudes. How monocot plants sense photoperiod and integrate this information into growth and development is not well understood. RESULTS: We find that phytochrome C (PHYC) is essential for flowering in Brachypodium distachyon. Conversely, ELF3 acts as a floral repressor and elf3 mutants display a constitutive long day phenotype and transcriptome. We find that ELF3 and PHYC occur in a common complex. ELF3 associates with the promoters of a number of conserved regulators of flowering, including PPD1 and VRN1. Consistent with observations in barley, we are able to show that PPD1 overexpression accelerates flowering in short days and is necessary for rapid flowering in response to long days. PHYC is in the active Pfr state at the end of the day, but we observe it undergoes dark reversion over the course of the night. CONCLUSIONS: We propose that PHYC acts as a molecular timer and communicates information on night-length to the circadian clock via ELF3.


Assuntos
Brachypodium , Fitocromo , Fitocromo/genética , Fitocromo/metabolismo , Brachypodium/genética , Brachypodium/metabolismo , Fotoperíodo , Flores/genética , Ritmo Circadiano , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
14.
Plant J ; 67(1): 37-48, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21395889

RESUMO

Circadian clocks regulate many molecular and physiological processes in Arabidopsis (Arabidopsis thaliana), allowing the timing of these processes to occur at the most appropriate time of the day in a 24-h period. The accuracy of timing relies on the synchrony of the clock and the environmental day/night cycle. Visible light is the most potent signal for such synchronization, but light-induced responses are also rhythmically attenuated (gated) by the clock. Here, we report a similar mutual interaction of the circadian clock and non-damaging photomorphogenic UV-B light. We show that low-intensity UV-B radiation acts as entraining signal for the clock. UV RESISTANCE LOCUS 8 (UVR8) and CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) are required, but ELONGATED HYPOCOTYL 5 (HY5) and HY5 HOMOLOG (HYH) are dispensable for this process. UV-B responsiveness of clock gene expression suggests that photomorphogenic UV-B entrains the plant clock through transcriptional activation. We also demonstrate that UV-B induction of gene expression under these conditions is gated by the clock in a HY5/HYH-independent manner. The arrhythmic early flowering 3-4 mutant showed non-gated, high-level gene induction by UV-B, yet displayed no increased tolerance to UV-B stress. Thus, the temporal restriction of UV-B responsiveness by the circadian clock can be considered as saving resources during acclimation without losing fitness.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Proteínas Cromossômicas não Histona/metabolismo , Relógios Circadianos/fisiologia , Transdução de Sinais/fisiologia , Arabidopsis/genética , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/fisiologia , Fatores de Transcrição de Zíper de Leucina Básica/fisiologia , Proteínas de Transporte/fisiologia , Proteínas Cromossômicas não Histona/genética , Relógios Circadianos/efeitos da radiação , Ritmo Circadiano/fisiologia , Ritmo Circadiano/efeitos da radiação , Proteínas de Ligação a DNA , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Mutação , Proteínas Nucleares/fisiologia , Fotoperíodo , Estresse Fisiológico , Fatores de Tempo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ativação Transcricional , Ubiquitina-Proteína Ligases , Raios Ultravioleta
15.
Plant Cell Physiol ; 52(2): 361-72, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21169346

RESUMO

The photoreceptor phytochrome-A (phyA) regulates germination and seedling establishment by mediating very low fluence (VLFR) and far-red high irradiance (FR-HIR) responses in Arabidopsis thaliana. In darkness, phyA homodimers exist in the biologically inactive Pr form and are localized in the cytoplasm. Light induces formation of the biologically active Pfr form and subsequent rapid nuclear import. PhyA Pfr, in contrast to the Pr form, is labile and has a half-life of ∼30 min. We produced transgenic plants in a phyA-201 null background that express the PHYA-yellow fluorescent protein (YFP) or the PHYA686-YFP-dimerization domain (DD) and PHYA686-YFP-DD-nuclear localization signal (NLS) or PHYA686-YFP-DD-nuclear exclusion signal (NES) fusion proteins. The PHYA686-YFP fusion proteins contained the N-terminal domain of phyA (686 amino acid residues), a short DD and the YFP. Here we report that (i) PHYA686-YFP-DD fusion protein is imported into the nucleus in a light-dependent fashion; (ii) neither of the PHYA686 fusion proteins is functional in FR-HIR and nuclear VLFR; and (iii) the phyA-dependent, blue light-induced inhibition of hypocotyl growth is mediated by the PHYA686-YFP-DD-NES but not by the PHYA686-YFP-DD-NLS and PHYA686-YFP-DD fusion proteins. We demonstrate that (i) light induces degradation of all PHYA N-terminal-containing fusion proteins and (ii) these N-terminal domain-containing fusion proteins including the constitutively nuclear PHYA686-YFP-DD-NLS and predominantly cytoplasmic PHYA686-YFP-DD-NES degrade at comparable rates but markedly more slowly than PHYA-YFP, whereas (iii) light-induced degradation of the native phyA is faster compared with PHYA-YFP.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Núcleo Celular/metabolismo , Luz , Fitocromo A/metabolismo , Transporte Ativo do Núcleo Celular/efeitos da radiação , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Bactérias/metabolismo , Clonagem Molecular , Proteínas Luminescentes/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , RNA de Plantas/genética , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais
16.
Plant Physiol ; 153(4): 1834-45, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20530216

RESUMO

At the core of the circadian network in Arabidopsis (Arabidopsis thaliana), clock genes/proteins form multiple transcriptional/translational negative feedback loops and generate a basic approximately 24-h oscillation, which provides daily regulation for a wide range of processes. This temporal organization enhances the fitness of plants only if it corresponds to the natural day/night cycles. Light, absorbed by photoreceptors, is the most effective signal in synchronizing the oscillator to environmental cycles. Phytochrome B (PHYB) is the major red/far-red light-absorbing phytochrome receptor in light-grown plants. Besides modulating the pace and phase of the circadian clock, PHYB controls photomorphogenesis and delays flowering. It has been demonstrated that the nuclear-localized amino-terminal domain of PHYB is capable of controlling photomorphogenesis and, partly, flowering. Here, we show (1) that PHYB derivatives containing 651 or 450 amino acid residues of the amino-terminal domains are functional in mediating red light signaling to the clock, (2) that circadian entrainment is a nuclear function of PHYB, and (3) that a 410-amino acid amino-terminal fragment does not possess any functions of PHYB due to impaired chromophore binding. However, we provide evidence that the carboxyl-terminal domain is required to mediate entrainment in white light, suggesting a role for this domain in integrating red and blue light signaling to the clock. Moreover, careful analysis of the circadian phenotype of phyB-9 indicates that PHYB provides light signaling for different regulatory loops of the circadian oscillator in a different manner, which results in an apparent decoupling of the loops in the absence of PHYB under specific light conditions.


Assuntos
Proteínas de Arabidopsis/química , Arabidopsis/química , Ritmo Circadiano , Fitocromo B/química , Arabidopsis/genética , Arabidopsis/efeitos da radiação , Regulação da Expressão Gênica de Plantas , Teste de Complementação Genética , Luz , Plantas Geneticamente Modificadas/química , Plantas Geneticamente Modificadas/genética , RNA de Plantas/genética , Proteínas Recombinantes de Fusão/química
17.
PLoS Genet ; 4(8): e1000143, 2008 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-18670649

RESUMO

The phytochrome (phy) family of photoreceptors is of crucial importance throughout the life cycle of higher plants. Light-induced nuclear import is required for most phytochrome responses. Nuclear accumulation of phyA is dependent on two related proteins called FHY1 (Far-red elongated HYpocotyl 1) and FHL (FHY1 Like), with FHY1 playing the predominant function. The transcription of FHY1 and FHL are controlled by FHY3 (Far-red elongated HYpocotyl 3) and FAR1 (FAr-red impaired Response 1), a related pair of transcription factors, which thus indirectly control phyA nuclear accumulation. FHY1 and FHL preferentially interact with the light-activated form of phyA, but the mechanism by which they enable photoreceptor accumulation in the nucleus remains unsolved. Sequence comparison of numerous FHY1-related proteins indicates that only the NLS located at the N-terminus and the phyA-interaction domain located at the C-terminus are conserved. We demonstrate that these two parts of FHY1 are sufficient for FHY1 function. phyA nuclear accumulation is inhibited in the presence of high levels of FHY1 variants unable to enter the nucleus. Furthermore, nuclear accumulation of phyA becomes light- and FHY1-independent when an NLS sequence is fused to phyA, strongly suggesting that FHY1 mediates nuclear import of light-activated phyA. In accordance with this idea, FHY1 and FHY3 become functionally dispensable in seedlings expressing a constitutively nuclear version of phyA. Our data suggest that the mechanism uncovered in Arabidopsis is conserved in higher plants. Moreover, this mechanism allows us to propose a model explaining why phyA needs a specific nuclear import pathway.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Núcleo Celular/metabolismo , Núcleo Celular/efeitos da radiação , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Fitocromo A/metabolismo , Fitocromo/metabolismo , Transporte Ativo do Núcleo Celular/efeitos da radiação , Sequência de Aminoácidos , Arabidopsis/química , Arabidopsis/genética , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Núcleo Celular/química , Núcleo Celular/genética , Luz , Dados de Sequência Molecular , Sinais de Localização Nuclear/genética , Sinais de Localização Nuclear/metabolismo , Fitocromo/química , Fitocromo/genética , Fitocromo A/genética , Estrutura Terciária de Proteína , Alinhamento de Sequência , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
18.
Plant J ; 57(4): 680-9, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18980642

RESUMO

Translocation from the cytosol to the nucleus is an essential step in phytochrome (phy) signal transduction. In the case of phytochrome A (phyA), this step occurs with the help of FHY1 (far-red-elongated hypocotyl 1), a specific transport protein. To investigate the components involved in phyA transport, we used a cell-free system that facilitates the controlled addition of transport factors. For this purpose, we isolated nuclei from the unicellular green algae Acetabularia acetabulum. These nuclei are up to 100 mum in diameter and allow easy detection of imported proteins. Experiments with isolated nuclei of Acetabularia showed that FHY1 is sufficient for phyA transport. The reconstituted system demonstrates all the characteristics of phytochrome transport in Arabidopsis thaliana. In addition, FHY1 was also actively exported from the nucleus, consistent with its role as a shuttle protein in plants. Therefore, we believe that isolated Acetabularia nuclei may be used as a general tool to study nuclear transport of plant proteins.


Assuntos
Acetabularia/ultraestrutura , Núcleo Celular/metabolismo , Luz , Fitocromo A/metabolismo , Transporte Ativo do Núcleo Celular/efeitos da radiação , Proteínas de Arabidopsis/metabolismo , Sistema Livre de Células , Fitocromo/metabolismo
19.
Curr Biol ; 17(17): 1456-64, 2007 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-17683937

RESUMO

BACKGROUND: At the core of the eukaryotic circadian network, clock genes/proteins form multiple transcriptional/translational negative-feedback loops and generate a basic approximately 24 hr oscillation, which provides daily regulation for a wide range of processes. This temporal organization enhances the fitness of the organism only if it corresponds to the natural day/night cycles. Light is the most effective signal in synchronizing the oscillator to environmental cycles. RESULTS: The lip1-1 (light insensitive period 1) mutant isolated from the model plant Arabidopsis thaliana displays novel circadian phenotypes arising from specific defects in the light input pathway to the oscillator. In wild-type plants, period length shortens with increasing light fluence rates and the phase of rhythms can be shifted by light pulses administered to dark-adapted plants. In contrast, in lip1-1, period length is nearly insensitive to light intensity and significantly larger phase shifts (delays) can be induced during the subjective night. The mutant also displays elevated photomorphogenic responses to red and blue light, which cannot be explained by the circadian defect, suggesting distinct functions for LIP1 in the circadian light input and photomorphogenesis. The LIP1 gene encodes a functional, plant-specific atypical small GTPase, and therefore we postulate that it acts similarly to ZEITLUPE at postranscriptional level. CONCLUSIONS: LIP1 represents the first small GTPase implicated in the circadian system of plants. LIP1 plays a unique negative role in controlling circadian light input and is required for precise entrainment of the plant clock.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Relógios Biológicos/fisiologia , Ritmo Circadiano/fisiologia , Luz , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas Monoméricas de Ligação ao GTP/genética , Mutação , RNA Mensageiro/metabolismo
20.
Mol Plant ; 13(3): 386-397, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-31812690

RESUMO

Phytochromes are red/far-red reversible photoreceptors essential for plant growth and development. Phytochrome signaling is mediated by the physiologically active far-red-absorbing Pfr form that can be inactivated to the red-absorbing Pr ground state by light-dependent photoconversion or by light-independent thermal reversion, also termed dark reversion. Although the term "dark reversion" is justified by historical reasons and frequently used in the literature, "thermal reversion" more appropriately describes the process of light-independent but temperature-regulated Pfr relaxation that not only occurs in darkness but also in light and is used throughout the review. Thermal reversion is a critical parameter for the light sensitivity of phytochrome-mediated responses and has been studied for decades, often resulting in contradictory findings. Thermal reversion is an intrinsic property of the phytochrome molecules but can be modulated by intra- and intermolecular interactions, as well as biochemical modifications, such as phosphorylation. In this review, we outline the research history of phytochrome thermal reversion, highlighting important predictions that have been made before knowing the molecular basis. We further summarize and discuss recent findings about the molecular mechanisms regulating phytochrome thermal reversion and its functional roles in light and temperature sensing in plants.


Assuntos
Fitocromo/metabolismo , Plantas/metabolismo , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA