RESUMO
Over the span of a few weeks during July and August 2014, events in West Africa changed perceptions of Ebola virus disease (EVD) from an exotic tropical disease to a priority for global health security. We describe observations during that time of a field team from the Centers for Disease Control and Prevention and personnel of the Liberian Ministry of Health and Social Welfare. We outline the early epidemiology of EVD within Liberia, including the practical limitations on surveillance and the effect on the country's health care system, such as infections among health care workers. During this time, priorities included strengthening EVD surveillance; establishing safe settings for EVD patient care (and considering alternative isolation and care models when Ebola Treatment Units were overwhelmed); improving infection control practices; establishing an incident management system; and working with Liberian airport authorities to implement EVD screening of departing passengers.
Assuntos
Ebolavirus , Doença pelo Vírus Ebola/epidemiologia , Doença pelo Vírus Ebola/virologia , Gerenciamento Clínico , Ebolavirus/genética , Geografia Médica , Saúde Global , Pessoal de Saúde , Prioridades em Saúde , Doença pelo Vírus Ebola/história , História do Século XXI , Humanos , Incidência , Libéria/epidemiologia , Vigilância da PopulaçãoRESUMO
To support Liberia's response to the ongoing Ebola virus (EBOV) disease epidemic in Western Africa, we established in-country advanced genomic capabilities to monitor EBOV evolution. Twenty-five EBOV genomes were sequenced at the Liberian Institute for Biomedical Research, which provided an in-depth view of EBOV diversity in Liberia during September 2014-February 2015. These sequences were consistent with a single virus introduction to Liberia; however, shared ancestry with isolates from Mali indicated at least 1 additional instance of movement into or out of Liberia. The pace of change is generally consistent with previous estimates of mutation rate. We observed 23 nonsynonymous mutations and 1 nonsense mutation. Six of these changes are within known binding sites for sequence-based EBOV medical countermeasures; however, the diagnostic and therapeutic impact of EBOV evolution within Liberia appears to be low.
Assuntos
Ebolavirus/genética , Doença pelo Vírus Ebola/virologia , Antivirais/farmacologia , Antivirais/uso terapêutico , Análise Mutacional de DNA , Farmacorresistência Viral/genética , Evolução Molecular , Genes Virais , Doença pelo Vírus Ebola/tratamento farmacológico , Doença pelo Vírus Ebola/epidemiologia , Humanos , Libéria/epidemiologiaRESUMO
In recent years, infectious disease diagnosis has increasingly turned to host-centered approaches as a complement to pathogen-directed ones. The former, however, typically requires the interpretation of complex multiple biomarker datasets to arrive at an informative diagnostic outcome. This report describes a machine learning (ML)-based classification workflow that is intended as a template for researchers seeking to apply ML approaches for developing host-based infectious disease biomarker classifiers. As an example, we built a classification model that could accurately distinguish between three disease etiology classes: bacterial, viral, and normal in human sera using host protein biomarkers of known diagnostic utility. After collecting protein data from known disease samples, we trained a series of increasingly complex Auto-ML models until arriving at an optimized classifier that could differentiate viral, bacterial, and non-disease samples. Even when limited to a relatively small training set size, the model had robust diagnostic characteristics and performed well when faced with a blinded sample set. We present here a flexible approach for applying an Auto-ML-based workflow for the identification of host biomarker classifiers with diagnostic utility for infectious disease, and which can readily be adapted for multiple biomarker classes and disease states.
Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/genética , Escherichia coli/enzimologia , beta-Lactamases/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Infecções por Escherichia coli/tratamento farmacológico , Feminino , Humanos , Pessoa de Meia-Idade , Plasmídeos/genética , Estados UnidosRESUMO
The SARS-CoV-2 proteome shares regions of conservation with endemic human coronaviruses (CoVs), but it remains unknown to what extent these may be cross-recognized by the antibody response. Here, we study cross-reactivity using a highly multiplexed peptide assay (PepSeq) to generate an epitope-resolved view of IgG reactivity across all human CoVs in both COVID-19 convalescent and negative donors. PepSeq resolves epitopes across the SARS-CoV-2 Spike and Nucleocapsid proteins that are commonly targeted in convalescent donors, including several sites also recognized in some uninfected controls. By comparing patterns of homologous reactivity between CoVs and using targeted antibody-depletion experiments, we demonstrate that SARS-CoV-2 elicits antibodies that cross-recognize pandemic and endemic CoV antigens at two Spike S2 subunit epitopes. We further show that these cross-reactive antibodies preferentially bind endemic homologs. Our findings highlight sites at which the SARS-CoV-2 response appears to be shaped by previous CoV exposures and which have the potential to raise broadly neutralizing responses.
RESUMO
A high-resolution understanding of the antibody response to SARS-CoV-2 is important for the design of effective diagnostics, vaccines and therapeutics. However, SARS-CoV-2 antibody epitopes remain largely uncharacterized, and it is unknown whether and how the response may cross-react with related viruses. Here, we use a multiplexed peptide assay ('PepSeq') to generate an epitope-resolved view of reactivity across all human coronaviruses. PepSeq accurately detects SARS-CoV-2 exposure and resolves epitopes across the Spike and Nucleocapsid proteins. Two of these represent recurrent reactivities to conserved, functionally-important sites in the Spike S2 subunit, regions that we show are also targeted for the endemic coronaviruses in pre-pandemic controls. At one of these sites, we demonstrate that the SARS-CoV-2 response strongly and recurrently cross-reacts with the endemic virus hCoV-OC43. Our analyses reveal new diagnostic and therapeutic targets, including a site at which SARS-CoV-2 may recruit common pre-existing antibodies and with the potential for broadly-neutralizing responses.
RESUMO
OBJECTIVE: To describe an outbreak of influenza A in an oncology unit, highlighting infection control methods implemented, and examining reasons health care workers (HCWs) present to work with influenza-like illness (ILI). METHODS: Confirmed cases were defined by the presence of ILI and a positive nasopharyngeal polymerase chain reaction swab for influenza A H3. Probable cases were defined as exposed HCWs with ILI who were unavailable for polymerase chain reaction testing. Infection prevention measures included closing the ward for new admissions, oseltamivir prophylaxis for all exposed groups, and dismissal from work of HCWs with ILI until resolution of symptoms. An anonymous survey of the cases in our HCWs was conducted to better elucidate reasons behind presenteeism. RESULTS: Over the course of 8 days (November 16, 2017, to November 22, 2017), influenza was diagnosed in 7 of 10 inpatients on the oncology ward, 16 HCWs (14 confirmed, 2 probable), and 2 visitors. The suspected index case was an HCW. Of the surveyed HCWs, 64% presented to work despite feeling ill (ie, presenteeism). The most common reason was "sense of duty as a health care worker." CONCLUSIONS: This nosocomial outbreak of influenza highlights the challenges of protecting inpatients from viral respiratory tract infections. HCWs and patient visitors with ILI should avoid work or visiting until resolution of peak respiratory symptoms and adhere to strict respiratory etiquette.
Assuntos
Infecção Hospitalar/epidemiologia , Surtos de Doenças , Pessoal de Saúde , Transmissão de Doença Infecciosa do Profissional para o Paciente , Vírus da Influenza A Subtipo H3N2/isolamento & purificação , Influenza Humana/epidemiologia , Infecção Hospitalar/transmissão , Infecção Hospitalar/virologia , Feminino , Departamentos Hospitalares , Humanos , Controle de Infecções/métodos , Influenza Humana/transmissão , Influenza Humana/virologia , Pacientes Internados , Masculino , Neoplasias/complicaçõesRESUMO
Purpose: The rapid emergence of multidrug-resistant (MDR) bacteria and the lack of new therapies to eliminate them poses a major threat to global health. With the alarming rise in antimicrobial resistance (AMR), focus has now shifted to the use of the polymyxin class of antibiotics as the last line of defense for treatment of Gram-negative infections. Unfortunately, the growing resistance of bacteria against polymyxins is threatening the treatment of MDR infections, necessitating the need for novel strategies. The objective of this study was to determine if combination of polymyxin (polymyxin B or colistin) with a nonantibiotic small molecule AR-12, a celecoxib derivative that is devoid of cyclooxygenase 2 (COX-2) inhibitory activities, can be an effective strategy against polymyxin-resistant MDR bacteria. Methods: Growth inhibition studies, time-kill assays and permeability assays were conducted to investigate the effect of AR-12 on the antibacterial activity of polymyxins. Results: Growth studies were performed on a panel of polymyxin-resistant MDR strains using the combination of AR-12 with either colistin or polymyxin B. The combination treatment had no effect on strains that have inherent polymyxin resistance; however, AR-12 was effective in lowering the minimal inhibitory concentration (MIC) of polymyxins by 4-60-fold in several strains that had acquired polymyxin resistance. Time-kill assays using the combination of AR-12 and colistin with select MDR strains suggest rapid killing and bactericidal activity, while the permeability assays using fluorescently labeled dansylated polymyxin and 1-N-phenylnaphthylamine (NPN) in these MDR strains suggest that AR-12 can potentiate the antibacterial activity of polymyxins by possibly altering the bacterial outer membrane via modification of lipopolysaccharide and thereby improving the uptake of polymyxins. Conclusion: Our studies indicate that the combination of AR-12 and polymyxin is effective in targeting select Gram-negative bacteria that have acquired polymyxin resistance. Further understanding of the mechanism of action of AR-12 will provide new avenues for developing narrow-spectrum antibacterials to target select Gram-negative MDR bacteria. Importantly, our studies show that the use of nonantibiotic small molecules in combination with polymyxins is an attractive strategy to counter the growing resistance of bacteria to polymyxins.
RESUMO
BACKGROUND: The Duffy-binding protein II of Plasmodium vivax (PvDBPII) has been considered as an attractive target for vaccine-mediated immunity despite a possible highly polymorphic nature. Among seven PvDBP domains, domain II has been shown to exhibit a high rate of nonsynonymous polymorphism, which has been suggested to be a potential immune (antibody binding) evasion mechanism. This study aimed to determine the extent of genetic polymorphisms and positive natural selection at domain II of the PvDBP gene among a sampling of Thai P. vivax isolates. METHODS: The PvDBPII gene was PCR amplified and the patterns of polymorphisms were characterized from 30 Thai P. vivax isolates using DNA cloning and sequencing. Phylogenetic analysis of the sequences and positive selection were done using DnaSP ver 4.0 and MEGA ver 4.0 packages. RESULTS: This study demonstrated a high rate of nonsynonymous polymorphism. Using Sal I as the reference strain, a total of 30 point-mutations were observed in the PvDBPII gene among the set of Thai P. vivax isolates, of which 25 nonsynonymous and five synonymous were found. The highest frequency of polymorphism was found in five variant amino acids (residues D384G, R390H, L424I, W437R, I503K) with the variant L424I having the highest frequency. The difference between the rates of nonsynonymous and synonymous mutations estimated by the Nei and Gojobori's method suggested that PvDBPII antigen appears to be under selective pressure. Phylogenetic analysis of PvDBPII Thai P. vivax isolates to others found internationally demonstrated six distinct allele groups. Allele groups 4 and 6 were unique to Thailand. CONCLUSION: Polymorphisms within PvDBPII indicated that Thai vivax malaria parasites are genetically diverse. Phylogenetic analysis of DNA sequences using the Neighbour-Joining method demonstrated that Thai isolates shared distinct alleles with P. vivax isolates from different geographical areas. The study reported here will be valuable for the development of PvDBPII-based malaria vaccine.
Assuntos
Antígenos de Protozoários/genética , Plasmodium vivax/genética , Plasmodium vivax/isolamento & purificação , Polimorfismo Genético , Proteínas de Protozoários/genética , Receptores de Superfície Celular/genética , Alelos , Substituição de Aminoácidos/genética , Animais , DNA de Protozoário/química , DNA de Protozoário/genética , Geografia , Mutação de Sentido Incorreto , Filogenia , Mutação Puntual , Reação em Cadeia da Polimerase , Análise de Sequência de DNA , Homologia de Sequência , TailândiaRESUMO
INTRODUCTION: Microbacterium spp. are yellow-pigmented Gram-positive coryneform rods found in various environmental sources, such as soil and water samples. They rarely cause human infection, mostly infecting immunocompromised patients and catheter insertion sites, making them challenging to identify in clinical settings. CASE PRESENTATION: We report a case of a 61-year-old female on long-term prednisone therapy for sarcoidosis with minimal exposure to environmental sources, who presented with an overtly infected Hickman catheter site and presyncope. The patient had a central venous catheter (CVC) that had been in place for the previous 6 years for treatment of refractory hypertension and congestive heart failure. Blood cultures obtained from the CVC on initial presentation were positive for a mixed infection, which was subcultured and grew Staphylococcus aureus, Staphylococcus epidermidis, Acinetobacter radioresistens and Leifsonia aquatica based on the Becton Dickinson Phoenix Automated Microbiology System. The L. aquatica, designated as isolate 4120, was further analysed, since infections associated with this organism are uncommon, and it was the only organism to grow from the patient's catheter tip. Matrix-assisted laser desorption ionization-time of flight MS identified isolate 4120 as Microbacterium paraoxydans. To resolve the conflicting results, additional analyses of isolate 4120 were carried out and compared to several reference strains. Isolate 4120 was found to have intermediate susceptibility to ciprofloxacin and non-susceptibility to vancomycin. Morphology, susceptibility, biochemical characteristics and whole-genome sequencing confirmed the clinical isolate as Microbacterium paraoxydans. CONCLUSION: In this case, we identified an organism that is rarely seen in clinical settings and characterized it with a comprehensive laboratory analysis. The patient in our case responded to replacement of the CVC, and treatment with levofloxacin by mouth and intravenous vancomycin.
RESUMO
Parkinson's disease (PD) is a neurodegenerative disorder resulting in slowness, tremors, and imbalance. Treatment of mice with 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine (MPTP) is one of several models used to mimic PD in humans. Administration of MPTP leads to the production of 1-methyl-4-phenyl-2,3 dihydropyridinium (MPP(+)). MPP(+) is taken up by dopaminergic neurons, causing mitochondrial dysfunction and cell death. Because calpain is involved in neuronal cell death and mitochondrial dysfunction, we examined the level of calpain in neurons in the substantia nigra (SN) and hippocampus of MPTP-treated C57BL/6 mice. Because of the interconnections between spinal cord and upper central nervous system neurons, we examined morphology, calpain activity, and calpain expression in neurons by double immunofluorescence using calpain and neuron marker (NeuN) antibodies. In controls, calpain expression was low in SN, hippocampus, and spinal cord NeuN(+) cells, and the NeuN stain was concentrated around the nucleus. In mice sacrificed 24 h after administration of three 20 mg/kg doses of MPTP, calpain expression was slightly increased in SN and hippocampal neurons and moderately increased in spinal cord neurons. In these animals, the NeuN stain was less concentrated around the nuclear membrane. One week after MPTP treatment, calpain content in NeuN(+) cells was greatly increased in SN, hippocampus, and spinal cord. Morphologically, SN and spinal cord neurons, treated for one week, were necrotic with a granular cytoplasmic NeuN content. Also, MPTP treatment upregulated calpain activity and mRNA level in spinal cord. These data suggest that following MPTP treatment, calpain causes neuronal death in SN as well as in spinal cord.
Assuntos
1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , Calpaína/metabolismo , Neurônios/patologia , Transtornos Parkinsonianos/metabolismo , Medula Espinal/patologia , Animais , Morte Celular , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/patologia , Medula Espinal/efeitos dos fármacosRESUMO
Parkinson's disease (PD) is a movement disorder characterized by rigidity, tremor, and bradykinesia, originating from degeneration of dopaminergic neurons in the substantia nigra (SN), retrorubral area, and locus ceoruleus (LC). Calpain has been implicated in the pathophysiology of neurodegenerative diseases. Since the spinal cord (SC) and brain are integrally connected and calpain is involved in cell death and mitochondrial dysfunction, we hypothesized that SC neurons are also affected in PD. In order to examine this hypothesis, we examined both brain and SC from mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). To identify cells expressing calpain, double immunofluorescent labeling was performed with antibodies specific for calpain and a cell type (OX-42, GFAP, or NeuN). Combined terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) and double immunofluorescent labeling were used to identify death of specific cells in the central nervous system (CNS). There was an increase in calpain expression in microglia, astrocytes, and neurons in the SC of MPTP-treated mice at 1 and 7 days, as compared to controls. TUNEL-positive neurons in the SC and SN showed apoptotic characteristics. These results demonstrated that neuronal death occurred not only in SN but also in the SC of MPTP-treated mice and has provided evidence for a possible calpain-mediated SC neuronal death in MPTP-induced parkinsonism in mice.
Assuntos
Antígenos CD , Antígenos de Neoplasias , Antígenos de Superfície , Proteínas Aviárias , Proteínas Sanguíneas , Calpaína/metabolismo , Morte Celular/fisiologia , Neurônios/fisiologia , Transtornos Parkinsonianos/metabolismo , Medula Espinal/metabolismo , Análise de Variância , Animais , Basigina , Contagem de Células/métodos , Modelos Animais de Doenças , Proteína Glial Fibrilar Ácida/metabolismo , Imuno-Histoquímica/métodos , Marcação In Situ das Extremidades Cortadas/métodos , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neuroglia/metabolismo , Doença de Parkinson , Transtornos Parkinsonianos/patologia , Medula Espinal/patologia , Fatores de TempoRESUMO
To investigate a potential relationship between calpain and mitochondrial damage in spinal cord injury (SCI), a 40 gram-centimeter force (g-cm) injury was induced in rats by a weight-drop method and allowed to progress for 4 hr. One-centimeter segments of spinal cord tissue representing the adjacent rostral, lesion, and adjacent caudal areas were then removed for various analyses. Calcium green 2-AM staining of the lesion and penumbra sections showed an increase in intracellular free calcium (Ca(2+)) levels following injury, compared with corresponding tissue sections from sham-operated (control) animals. Western blot analysis showed increased calpain expression and activity in the lesion and penumbra segments following SCI. Double-immunofluorescent labeling indicated that increased calpain expression occurred in neurons in injured segments. Western blot analysis also showed an increased Bax:Bcl-2 ratio, indicating the induction of the mitochondria-mediated cell death pathway in the lesion and penumbra. The morphology of mitochondria was altered in lesion and penumbra following SCI: mostly hydropic change (swelling) in the lesion, with the penumbra shrunken or normal. At 4 hr after induction of injury, a substantial amount of cytochrome c had been released into the cytoplasm, suggesting a trigger for apoptosis through caspase 3 activation. Neuronal death after 4 hr of injury was detected by a combined TUNEL and double-immunofluoresence assay in the lesion and penumbra sections of injured cord, compared with sham controls. These results suggest that an early induction of secondary factors is involved in the pathogenesis of SCI. The increased Ca(2+) levels could activate calpain and mediate mitochondrial damage leading to neuronal death in lesion and penumbra following injury. Thus, secondary injury processes mediating cell death are induced as early as 4 hr after the injury, and calpain and caspase inhibitors may provide neuroprotection.