Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Glob Chang Biol ; 30(4): e17274, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38605677

RESUMO

Climate change and other anthropogenic disturbances are increasing liana abundance and biomass in many tropical and subtropical forests. While the effects of living lianas on species diversity, ecosystem carbon, and nutrient dynamics are receiving increasing attention, the role of dead lianas in forest ecosystems has been little studied and is poorly understood. Trees and lianas coexist as the major woody components of forests worldwide, but they have very different ecological strategies, with lianas relying on trees for mechanical support. Consequently, trees and lianas have evolved highly divergent stem, leaf, and root traits. Here we show that this trait divergence is likely to persist after death, into the afterlives of these organs, leading to divergent effects on forest biogeochemistry. We introduce a conceptual framework combining horizontal, vertical, and time dimensions for the effects of liana proliferation and liana tissue decomposition on ecosystem carbon and nutrient cycling. We propose a series of empirical studies comparing traits between lianas and trees to answer questions concerning the influence of trait afterlives on the decomposability of liana and tree organs. Such studies will increase our understanding of the contribution of lianas to terrestrial biogeochemical cycling, and help predict the effects of their increasing abundance.


Assuntos
Ecossistema , Clima Tropical , Florestas , Árvores , Carbono
3.
Front Cell Infect Microbiol ; 11: 610567, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33996616

RESUMO

Climate change will affect numerous crops in the future; however, perennial crops, such as tea, are particularly vulnerable. Climate change will also strongly influence fungal pathogens. Here, we predict how future climatic conditions will impact tea and its associated pathogens. We collected data on the three most important fungal pathogens of tea (Colletotrichum acutatum, Co. camelliae, and Exobasidium vexans) and then modeled distributions of tea and these fungal pathogens using current and projected climates. The models show that baseline tea-growing areas will become unsuitable for Camellia sinensis var. sinensis (15 to 32% loss) and C. sinensis var. assamica (32 to 34% loss) by 2050. Although new areas will become more suitable for tea cultivation, existing and potentially new fungal pathogens will present challenges in these areas, and they are already under other land-use regimes. In addition, future climatic scenarios suitable range of fungal species and tea suitable cultivation (respectively in CSS and CSA) growing areas are Co. acutatum (44.30%; 31.05%), Co. camelliae (13.10%; 10.70%), and E. vexans (10.20%; 11.90%). Protecting global tea cultivation requires innovative approaches that consider fungal genomics as part and parcel of plant pathology.


Assuntos
Basidiomycota , Camellia sinensis , Colletotrichum , Chá
4.
Sci Rep ; 6: 31066, 2016 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-27553882

RESUMO

Wood decomposition releases almost as much CO2 to the atmosphere as does fossil-fuel combustion, so the factors regulating wood decomposition can affect global carbon cycling. We used metabarcoding to estimate the fungal species diversities of naturally colonized decomposing wood in subtropical China and, for the first time, compared them to concurrent measures of CO2 emissions. Wood hosting more diverse fungal communities emitted less CO2, with Shannon diversity explaining 26 to 44% of emissions variation. Community analysis supports a 'pure diversity' effect of fungi on decomposition rates and thus suggests that interference competition is an underlying mechanism. Our findings extend the results of published experiments using low-diversity, laboratory-inoculated wood to a high-diversity, natural system. We hypothesize that high levels of saprotrophic fungal biodiversity could be providing globally important ecosystem services by maintaining dead-wood habitats and by slowing the atmospheric contribution of CO2 from the world's stock of decomposing wood. However, large-scale surveys and controlled experimental tests in natural settings will be needed to test this hypothesis.


Assuntos
Biota , Dióxido de Carbono/metabolismo , Fungos/classificação , Fungos/metabolismo , Madeira/microbiologia , China , Código de Barras de DNA Taxonômico , Florestas , Fungos/genética , Metagenômica
5.
Oecologia ; 48(2): 277-283, 1981 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28309813

RESUMO

We estimated the density of subterranean termites Gnathamitermes tubiformans at 800,000 · ha-1 for a standing crop biomass of 2 kg · ha-1 Predation losses were estimated to be 5,73 kg · ha-1 · yr-1 representing the major release of nutrients from termites to surficial soil layers. Nutrient fluxes from termites to predators amounted to 410g N·ha-1·yr-1, 33 g S · ha-1 · yr-1 and 19 g P · ha-1 · yr-1. These fluxes account for 8% of the litter N, 1.5% of the litter P and 2.9% of the litter S. The termites fixed an estimated 66 g · ha-1 · yr-1 atmospheric N and returned an estimated 100 g · ha-1 · yr-1 in the surface gallery carton. Since losses of elements from subterannean termites were greater than standing crops, we estimated an annual turnover of N at 3.5 times per year, P of 2.5 times per year, and S of 2.5 per times per year.Since surface foraging, predation and alate flights are pulse regulated by rainfall, nutrient flows through subterranean termites are episodic and releases of nutrients accumulated in termite biomass preceeds or is coincident with productivity "pulses" of some shallow rooted plants. We propose that subterranean termites are important as regulators in desert nutrient cycles.

6.
PLoS One ; 9(6): e98445, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24892931

RESUMO

The production and consumption of the greenhouse gases (GHGs) methane (CH4), carbon dioxide (CO2) and nitrous oxide (N2O) in soil profile are poorly understood. This work sought to quantify the GHG production and consumption at seven depths (0-30, 30-60, 60-90, 90-150, 150-200, 200-250 and 250-300 cm) in a long-term field experiment with a winter wheat-summer maize rotation system, and four N application rates (0; 200; 400 and 600 kg N ha(-1) year(-1)) in the North China Plain. The gas samples were taken twice a week and analyzed by gas chromatography. GHG production and consumption in soil layers were inferred using Fick's law. Results showed nitrogen application significantly increased N2O fluxes in soil down to 90 cm but did not affect CH4 and CO2 fluxes. Soil moisture played an important role in soil profile GHG fluxes; both CH4 consumption and CO2 fluxes in and from soil tended to decrease with increasing soil water filled pore space (WFPS). The top 0-60 cm of soil was a sink of atmospheric CH4, and a source of both CO2 and N2O, more than 90% of the annual cumulative GHG fluxes originated at depths shallower than 90 cm; the subsoil (>90 cm) was not a major source or sink of GHG, rather it acted as a 'reservoir'. This study provides quantitative evidence for the production and consumption of CH4, CO2 and N2O in the soil profile.


Assuntos
Dióxido de Carbono/análise , Metano/análise , Óxido Nitroso/análise , Solo/química , Triticum , Zea mays , China , Estações do Ano
7.
PLoS One ; 8(2): e56646, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23437195

RESUMO

A two-year study (2009 ~ 2010) was carried out to investigate the dynamics of different carbon (C) forms, and the role of stream export in the C balance of a 23.4-ha headwater catchment in a tropical seasonal rainforest at Xishuangbanna (XSBN), southwest China. The seasonal volumetric weighted mean (VWM) concentrations of total inorganic C (TIC) and dissolved inorganic C (DIC) were higher, and particulate inorganic C (PIC) and organic C (POC) were lower, in the dry season than the rainy season, while the VWM concentrations of total organic C (TOC) and dissolved organic C (DOC) were similar between seasons. With increased monthly stream discharge and stream water temperature (SWT), only TIC and DIC concentrations decreased significantly. The most important C form in stream export was DIC, accounting for 51.8% of the total C (TC) export; DOC, POC, and PIC accounted for 21.8%, 14.9%, and 11.5% of the TC export, respectively. Dynamics of C flux were closely related to stream discharge, with the greatest export during the rainy season. C export in the headwater stream was 47.1 kg C ha(-1) yr(-1), about 2.85% of the annual net ecosystem exchange. This finding indicates that stream export represented a minor contribution to the C balance in this tropical seasonal rainforest.


Assuntos
Carbono/química , Árvores/fisiologia , Clima Tropical , Água/química , China , Ecossistema , Nitrogênio/química , Chuva , Rios , Estações do Ano , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA