Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 578(7795): 386-391, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32042171

RESUMO

Attosecond pulses are central to the investigation of valence- and core-electron dynamics on their natural timescales1-3. The reproducible generation and characterization of attosecond waveforms has been demonstrated so far only through the process of high-order harmonic generation4-7. Several methods for shaping attosecond waveforms have been proposed, including the use of metallic filters8,9, multilayer mirrors10 and manipulation of the driving field11. However, none of these approaches allows the flexible manipulation of the temporal characteristics of the attosecond waveforms, and they suffer from the low conversion efficiency of the high-order harmonic generation process. Free-electron lasers, by contrast, deliver femtosecond, extreme-ultraviolet and X-ray pulses with energies ranging from tens of microjoules to a few millijoules12,13. Recent experiments have shown that they can generate subfemtosecond spikes, but with temporal characteristics that change shot-to-shot14-16. Here we report reproducible generation of high-energy (microjoule level) attosecond waveforms using a seeded free-electron laser17. We demonstrate amplitude and phase manipulation of the harmonic components of an attosecond pulse train in combination with an approach for its temporal reconstruction. The results presented here open the way to performing attosecond time-resolved experiments with free-electron lasers.

2.
J Phys Chem A ; 128(1): 20-27, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38165105

RESUMO

We present frequency-matched strobo-spectroscopy (FMSS) of charge migration (CM) in bromobutadiyne, simulated with time-dependent density functional theory. CM + FMSS is a pump-probe scheme that uses a frequency-matched high harmonic generation (HHG)-driving laser as an independent probe step, following the creation of a localized hole on the bromine atom that induces CM dynamics. We show that the delay-dependent harmonic yield tracks the phase of the CM dynamics through its sensitivity to the amount of electron density on the bromine end of the molecule. FMSS takes advantage of the intrinsic attosecond time resolution of the HHG process in which different harmonics are emitted at different times and thus probe different locations of the electron hole. Finally, we show that the CM-induced modulation of the HHG signal is dominated by the recombination step of the HHG process, with a negligible contribution from the ionization step.

3.
J Phys Chem A ; 127(8): 1894-1900, 2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36791088

RESUMO

Charge migration (CM) is a coherent attosecond process that involves the movement of localized holes across a molecule. To determine the relationship between a molecule's structure and the CM dynamics it exhibits, we perform systematic studies of para-functionalized bromobenzene molecules (X-C6H4-R) using real-time time-dependent density functional theory. We initiate valence-electron dynamics by emulating rapid strong-field ionization leading to a localized hole on the bromine atom. The resulting CM, which takes on the order of 1 fs, occurs via an X localized → C6H4 delocalized → R localized mechanism. Interestingly, the hole contrast on the acceptor functional group increases with increasing electron-donating strength. This trend is well-described by the Hammett σ value of the group, which is a commonly used metric for quantifying the effect of functionalization on the chemical reactivity of benzene derivatives. These results suggest that simple attochemistry principles and a density-based picture can be used to predict and understand CM.

4.
J Phys Chem A ; 126(46): 8588-8595, 2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36356231

RESUMO

We present molecular-frame high-harmonic spectroscopic measurements of the spectral intensity and group delay of carbon dioxide. Using four different driving wavelengths and a range of intensities at each wavelength for high-harmonic generation, we observe a well-characterized minimum in the harmonic emission that exhibits both a wavelength and intensity dependence. Using the intensity dependence at each driving wavelength, we classify the minimum as due to either a structural two-center interference or dynamic multichannel interference, consistent with previous literature. By additionally measuring the group delay at each driving wavelength and intensity, we find that the sign of the group delay excursion across the interference is an acute probe of the interference mechanism. The experimental results are confirmed by ab initio time-dependent density functional theory calculations of both the spectral intensity and the phase of the harmonic emission.

5.
Nature ; 534(7608): 520-3, 2016 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-27281195

RESUMO

Strong-field laser excitation of solids can produce extremely nonlinear electronic and optical behaviour. As recently demonstrated, this includes the generation of high harmonics extending into the vacuum-ultraviolet and extreme-ultraviolet regions of the electromagnetic spectrum. High harmonic generation is shown to occur fundamentally differently in solids and in dilute atomic gases. How the microscopic mechanisms in the solid and the gas differ remains a topic of intense debate. Here we report a direct comparison of high harmonic generation in the solid and gas phases of argon and krypton. Owing to the weak van der Waals interaction, rare (noble)-gas solids are a near-ideal medium in which to study the role of high density and periodicity in the generation process. We find that the high harmonic generation spectra from the rare-gas solids exhibit multiple plateaus extending well beyond the atomic limit of the corresponding gas-phase harmonics measured under similar conditions. The appearance of multiple plateaus indicates strong interband couplings involving multiple single-particle bands. We also compare the dependence of the solid and gas harmonic yield on laser ellipticity and find that they are similar, suggesting the importance of electron-hole recollision in these solids. This implies that gas-phase methods such as polarization gating for attosecond pulse generation and orbital tomography could be realized in solids.

6.
Phys Rev Lett ; 126(13): 133002, 2021 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-33861123

RESUMO

First-principles calculations are employed to elucidate the modes of attosecond charge migration (CM) in halogenated hydrocarbon chains. We use constrained density functional theory (DFT) to emulate the creation of a localized hole on the halogen and follow the subsequent dynamics via time-dependent DFT. We find low-frequency CM modes (∼1 eV) that propagate across the molecule and study their dependence on length, bond order, and halogenation. We observe that the CM speed (∼4 Å/fs) is largely independent of molecule length, but is lower for triple-bonded versus double-bonded molecules. Additionally, as the halogen mass increases, the hole travels in a more particlelike manner as it moves across the molecule. These heuristics will be useful in identifying molecules and optimal CM detection methods for future experiments, especially for halogenated hydrocarbons which are promising targets for ionization-triggered CM.

7.
Phys Rev Lett ; 124(20): 207401, 2020 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-32501089

RESUMO

Excitation of ionic solids with extreme ultraviolet pulses creates localized core-level excitons, which in some cases couple strongly to the lattice. Here, core-level-exciton states of magnesium oxide are studied in the time domain at the Mg L_{2,3} edge with attosecond transient reflectivity spectroscopy. Attosecond pulses trigger the excitation of these short-lived quasiparticles, whose decay is perturbed by time-delayed near-infrared pulses. Combined with a few-state theoretical model, this reveals that the infrared pulse shifts the energy of bright (dipole-allowed) core-level-exciton states as well as induces features arising from dark core-level excitons. We report coherence lifetimes for the two lowest core-level excitons of 2.3±0.2 and 1.6±0.5 fs and show that these are primarily a consequence of strong exciton-phonon coupling, disclosing the drastic influence of structural effects in this ultrafast relaxation process.

8.
Opt Lett ; 43(14): 3357-3360, 2018 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-30004505

RESUMO

We demonstrate a transient absorption scheme that uses a fixed-spectrum attosecond pulse train in conjunction with a tunable probe laser to access a wide range of nonlinear light-atom interactions. We exhibit control over the time-dependent Autler-Townes splitting of the 1s4p absorption line in helium, and study its evolution from a resonant doublet to a light-induced sideband with changing probe wavelength. The non-commensurate probe also allows for the background-free study of two-infrared-photon emission processes in a collinear geometry. Using this capability, we observe two different emission pathways with non-trivial delay dependencies, one prompt and the other delayed. We identify the nonlinear processes underlying these emissions by comparing the experimental results to calculations based on the time-dependent Schrödinger equation.

9.
Opt Lett ; 42(9): 1816-1819, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28454168

RESUMO

Solid-state high-harmonic sources offer the possibility of compact, high-repetition-rate attosecond light emitters. However, the time structure of high harmonics must be characterized at the sub-cycle level. We use strong two-cycle laser pulses to directly control the time-dependent nonlinear current in single-crystal MgO, leading to the generation of extreme ultraviolet harmonics. We find that harmonics are delayed with respect to each other, yielding an atto-chirp, the value of which depends on the laser field strength. Our results provide the foundation for attosecond pulse metrology based on solid-state harmonics and a new approach to studying sub-cycle dynamics in solids.

10.
J Chem Phys ; 145(9): 094105, 2016 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-27608987

RESUMO

Strong-field ionization and the resulting electronic dynamics are important for a range of processes such as high harmonic generation, photodamage, charge resonance enhanced ionization, and ionization-triggered charge migration. Modeling ionization dynamics in molecular systems from first-principles can be challenging due to the large spatial extent of the wavefunction which stresses the accuracy of basis sets, and the intense fields which require non-perturbative time-dependent electronic structure methods. In this paper, we develop a time-dependent density functional theory approach which uses a Gaussian-type orbital (GTO) basis set to capture strong-field ionization rates and dynamics in atoms and small molecules. This involves propagating the electronic density matrix in time with a time-dependent laser potential and a spatial non-Hermitian complex absorbing potential which is projected onto an atom-centered basis set to remove ionized charge from the simulation. For the density functional theory (DFT) functional we use a tuned range-separated functional LC-PBE*, which has the correct asymptotic 1/r form of the potential and a reduced delocalization error compared to traditional DFT functionals. Ionization rates are computed for hydrogen, molecular nitrogen, and iodoacetylene under various field frequencies, intensities, and polarizations (angle-dependent ionization), and the results are shown to quantitatively agree with time-dependent Schrödinger equation and strong-field approximation calculations. This tuned DFT with GTO method opens the door to predictive all-electron time-dependent density functional theory simulations of ionization and ionization-triggered dynamics in molecular systems using tuned range-separated hybrid functionals.

11.
Phys Rev Lett ; 114(14): 143002, 2015 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-25910116

RESUMO

We investigate the absorption line shapes of laser-dressed atoms beyond the single-atom response, by using extreme ultraviolet (XUV) attosecond pulse trains to probe an optically thick helium target under the influence of a strong infrared (IR) field. We study the interplay between the IR-induced phase shift of the microscopic time-dependent dipole moment and the resonant-propagation-induced reshaping of the macroscopic XUV pulse. Our experimental and theoretical results show that as the optical depth increases, this interplay leads initially to a broadening of the IR-modified line shape, and subsequently, to the appearance of new, narrow features in the absorption line.


Assuntos
Hélio/química , Lasers de Estado Sólido , Modelos Teóricos , Óxido de Alumínio/química , Análise Espectral/métodos , Titânio/química
12.
Opt Lett ; 37(12): 2211-3, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22739858

RESUMO

We investigate transient absorption of high harmonics in an attosecond pulse train by laser-dressed He atoms using both single-atom and macroscopic methods. Calculations of the absorption as a function of laser wavelength and intensity reveal that the absorption probability is tied to resonant laser-dressed atomic states. We report for the first time to our knowledge a quarter-laser-cycle modulation in the absorption (mixed with the well-known half-cycle modulation). We discuss the conditions for which this high-order coupling could be observed and the role that the reshaping of the attosecond pulses in the medium plays in the timing of absorption.

13.
Nat Commun ; 10(1): 1384, 2019 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-30918260

RESUMO

Nonlinear spectroscopies are utilized extensively for selective measurements of chemical dynamics in the optical, infrared, and radio-frequency regimes. The development of these techniques for extreme ultraviolet (XUV) light sources facilitates measurements of electronic dynamics on attosecond timescales. Here, we elucidate the temporal dynamics of nonlinear signal generation by utilizing a transient grating scheme with a subfemtosecond XUV pulse train and two few-cycle near-infrared pulses in atomic helium. Simultaneous detection of multiple diffraction orders reveals delays of ≥1.5 fs in higher-order XUV signal generation, which are reproduced theoretically by solving the coupled Maxwell-Schrödinger equations and with a phase grating model. The delays result in measurable order-dependent differences in the energies of transient light induced states. As nonlinear methods are extended into the attosecond regime, the observed higher-order signal generation delays will significantly impact and aid temporal and spectral measurements of dynamic processes.

14.
Struct Dyn ; 6(4): 044101, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31341934

RESUMO

We demonstrate high-harmonic spectroscopy in many-electron molecules using time-dependent density-functional theory. We show that a weak attosecond-pulse-train ionization seed that is properly synchronized with the strong driving mid-infrared laser field can produce experimentally relevant high-harmonic generation (HHG) signals, from which we extract both the spectral amplitude and the target-specific phase (group delay). We also show that further processing of the HHG signal can be used to achieve molecular-frame resolution, i.e., to resolve the contributions from rescattering on different sides of an oriented molecule. In this framework, we investigate transient two-center interference in CO2 and OCS, and how subcycle polarization effects shape the oriented/aligned angle-resolved spectra.

15.
J Phys Chem Lett ; 8(17): 3991-3996, 2017 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-28792225

RESUMO

We investigate the ability of time-dependent density functional theory (TDDFT) to capture attosecond valence electron dynamics resulting from sudden X-ray ionization of a core electron. In this special case the initial state can be constructed unambiguously, allowing for a simple test of the accuracy of the dynamics. The response following nitrogen K-edge ionization in nitrosobenzene shows excellent agreement with fourth-order algebraic diagrammatic construction (ADC(4)) results, suggesting that a properly chosen initial state allows TDDFT to adequately capture attosecond charge migration. Visualizing hole motion using an electron localization picture (ELF), we provide an intuitive chemical interpretation of the charge migration as a superposition of Lewis dot resonance structures.

16.
Opt Lett ; 31(21): 3188-90, 2006 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-17041677

RESUMO

The first observation of isolated attosecond pulses by Hentschel [Nature 414, 509 (2001)] resulted from an experiment that left the exact mechanism of their generation unresolved. A complete simulation of the experiment reveals the reason for its success: single pulses were efficiently isolated from two or more generated pulses by spatial filtering in the far field. Our explanation suggests a new, simple paradigm for the production of isolated attosecond bursts. We show that this method can be used, in conjunction with carrier-envelope phase stabilization, to select single attosecond pulses by use of 10 fs driving pulses.

17.
Phys Rev Lett ; 94(3): 033001, 2005 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-15698258

RESUMO

We report the generation, compression, and delivery on target of ultrashort extreme-ultraviolet light pulses using external amplitude and phase control. Broadband harmonic radiation is first generated by focusing an infrared laser with a carefully chosen intensity into a gas cell containing argon atoms. The emitted light then goes through a hard aperture and a thin aluminum filter that selects a 30-eV bandwidth around a 30-eV photon energy and synchronizes all of the components, thereby enabling the formation of a train of almost Fourier-transform-limited single-cycle 170 attosecond pulses. Our experiment demonstrates a practical method for synthesizing and controlling attosecond waveforms.

18.
Phys Rev Lett ; 89(21): 213901, 2002 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-12443412

RESUMO

The combination of several high order harmonics can produce an attosecond pulse train, provided that the harmonics are locked in phase to each other. We present calculations that evaluate the degree of phase locking that is achieved in argon and neon gases interacting with an intense, 50 fs laser pulse, for a range of macroscopic conditions. We find that phase locking depends on both the temporal and the spatial phase behavior of the harmonics, as determined by the interplay between the intrinsic dipole phase and the phase matching in the nonlinear medium. We show that, as a consequence of this, it is not possible to compensate for a lack of phase locking by purely temporal phase manipulation.

19.
Opt Lett ; 28(23): 2393-5, 2003 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-14680193

RESUMO

We propose a novel method for completely characterizing ultrashort pulses at extreme-ultraviolet (XUV) wavelengths by adapting the technique of spectral phase interferometry for direct electric-field reconstruction to this spectral region. Two-electron wave packets are coherently produced by photoionizing atoms with two time-delayed replicas of the XUV pulse. For one of the XUV pulses, photoionization occurs in the presence of a strong infrared pulse that ponderomotively shifts the binding energy, thereby providing the spectral shear needed for reconstruction of the spectral phase of the XUV pulse.

20.
Phys Rev Lett ; 92(2): 023003, 2004 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-14753935

RESUMO

We show that attosecond pulse trains have a natural application in the control of strong field processes. In combination with an intense infrared laser field, the pulse train can be used to microscopically select a single quantum path contribution to a process that would otherwise consist of several interfering components. We present calculations that demonstrate this by manipulating the time-frequency properties of high order harmonics at the single atom level. This quantum path selection can also be used to define a high resolution attosecond clock.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA