Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Opt Express ; 30(7): 11973-11985, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35473128

RESUMO

We report on the design of nanohole/nanobeam cavities in ridge waveguides for on-chip, quantum-dot-based single-photon generation. Our design overcomes limitations of a low-refractive-index-contrast material platform in terms of emitter-mode coupling efficiency and yields an outcoupling efficiency of 0.73 to the output ridge waveguide. Importantly, this high coupling efficiency is combined with broadband operation of 9 nm full-width half-maximum. We provide an explicit design procedure for identifying the optimum geometrical parameters according to the developed design. Besides, we fabricate and optically characterize a proof-of-concept waveguide structure. The results of the microphotoluminescence measurements provide evidence for cavity-enhanced spontaneous emission from the quantum dot, thus supporting the potential of our design for on-chip single-photon sources applications.

2.
Nano Lett ; 19(10): 7164-7172, 2019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31470692

RESUMO

Silicon photonics enables scaling of quantum photonic systems by allowing the creation of extensive, low-loss, reconfigurable networks linking various functional on-chip elements. Inclusion of single quantum emitters onto photonic circuits, acting as on-demand sources of indistinguishable photons or single-photon nonlinearities, may enable large-scale chip-based quantum photonic circuits and networks. Toward this, we use low-temperature in situ electron-beam lithography to deterministically produce hybrid GaAs/Si3N4 photonic devices containing single InAs quantum dots precisely located inside nanophotonic structures, which act as efficient, Si3N4 waveguide-coupled on-chip, on-demand single-photon sources. The precise positioning afforded by our scalable fabrication method furthermore allows observation of postselected indistinguishable photons. This indicates a promising path toward significant scaling of chip-based quantum photonics, enabled by large fluxes of indistinguishable single-photons produced on-demand, directly on-chip.

3.
Molecules ; 25(7)2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-32230750

RESUMO

To advance the technology of polymer electrolyte membrane fuel cells, material development is at the forefront of research. This is especially true for membrane electrode assembly, where the structuring of its various layers has proven to be directly linked to performance increase. In this study, we investigate the influence of the various ingredients in the cathode catalyst layer, such as ionomer content, catalyst loading and catalyst type, on the oxygen and ion transport using a full parametric analysis. Using two types of catalysts, 40 wt.% Pt/C and 60 wt.% Pt/C with high surface area carbon, the ionomer/carbon content was varied between 0.29-1.67, while varying the Pt loading in the range of 0.05-0.8 mg cm-2. The optimum ionomer content was found to be dependent on the operating point and condition, as well as catalyst loading and type. The data set provided in this work gives a starting point to further understanding of structured catalyst layers.


Assuntos
Carbono/química , Eletroquímica/métodos , Membranas Artificiais , Oxigênio/química , Platina/química , Polímeros/química , Catálise , Eletrodos , Eletrólitos/química , Íons/química , Microscopia Eletrônica de Varredura
4.
Nano Lett ; 18(4): 2336-2342, 2018 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-29557665

RESUMO

The development of multinode quantum optical circuits has attracted great attention in recent years. In particular, interfacing quantum-light sources, gates, and detectors on a single chip is highly desirable for the realization of large networks. In this context, fabrication techniques that enable the deterministic integration of preselected quantum-light emitters into nanophotonic elements play a key role when moving forward to circuits containing multiple emitters. Here, we present the deterministic integration of an InAs quantum dot into a 50/50 multimode interference beamsplitter via in situ electron beam lithography. We demonstrate the combined emitter-gate interface functionality by measuring triggered single-photon emission on-chip with g(2)(0) = 0.13 ± 0.02. Due to its high patterning resolution as well as spectral and spatial control, in situ electron beam lithography allows for integration of preselected quantum emitters into complex photonic systems. Being a scalable single-step approach, it paves the way toward multinode, fully integrated quantum photonic chips.

5.
ACS Photonics ; 10(5): 1504-1511, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37215325

RESUMO

Semiconductor quantum dot molecules are considered promising candidates for quantum technological applications due to their wide tunability of optical properties and coverage of different energy scales associated with charge and spin physics. While previous works have studied the tunnel-coupling of the different excitonic charge complexes shared by the two quantum dots by conventional optical spectroscopy, we here report on the first demonstration of a coherently controlled interdot tunnel-coupling focusing on the quantum coherence of the optically active trion transitions. We employ ultrafast four-wave mixing spectroscopy to resonantly generate a quantum coherence in one trion complex, transfer it to and probe it in another trion configuration. With the help of theoretical modeling on different levels of complexity, we give an instructive explanation of the underlying coupling mechanism and dynamical processes.

6.
Nanoscale ; 14(39): 14529-14536, 2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36155719

RESUMO

We report on the deterministic fabrication of quantum devices aided by machine-learning-based image processing. The goal of the work is to demonstrate that pattern recognition based on specifically trained machine learning (ML) algorithms and applying it to luminescence maps can strongly enhance the capabilities of modern fabrication technologies that rely on a precise determination of the positions of quantum emitters like, for instance, in situ lithography techniques. In the present case, we apply in situ electron beam lithography (EBL) to deterministically integrate single InGaAs quantum dots (QDs) into circular Bragg grating resonators with increased photon extraction efficiency (PEE). In this nanotechnology platform, suitable QDs are selected by 2D cathodoluminescence maps before EBL of the nanoresonators aligned to the selected emitters is performed. Varying the electron beam dose of cathodoluminescence (CL) mapping, we intentionally change the signal-to-noise ratio of the CL maps to mimic different brightness of the emitters and to train the ML algorithm. ML-based image processing is then used to denoise the images for reliable and accurate QD position retrieval. This way, we achieve a significant enhancement in the PEE and position accuracy, leading to more than one order increase of sensitivity in ML-enhanced in situ EBL. Overall, this demonstrates the high potential of ML-based image processing in deterministic nanofabrication which can be very attractive for the fabrication of bright quantum light sources based on emitters with low luminescence yield in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA