Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 162(6): 1242-56, 2015 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-26359984

RESUMO

Therapeutic antibodies targeting programmed cell death 1 (PD-1) activate tumor-specific immunity and have shown remarkable efficacy in the treatment of melanoma. Yet, little is known about tumor cell-intrinsic PD-1 pathway effects. Here, we show that murine and human melanomas contain PD-1-expressing cancer subpopulations and demonstrate that melanoma cell-intrinsic PD-1 promotes tumorigenesis, even in mice lacking adaptive immunity. PD-1 inhibition on melanoma cells by RNAi, blocking antibodies, or mutagenesis of melanoma-PD-1 signaling motifs suppresses tumor growth in immunocompetent, immunocompromised, and PD-1-deficient tumor graft recipient mice. Conversely, melanoma-specific PD-1 overexpression enhances tumorigenicity, as does engagement of melanoma-PD-1 by its ligand, PD-L1, whereas melanoma-PD-L1 inhibition or knockout of host-PD-L1 attenuate growth of PD-1-positive melanomas. Mechanistically, the melanoma-PD-1 receptor modulates downstream effectors of mTOR signaling. Our results identify melanoma cell-intrinsic functions of the PD-1:PD-L1 axis in tumor growth and suggest that blocking melanoma-PD-1 might contribute to the striking clinical efficacy of anti-PD-1 therapy.


Assuntos
Melanoma/genética , Receptor de Morte Celular Programada 1/metabolismo , Transdução de Sinais , Animais , Antineoplásicos/administração & dosagem , Antígeno B7-H1/genética , Linhagem Celular Tumoral , Células Cultivadas , Técnicas de Silenciamento de Genes , Xenoenxertos , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Transplante de Neoplasias
2.
Cell ; 150(6): 1135-46, 2012 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-22980977

RESUMO

DNA methylation at the 5 position of cytosine (5-mC) is a key epigenetic mark that is critical for various biological and pathological processes. 5-mC can be converted to 5-hydroxymethylcytosine (5-hmC) by the ten-eleven translocation (TET) family of DNA hydroxylases. Here, we report that "loss of 5-hmC" is an epigenetic hallmark of melanoma, with diagnostic and prognostic implications. Genome-wide mapping of 5-hmC reveals loss of the 5-hmC landscape in the melanoma epigenome. We show that downregulation of isocitrate dehydrogenase 2 (IDH2) and TET family enzymes is likely one of the mechanisms underlying 5-hmC loss in melanoma. Rebuilding the 5-hmC landscape in melanoma cells by reintroducing active TET2 or IDH2 suppresses melanoma growth and increases tumor-free survival in animal models. Thus, our study reveals a critical function of 5-hmC in melanoma development and directly links the IDH and TET activity-dependent epigenetic pathway to 5-hmC-mediated suppression of melanoma progression, suggesting a new strategy for epigenetic cancer therapy.


Assuntos
Citosina/análogos & derivados , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Melanoma/genética , Nevo/genética , 5-Metilcitosina/análogos & derivados , Citosina/metabolismo , Proteínas de Ligação a DNA/genética , Dioxigenases , Estudo de Associação Genômica Ampla , Humanos , Isocitrato Desidrogenase/genética , Melanócitos/metabolismo , Melanoma/patologia , Nevo/patologia , Proteínas Proto-Oncogênicas/genética
3.
Immunity ; 44(5): 1083-5, 2016 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-27192573

RESUMO

P-selectin glycoprotein ligand-1 (PSGL-1) and its glycostructural determinants facilitate responses to infection and cancer by promoting immune effector-cell trafficking into inflamed tissue. In this issue of Immunity, Tinoco et al. (2016) report homing-independent functions of PSGL-1 in immune checkpoint regulation and T cell effector activity, in models of chronic viral infection and melanoma.


Assuntos
Glicoproteínas de Membrana/química , Linfócitos T/imunologia , Pontos de Checagem do Ciclo Celular , Movimento Celular/imunologia , Humanos , Selectina-P/imunologia
4.
Lab Invest ; 97(6): 669-697, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28346400

RESUMO

Advances in cancer immunotherapy have offered new hope for patients with metastatic disease. This unfolding success story has been exemplified by a growing arsenal of novel immunotherapeutics, including blocking antibodies targeting immune checkpoint pathways, cancer vaccines, and adoptive cell therapy (ACT). Nonetheless, clinical benefit remains highly variable and patient-specific, in part, because all immunotherapeutic regimens vitally hinge on the capacity of endogenous and/or adoptively transferred T-effector (Teff) cells, including chimeric antigen receptor (CAR) T cells, to home efficiently into tumor target tissue. Thus, defects intrinsic to the multi-step T-cell homing cascade have become an obvious, though significantly underappreciated contributor to immunotherapy resistance. Conspicuous have been low intralesional frequencies of tumor-infiltrating T-lymphocytes (TILs) below clinically beneficial threshold levels, and peripheral rather than deep lesional TIL infiltration. Therefore, a Teff cell 'homing deficit' may arguably represent a dominant factor responsible for ineffective immunotherapeutic outcomes, as tumors resistant to immune-targeted killing thrive in such permissive, immune-vacuous microenvironments. Fortunately, emerging data is shedding light into the diverse mechanisms of immune escape by which tumors restrict Teff cell trafficking and lesional penetrance. In this review, we scrutinize evolving knowledge on the molecular determinants of Teff cell navigation into tumors. By integrating recently described, though sporadic information of pivotal adhesive and chemokine homing signatures within the tumor microenvironment with better established paradigms of T-cell trafficking under homeostatic or infectious disease scenarios, we seek to refine currently incomplete models of Teff cell entry into tumor tissue. We further summarize how cancers thwart homing to escape immune-mediated destruction and raise awareness of the potential impact of immune checkpoint blockers on Teff cell homing. Finally, we speculate on innovative therapeutic opportunities for augmenting Teff cell homing capabilities to improve immunotherapy-based tumor eradication in cancer patients, with special focus on malignant melanoma.


Assuntos
Imunoterapia , Modelos Imunológicos , Neoplasias/terapia , Linfócitos T , Animais , Pesquisa Biomédica , Humanos , Camundongos , Camundongos Knockout , Receptores de Antígenos de Linfócitos T , Linfócitos T/citologia , Linfócitos T/imunologia , Linfócitos T/fisiologia , Evasão Tumoral
5.
Ann Surg Oncol ; 24(9): 2698-2706, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28429196

RESUMO

BACKGROUND: Despite recent advances in the therapy for adenocarcinoma of the esophagogastric junction (AEG), overall prognosis remains poor. Programmed cell death protein 1 (PD1) is a co-inhibitory receptor primarily expressed by T-cells. Tumor cells can escape anticancer immune responses by triggering the PD1 pathway. Moreover, PD1 receptor engagement on cancer cells may trigger tumor-intrinsic growth signals. This study aimed to evaluate the potential clinical relevance of PD1 expression by tumor-infiltrating lymphocytes (TILs) and cancer cells in the AEG. METHODS: Patients with AEG who underwent esophagectomy from 1992 to 2011 were included in the study. Expression of PD1was evaluated by immunohistochemistry and correlated with long-term overall survival (OS), disease-free survival (DFS), and various clinicopathologic parameters. RESULTS: Tumor biospecimens from 168 patients were analyzed. In the analysis, 81% of the patients showed high tumoral frequencies (>5%) of PD1-expressing TILs (TIL-PD1+), and 77% of patient tumors harbored high levels (>5%) of PD1+ cancer cells (cancer-PD1+). Expression of PD1 by TILs and cancer cells correlated significantly (p < 0.05) with patients' tumor stage and lymph node involvement. Compared with the patients who had low tumoral frequencies of PD1+ TILs or cancer cells, the TIL-PD1+ and cancer-PD1+ patients demonstrated significantly reduced DFS in the univariate analysis (5-year DFS: 73.3 vs. 41.9%, log-rank 0.008 and 71.3 vs. 41.6%, p = 0.008, respectively). Additionally, the cancer-PD1+ patients showed significantly decreased OS in the univariate analysis compared with the cancer-PD1- patients (5-year OS: 68.8 vs. 43.5%; p = 0.047). However, these correlations did not reach significance in the multivariate analysis. CONCLUSIONS: The PD1 receptor is expressed by both TILs and cancer cells in AEG. High expression of PD1 is associated with advanced tumor stage and lymph node involvement, but not with survival.


Assuntos
Adenocarcinoma/metabolismo , Adenocarcinoma/secundário , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patologia , Junção Esofagogástrica , Linfócitos do Interstício Tumoral/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Adenocarcinoma/cirurgia , Adulto , Idoso , Idoso de 80 Anos ou mais , Intervalo Livre de Doença , Neoplasias Esofágicas/cirurgia , Feminino , Humanos , Imuno-Histoquímica , Metástase Linfática , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Taxa de Sobrevida
6.
Lab Invest ; 94(1): 13-30, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24126889

RESUMO

Malignant melanoma is a highly metastatic cancer that bears responsibility for the majority of skin cancer-related deaths. Amidst the research efforts to better understand melanoma progression, there has been increasing evidence that hints at a role for a subpopulation of virulent cancer cells, termed malignant melanoma stem or initiating cells (MMICs), in metastasis formation. MMICs are characterized by their preferential ability to initiate and propagate tumor growth and their selective capacity for self-renewal and differentiation into less tumorigenic melanoma cells. The frequency of MMICs has been shown to correlate with poor clinical prognosis in melanoma. In addition, MMICs are enriched among circulating tumor cells in the peripheral blood of cancer patients, suggesting that MMICs may be a critical factor in the metastatic cascade. Although these links exist between MMICs and metastatic disease, the mechanisms by which MMICs may advance metastatic progression are only beginning to be elucidated. Recent studies have shown that MMICs express molecules critical for hematopoietic cell maintenance and trafficking, providing a possible explanation for how circulating MMICs could drive melanoma dissemination. We therefore propose that MMICs might fuel melanoma metastasis by exploiting homing mechanisms commonly utilized by hematopoietic cells. Here we review the biological properties of MMICs and the existing literature on their metastatic potential. We will discuss possible mechanisms by which MMICs might initiate metastases in the context of established knowledge of cancer stem cells in other cancers and of hematopoietic homing molecules, with a particular focus on selectins, integrins, chemokines and chemokine receptors known to be expressed by melanoma cells. Biological understanding of how these molecules might be utilized by MMICs to propel the metastatic cascade could critically impact the development of more effective therapies for advanced disease.


Assuntos
Melanoma/patologia , Células Neoplásicas Circulantes/patologia , Células-Tronco Neoplásicas/patologia , Animais , Movimento Celular/fisiologia , Hematopoese , Humanos , Melanoma/sangue , Metástase Neoplásica
7.
Lab Invest ; 94(10): 1092-102, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25111691

RESUMO

Merkel cell carcinoma (MCC) is a highly virulent cutaneous neoplasm that, like melanoma, is a frequent cause of patient morbidity and mortality. The cellular mechanisms responsible for the aggressive behavior of MCC remain unknown. Vasculogenic mimicry (VM) is a phenomenon associated with cancer virulence, including in melanoma, whereby anastomosing laminin networks form in association with tumor cells that express certain endothelial genes. To determine whether VM is a factor in MCC, we employed a relevant xenograft model using two independent human MCC lines. Experimentally induced tumors were remarkably similar histologically to patient MCC, and both contained laminin networks associated with vascular endothelial-cadherin (CD144) and vascular endothelial growth factor receptor 1, as well as Nodal expression typical of VM in melanoma. Moreover, two established chemotherapeutic agents utilized for human MCC, etoposide and carboplatin, induced necrosis in xenografts on systemic administration while enriching for laminin networks in apparently resistant viable tumor regions that persisted. These findings for the first time establish VM-like laminin networks as a biomarker in MCC, demonstrate the experimental utility of the MCC xenograft model, and suggest that VM-rich regions of MCC may be refractory to conventional chemotherapeutic agents.


Assuntos
Carcinoma de Célula de Merkel/patologia , Linfonodos/patologia , Neovascularização Patológica , Neoplasias Cutâneas/patologia , Pele/patologia , Idoso , Idoso de 80 Anos ou mais , Animais , Antineoplásicos Fitogênicos/uso terapêutico , Carboplatina/uso terapêutico , Carcinoma de Célula de Merkel/tratamento farmacológico , Linhagem Celular Tumoral , Etoposídeo/uso terapêutico , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos Knockout , Pessoa de Meia-Idade , Invasividade Neoplásica , Transplante de Neoplasias , Distribuição Aleatória , Neoplasias Cutâneas/tratamento farmacológico , Transplante Heterólogo
8.
Lab Invest ; 94(12): 1382-95, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25365206

RESUMO

Matrix metalloproteinases (MMPs) are key biological mediators of processes as diverse as wound healing, embryogenesis, and cancer progression. Although MMPs may be induced through multiple signaling pathways, the precise mechanisms for their regulation in cancer are incompletely understood. Because cytoskeletal changes are known to accompany MMP expression, we sought to examine the potential role of the poorly understood cytoskeletal protein, nestin, in modulating melanoma MMPs. Nestin knockdown (KD) upregulated the expression of specific MMPs and MMP-dependent invasion both through extracellular matrix barriers in vitro and in peritumoral connective tissue of xenografts in vivo. The development of three-dimensional melanospheres that in vitro partially recapitulate noninvasive tumorigenic melanoma growth was inhibited by nestin KD, although ECM invasion by aberrant melanospheres that did form was enhanced. Mechanistically, nestin KD-dependent melanoma invasion was associated with intracellular redistribution of phosphorylated focal adhesion kinase and increased melanoma cell responsiveness to transforming growth factor-beta, both implicated in pathways of melanoma invasion. The results suggest that the heretofore poorly understood intermediate filament, nestin, may serve as a novel mediator of MMPs critical to melanoma virulence.


Assuntos
Metaloproteinases da Matriz/fisiologia , Melanoma/patologia , Nestina/fisiologia , Animais , Linhagem Celular Tumoral , Feminino , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Humanos , Camundongos , Invasividade Neoplásica , Fator de Crescimento Transformador beta/fisiologia
9.
Nature ; 451(7176): 345-9, 2008 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-18202660

RESUMO

Tumour-initiating cells capable of self-renewal and differentiation, which are responsible for tumour growth, have been identified in human haematological malignancies and solid cancers. If such minority populations are associated with tumour progression in human patients, specific targeting of tumour-initiating cells could be a strategy to eradicate cancers currently resistant to systemic therapy. Here we identify a subpopulation enriched for human malignant-melanoma-initiating cells (MMIC) defined by expression of the chemoresistance mediator ABCB5 (refs 7, 8) and show that specific targeting of this tumorigenic minority population inhibits tumour growth. ABCB5+ tumour cells detected in human melanoma patients show a primitive molecular phenotype and correlate with clinical melanoma progression. In serial human-to-mouse xenotransplantation experiments, ABCB5+ melanoma cells possess greater tumorigenic capacity than ABCB5- bulk populations and re-establish clinical tumour heterogeneity. In vivo genetic lineage tracking demonstrates a specific capacity of ABCB5+ subpopulations for self-renewal and differentiation, because ABCB5+ cancer cells generate both ABCB5+ and ABCB5- progeny, whereas ABCB5- tumour populations give rise, at lower rates, exclusively to ABCB5- cells. In an initial proof-of-principle analysis, designed to test the hypothesis that MMIC are also required for growth of established tumours, systemic administration of a monoclonal antibody directed at ABCB5, shown to be capable of inducing antibody-dependent cell-mediated cytotoxicity in ABCB5+ MMIC, exerted tumour-inhibitory effects. Identification of tumour-initiating cells with enhanced abundance in more advanced disease but susceptibility to specific targeting through a defining chemoresistance determinant has important implications for cancer therapy.


Assuntos
Linhagem da Célula , Melanoma/patologia , Células-Tronco Neoplásicas/patologia , Subfamília B de Transportador de Cassetes de Ligação de ATP , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Divisão Celular , Linhagem Celular Tumoral , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Humanos , Melanoma/genética , Melanoma/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos NOD , Camundongos Nus , Camundongos SCID , Transplante de Neoplasias , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/transplante , Análise Serial de Tecidos , Transplante Heterólogo
10.
Nat Commun ; 15(1): 7165, 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39187481

RESUMO

Programmed cell death 1 (PD-1) is a premier cancer drug target for immune checkpoint blockade (ICB). Because PD-1 receptor inhibition activates tumor-specific T-cell immunity, research has predominantly focused on T-cell-PD-1 expression and its immunobiology. In contrast, cancer cell-intrinsic PD-1 functional regulation is not well understood. Here, we demonstrate induction of PD-1 in melanoma cells via type I interferon receptor (IFNAR) signaling and reversal of ICB efficacy through IFNAR pathway inhibition. Treatment of melanoma cells with IFN-α or IFN-ß triggers IFNAR-mediated Janus kinase-signal transducer and activator of transcription (JAK/STAT) signaling, increases chromatin accessibility and resultant STAT1/2 and IFN regulatory factor 9 (IRF9) binding within a PD-1 gene enhancer, and leads to PD-1 induction. IFNAR1 or JAK/STAT inhibition suppresses melanoma-PD-1 expression and disrupts ICB efficacy in preclinical models. Our results uncover type I IFN-dependent regulation of cancer cell-PD-1 and provide mechanistic insight into the potential unintended ICB-neutralizing effects of widely used IFNAR1 and JAK inhibitors.


Assuntos
Inibidores de Checkpoint Imunológico , Interferon Tipo I , Melanoma , Receptor de Morte Celular Programada 1 , Receptor de Interferon alfa e beta , Transdução de Sinais , Receptor de Morte Celular Programada 1/metabolismo , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Melanoma/tratamento farmacológico , Melanoma/imunologia , Melanoma/genética , Melanoma/metabolismo , Humanos , Receptor de Interferon alfa e beta/metabolismo , Receptor de Interferon alfa e beta/genética , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Camundongos , Interferon Tipo I/metabolismo , Fator de Transcrição STAT1/metabolismo , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/metabolismo , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/genética , Interferon beta/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Janus Quinases/metabolismo , Camundongos Endogâmicos C57BL , Interferon-alfa/farmacologia , Interferon-alfa/metabolismo , Feminino
11.
Sci Adv ; 10(3): eadi2012, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38241371

RESUMO

Merkel cell carcinoma (MCC) is a rare and aggressive skin cancer. Inhibitors targeting the programmed cell death 1 (PD-1) immune checkpoint have improved MCC patient outcomes by boosting antitumor T cell immunity. Here, we identify PD-1 as a growth-promoting receptor intrinsic to MCC cells. In human MCC lines and clinical tumors, RT-PCR-based sequencing, immunoblotting, flow cytometry, and immunofluorescence analyses demonstrated PD-1 gene and protein expression by MCC cells. MCC-PD-1 ligation enhanced, and its inhibition or silencing suppressed, in vitro proliferation and in vivo tumor xenograft growth. Consistently, MCC-PD-1 binding to PD-L1 or PD-L2 induced, while antibody-mediated PD-1 blockade inhibited, protumorigenic mTOR signaling, mitochondrial (mt) respiration, and ROS generation. Last, pharmacologic inhibition of mTOR or mtROS reversed MCC-PD-1:PD-L1-dependent proliferation and synergized with PD-1 checkpoint blockade in suppressing tumorigenesis. Our results identify an MCC-PD-1-mTOR-mtROS axis as a tumor growth-accelerating mechanism, the blockade of which might contribute to clinical response in patients with MCC.


Assuntos
Carcinoma de Célula de Merkel , Neoplasias Cutâneas , Humanos , Antígeno B7-H1 , Carcinoma de Célula de Merkel/tratamento farmacológico , Carcinoma de Célula de Merkel/genética , Receptor de Morte Celular Programada 1 , Espécies Reativas de Oxigênio , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/genética , Serina-Treonina Quinases TOR
12.
Biochem Biophys Res Commun ; 436(3): 536-42, 2013 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-23770371

RESUMO

ABCB5 is a multidrug resistance (MDR) member of the ATP-binding cassette (ABC) superfamily of active transporters and represents a marker for chemoresistant malignant melanoma-initiating cells. ABCB5 expression is closely linked to tumorigenicity and progression of diverse human malignancies, including melanoma, and is functionally required for tumor growth. Here, we genotyped 585 melanoma cases and 605 age-matched controls for 44 ABCB5 tagging single nucleotide polymorphisms (SNPs) to span a region covering 108.2kb of the gene on the 7p21.1 locus. We identified three SNPs that were associated with decreased melanoma risk in additive models: rs10231520 (OR: 0.83, 95% CI: 0.70-0.98), rs17817117 (OR: 0.82, 95% CI: 0.68-0.98), and rs2301641 (OR: 0.83, 95% CI: 0.69-0.98). Additionally, the rs2301641 SNP was associated with non-red compared to red hair color (OR: 0.38, 95% CI: 0.14-1.03) in controls. Twelve human melanoma cell lines were genotyped for the rs2301641 SNP, which encodes a non-synonymous ABCB5 amino acid change (K115E). Functional studies revealed that the E form associated with lower melanoma risk correlated significantly with decreased ABCB5 transport capacity (P<0.01) and increased melanin production (P<0.05). Our results identify novel associations of the ABCB5 K115E polymorphism with human pigmentation phenotype and melanoma risk and point to potential functional roles of ABCB5 in melanomagenesis. Moreover, they provide a first example that functional variation in a prospective cancer stem cell marker can be associated with disease risk for the corresponding malignancy.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Regulação Neoplásica da Expressão Gênica , Melaninas/metabolismo , Melanoma/patologia , Pigmentação/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Adulto , Idoso , Alelos , Estudos de Casos e Controles , Linhagem Celular Tumoral , Feminino , Estudos de Associação Genética , Loci Gênicos , Cor de Cabelo/genética , Humanos , Masculino , Melaninas/genética , Pessoa de Meia-Idade , Razão de Chances , Fenótipo , Polimorfismo de Nucleotídeo Único , Fatores de Risco
13.
Adv Exp Med Biol ; 734: 145-79, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23143979

RESUMO

Increasing evidence suggests that tumor dormancy represents an important mechanism underlying the observed failure of existing therapeutic modalities to fully eradicate cancers. In addition to its more established role in maintaining minimal residual disease after treatment, dormancy might also critically contribute to early stages of tumor development and the formation of clinically undetectable micrometastatic foci. There are striking parallels between the concept of tumor dormancy and the cancer stem cell (CSC) theory of tumor propagation. For instance, the CSC hypothesis similarly predicts that a subset of self-renewing cancer cells-that is CSCs-is responsible for tumor initiation, bears the preferential ability to survive tumor therapy, and persists long term to ultimately cause delayed cancer recurrence and metastatic progression. Additionally, many of the biological mechanisms involved in controlling the dormant state of a tumor can also govern CSC behavior, including cell cycle modifications, alteration of angiogenic processes, and modulation of antitumor immune responses. In fact, quiescence and immune escape are emerging hallmark features of at least some CSCs, indicating significant overlap between dormant cancer populations and CSCs. Herein, we crucially dissect whether CSCs occupy specific roles in orchestrating the switch between dormancy and exuberant tumor growth. We elucidate how recently uncovered CSC biological features could enable these cells to evade immunologic clearance and regulate cancer expansion, relapse, and progression. We propose that the study of CSC immunobiological pathways holds the promise to critically advance our understanding of the processes mediating tumor dormancy. Ultimately, such research endeavors could unravel novel therapeutic avenues that efficiently target both proliferating and dormant CSCs to minimize the risk of tumor recurrence in cancer patients.


Assuntos
Recidiva Local de Neoplasia/patologia , Células-Tronco Neoplásicas/patologia , Antineoplásicos/farmacologia , Comunicação Celular , Pontos de Checagem do Ciclo Celular , Morte Celular , Movimento Celular , Proliferação de Células , Transformação Celular Neoplásica/imunologia , Transformação Celular Neoplásica/patologia , Terapia Combinada/métodos , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos , Humanos , Metástase Neoplásica/imunologia , Metástase Neoplásica/patologia , Metástase Neoplásica/terapia , Recidiva Local de Neoplasia/irrigação sanguínea , Recidiva Local de Neoplasia/imunologia , Recidiva Local de Neoplasia/terapia , Neoplasia Residual/imunologia , Neoplasia Residual/patologia , Neoplasia Residual/terapia , Células-Tronco Neoplásicas/imunologia , Neovascularização Patológica/imunologia , Neovascularização Patológica/patologia , Neovascularização Patológica/terapia , Transdução de Sinais , Evasão Tumoral , Microambiente Tumoral
14.
J Am Soc Nephrol ; 22(6): 1053-63, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21546576

RESUMO

Understanding the mechanisms that regulate nephron progenitors during kidney development should aid development of therapies for renal failure. MicroRNAs, which modulate gene expression through post-transcriptional repression of specific target mRNAs, contribute to the differentiation of stem cells, but their role in nephrogenesis is incompletely understood. Here, we found that the loss of miRNAs in nephron progenitors results in a premature depletion of this population during kidney development. Increased apoptosis and expression of the pro-apoptotic protein Bim accompanied this depletion. Profiling of miRNA expression during nephrogenesis identified several highly expressed miRNAs (miR-10a, miR-106b, miR-17-5p) in nephron progenitors that are either known or predicted to target Bim. We propose that modulation of apoptosis by miRNAs may determine congenital nephron endowment. Furthermore, our data implicate the pro-apoptotic protein Bim as a miRNA target in nephron progenitors.


Assuntos
Proteínas Reguladoras de Apoptose/fisiologia , Rim/embriologia , Rim/fisiologia , Proteínas de Membrana/fisiologia , MicroRNAs/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Células-Tronco/fisiologia , Animais , Apoptose/fisiologia , Proteínas Reguladoras de Apoptose/genética , Proteína 11 Semelhante a Bcl-2 , Diferenciação Celular/fisiologia , Proliferação de Células , Feminino , Perfilação da Expressão Gênica , Rim/citologia , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Mutantes , Camundongos Transgênicos , Modelos Animais , Gravidez , Proteínas Proto-Oncogênicas/genética , Células-Tronco/citologia
15.
Eur J Cancer ; 170: 42-53, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35594611

RESUMO

BACKGROUND: Cutaneous squamous cell carcinoma is a common type of skin cancer that may progress to locally advanced or metastatic disease. Both disease stages are managed by a variety of treatment options, including immune checkpoint blockade (ICB), targeted therapy to epidermal growth factor, chemotherapy or treatment combinations. However, the comparative efficacy of such treatments is unclear. METHODS: We performed a systematic literature search of Medline, Embase and Central to identify eligible studies reporting Kaplan-Meier curves or individual patient data for overall survival (OS) or progression-free survival (PFS). Kaplan-Meier curves were digitised using the "'WebPlotDigitizer" program. Individual patient data was subsequently remodelled and pooled for distinct treatment groups. RESULTS: Overall, 22 independent studies were included of which n = 927 patients were evaluable for PFS and n = 1054 for OS. ICB showed the highest median PFS (mPFS 9.9 months (95% CI: 8.1-19.9)) and median OS (mOS not reached (95% CI: 31.5 months-not reached)) compared to chemotherapy (mPFS 3.0 months (95% CI: 2.2-4.8), mOS 12.6 months (95% CI: 9.6-15.8)), targeted therapy to epidermal growth factor (mPFS 4.9 months (95% CI: 4.4-5.6), mOS 12.7 months (95% CI: 11.9-14.9)) and combination therapies without ICB (mPFS 9.1 months (95% CI: 8.0-12.1), mOS 18.1 months (95% CI: 16.3-22.8)). The survival benchmark with ICB after 26 months for metastatic squamous cell carcinoma was 70.8% (95% CI: 61.5%-81.5%) versus 37.9% (95% CI: 29.5%-48.8%) for the combination group and 17.1% (95% CI: 9.5%-30.8%) for chemotherapy. CONCLUSION: ICB is superior to other systemic treatments and sets a novel survival benchmark for advanced cutaneous squamous cell carcinoma.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Cutâneas , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Benchmarking , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/patologia , Família de Proteínas EGF/uso terapêutico , Humanos , Inibidores de Checkpoint Imunológico , Neoplasias Cutâneas/tratamento farmacológico
16.
Sci Rep ; 12(1): 12491, 2022 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-35864188

RESUMO

Monoclonal antibodies (abs) targeting the programmed cell death 1 (PD-1) immune checkpoint pathway have revolutionized tumor therapy. Because T-cell-directed PD-1 blockade boosts tumor immunity, anti-PD-1 abs have been developed for examining T-cell-PD-1 functions. More recently, PD-1 expression has also been reported directly on cancer cells of various etiology, including in melanoma. Nevertheless, there is a paucity of studies validating anti-PD-1 ab clone utility in specific assay types for characterizing tumor cell-intrinsic PD-1. Here, we demonstrate reactivity of several anti-murine PD-1 ab clones and recombinant PD-L1 with live B16-F10 melanoma cells and YUMM lines using multiple independent methodologies, positive and negative PD-1-specific controls, including PD-1-overexpressing and PD-1 knockout cells. Flow cytometric analyses with two separate anti-PD-1 ab clones, 29F.1A12 and RMP1-30, revealed PD-1 surface protein expression on live murine melanoma cells, which was corroborated by marked enrichment in PD-1 gene (Pdcd1) expression. Immunoblotting, immunoprecipitation, and mass spectrometric sequencing confirmed PD-1 protein expression by B16-F10 cells. Recombinant PD-L1 also recognized melanoma cell-expressed PD-1, the blockade of which by 29F.1A12 fully abrogated PD-1:PD-L1 binding. Together, our data provides multiple lines of evidence establishing PD-1 expression by live murine melanoma cells and validates ab clones and assay systems for tumor cell-directed PD-1 pathway investigations.


Assuntos
Antineoplásicos Imunológicos , Melanoma Experimental , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/farmacologia , Antígeno B7-H1 , Células Clonais , Humanos , Camundongos
17.
Cancer Res ; 82(20): 3774-3784, 2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-35980306

RESUMO

T-cell immunoglobulin mucin family member 3 (Tim-3) is an immune checkpoint receptor that dampens effector functions and causes terminal exhaustion of cytotoxic T cells. Tim-3 inhibitors are under investigation in immuno-oncology (IO) trials, because blockade of T-cell-Tim-3 enhances antitumor immunity. Here, we identify an additional role for Tim-3 as a growth-suppressive receptor intrinsic to melanoma cells. Inhibition of melanoma cell-Tim-3 promoted tumor growth in both immunocompetent and immunocompromised mice, while melanoma-specific Tim-3 overexpression attenuated tumorigenesis. Ab-mediated Tim-3 blockade inhibited growth of immunogenic murine melanomas in T-cell-competent hosts, consistent with established antitumor effects of T-cell-Tim-3 inhibition. In contrast, Tim-3 Ab administration stimulated tumorigenesis of both highly and lesser immunogenic murine and human melanomas in T-cell-deficient mice, confirming growth-promoting effects of melanoma-Tim-3 antagonism. Melanoma-Tim-3 activation suppressed, while its blockade enhanced, phosphorylation of pro-proliferative downstream MAPK signaling mediators. Finally, pharmacologic MAPK inhibition reversed unwanted Tim-3 Ab-mediated tumorigenesis in T-cell-deficient mice and enhanced desired antitumor activity of Tim-3 interference in T-cell-competent hosts. These results identify melanoma-Tim-3 blockade as a mechanism that antagonizes T-cell-Tim-3-directed IO therapeutic efficacy. They further reveal MAPK targeting as a combination strategy for circumventing adverse consequences of unintended melanoma-Tim-3 inhibition. SIGNIFICANCE: Tim-3 is a growth-suppressive receptor intrinsic to melanoma cells, the blockade of which promotes MAPK-dependent tumorigenesis and thus counteracts antitumor activity of T-cell-directed Tim-3 inhibition.


Assuntos
Receptor Celular 2 do Vírus da Hepatite A , Melanoma , Animais , Carcinogênese , Transformação Celular Neoplásica , Humanos , Imunoglobulinas , Melanoma/patologia , Camundongos , Camundongos Endogâmicos C57BL , Mucinas
18.
J Cell Biol ; 175(1): 99-110, 2006 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-17015616

RESUMO

Skeletal muscle side population (SP) cells are thought to be "stem"-like cells. Despite reports confirming the ability of muscle SP cells to give rise to differentiated progeny in vitro and in vivo, the molecular mechanisms defining their phenotype remain unclear. In this study, gene expression analyses of human fetal skeletal muscle demonstrate that bone morphogenetic protein 4 (BMP4) is highly expressed in SP cells but not in main population (MP) mononuclear muscle-derived cells. Functional studies revealed that BMP4 specifically induces proliferation of BMP receptor 1a-positive MP cells but has no effect on SP cells, which are BMPR1a-negative. In contrast, the BMP4 antagonist Gremlin, specifically up-regulated in MP cells, counteracts the stimulatory effects of BMP4 and inhibits proliferation of BMPR1a-positive muscle cells. In vivo, BMP4-positive cells can be found in the proximity of BMPR1a-positive cells in the interstitial spaces between myofibers. Gremlin is expressed by mature myofibers and interstitial cells, which are separate from BMP4-expressing cells. Together, these studies propose that BMP4 and Gremlin, which are highly expressed by human fetal skeletal muscle SP and MP cells, respectively, are regulators of myogenic progenitor proliferation.


Assuntos
Proteínas Morfogenéticas Ósseas/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Fibras Musculares Esqueléticas/citologia , Mioblastos Esqueléticos/citologia , Proteína Morfogenética Óssea 4 , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/metabolismo , Proteínas Morfogenéticas Ósseas/antagonistas & inibidores , Proliferação de Células , Células Cultivadas , Feto , Humanos , Fibras Musculares Esqueléticas/metabolismo , Mioblastos Esqueléticos/metabolismo
19.
Bioessays ; 31(10): 1038-49, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19708024

RESUMO

Cancer stem cells (CSC) represent malignant cell subsets in hierarchically organized tumors, which are selectively capable of tumor initiation and self-renewal and give rise to bulk populations of non-tumorigenic cancer cell progeny through differentiation. Robust evidence for the existence of prospectively identifiable CSC among cancer bulk populations has been generated using marker-specific genetic lineage tracking of molecularly defined cancer subpopulations in competitive tumor development models. Moreover, novel mechanisms and relationships have been discovered that link CSC to cancer therapeutic resistance and clinical tumor progression. Importantly, proof-of-principle for the potential therapeutic utility of the CSC concept has recently been provided by demonstrating that selective killing of CSC through a prospective molecular marker can inhibit tumor growth. Herein, we review these novel and translationally relevant research developments and discuss potential strategies for CSC-targeted therapy in the context of resistance mechanisms and molecular pathways preferentially operative in CSC.


Assuntos
Neoplasias , Células-Tronco Neoplásicas , Animais , Biomarcadores Tumorais/metabolismo , Diferenciação Celular , Linhagem da Célula , Humanos , Neoplasias/genética , Neoplasias/patologia , Neoplasias/terapia , Células-Tronco Neoplásicas/citologia , Células-Tronco Neoplásicas/metabolismo , Fenótipo
20.
Biochem Biophys Res Commun ; 402(4): 711-7, 2010 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-20977885

RESUMO

Circulating tumor cells (CTC) have been identified in several human malignancies, including malignant melanoma. However, whether melanoma CTC are tumorigenic and cause metastatic progression is currently unknown. Here, we isolate for the first time viable tumorigenic melanoma CTC and demonstrate that this cell population is capable of metastasis formation in human-to-mouse xenotransplantation experiments. The presence of CTC among peripheral blood mononuclear cells (PBMC) of murine recipients of subcutaneous (s.c.) human melanoma xenografts could be detected based on mRNA expression for human GAPDH and/or ATP-binding cassette subfamily B member 5 (ABCB5), a marker of malignant melanoma-initiating cells previously shown to be associated with metastatic disease progression in human patients. ABCB5 expression could also be detected in PBMC preparations from human stage IV melanoma patients but not healthy controls. The detection of melanoma CTC in human-to-mouse s.c. tumor xenotransplantation models correlated significantly with pulmonary metastasis formation. Moreover, prospectively isolated CTC from murine recipients of s.c. melanoma xenografts were capable of primary tumor initiation and caused metastasis formation upon xenotransplantation to secondary murine NOD-scid IL2Rγ(null) recipients. Our results provide initial evidence that melanoma CTC are tumorigenic and demonstrate that CTC are capable of causing metastatic tumor progression. These findings suggest a need for CTC eradication to inhibit metastatic progression and provide a rationale for assessment of therapeutic responses of this tumorigenic cell population to promising emerging melanoma treatment modalities.


Assuntos
Transformação Celular Neoplásica/patologia , Melanoma/patologia , Células Neoplásicas Circulantes/patologia , Neoplasias Cutâneas/patologia , Subfamília B de Transportador de Cassetes de Ligação de ATP , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/análise , Animais , Biomarcadores Tumorais/análise , Separação Celular , Humanos , Camundongos , Camundongos Nus , Metástase Neoplásica , Transplante de Neoplasias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA