Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Immunol ; 13: 757436, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35145516

RESUMO

Innate lymphoid cells (ILC) not only are responsible for shaping the innate immune response but also actively modulate T cell responses. However, the molecular processes regulating ILC-T cell interaction are not yet completely understood. The protein butyrophilin 2a2 (Btn2a2), a co-stimulatory molecule first identified on antigen-presenting cells, has a pivotal role in the maintenance of T cell homeostasis, but the main effector cell and the respective ligands remain elusive. We analyzed the role of Btn2a2 in the ILC-T cell cross talk. We found that the expression of Btn2a2 is upregulated in ILC2 following stimulation with IL-33/IL-25/TSLP. In vitro and in vivo experiments indicated that lack of Btn2a2 expression on ILC2 resulted in elevated T cell responses. We observed an enhanced proliferation of T cells as well as increased secretion of the type 2 cytokines IL-4/IL-5/IL-13 following cocultures with Btn2a2-deficient ILC2. In vivo transfer experiments confirmed the regulatory role of Btn2a2 on ILC2 as Btn2a2-deficient ILC2 induced stronger T cell responses and prevented chronic helminth infections. Taken together, we identified Btn2a2 as a significant player in the regulation of ILC2-T cell interactions.


Assuntos
Butirofilinas/metabolismo , Comunicação Celular/imunologia , Imunidade Inata , Imunomodulação , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Animais , Biomarcadores , Butirofilinas/genética , Epitopos de Linfócito T/imunologia , Helmintíase/genética , Helmintíase/imunologia , Helmintíase/parasitologia , Helmintos/imunologia , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Imunofenotipagem , Camundongos , Camundongos Knockout , Carga Parasitária
2.
Nat Commun ; 13(1): 5730, 2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36175404

RESUMO

Group 3 innate lymphoid cells (ILC3s) are crucial mediators of immunity and epithelial barrier function during immune responses against extracellular bacteria. Here, we identify Interferon regulatory factor 1 (IRF-1), a transcription factor previously associated with type 1 immunity, as an essential regulator of intestinal ILC3 accumulation and effector cytokine production. We demonstrate that IRF-1 is upregulated in the context of infection with the enteropathogen Citrobacter rodentium and that its presence is central for anatomical containment and prevention of pathogen dissemination. We furthermore show that IRF-1 is required in order for intestinal ILC3s to produce large amounts of the protective effector cytokine IL-22 early in the course of infection. On a molecular level, our data indicate that IRF-1 controls ILC3 numbers and their activation by direct transcriptional regulation of the IL-12Rß1 chain, thereby allowing ILCs to physiologically respond to IL-23 stimulation.


Assuntos
Citrobacter rodentium , Infecções por Enterobacteriaceae , Citocinas , Humanos , Imunidade Inata , Fator Regulador 1 de Interferon/genética , Interleucina-23 , Linfócitos
3.
Cancers (Basel) ; 13(4)2021 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-33562126

RESUMO

Malignant mesothelioma (MM) is an aggressive tumor of the serosal cavities. Angiogenesis is important for mesothelioma progression, but so far, anti-angiogenic agents have not improved patient survival. Our hypothesis is that better understanding of the regulation of angiogenesis in this tumor would largely improve the success of such a therapy. Syndecan-1 (SDC-1) is a transmembrane heparan sulfate proteoglycan that acts as a co-receptor in various cellular processes including angiogenesis. In MM, the expression of SDC-1 is generally low but when present, SDC-1 associates to epithelioid differentiation, inhibition of tumor cell migration and favorable prognosis, meanwhile SDC-1 decrease deteriorates the prognosis. In the present study, we studied the effect of SDC-1 overexpression and silencing on MM cells ability to secrete angiogenic factors and monitored the downstream effect of SDC-1 modulation on endothelial cells proliferation, wound healing, and tube formation. This was done by adding conditioned medium from SDC-1 transfected and SDC-1 silenced mesothelioma cells to endothelial cells. Moreover, we investigated the interplay and molecular functional changes in angiogenesis in a co-culture system and characterized the soluble angiogenesis-related factors secreted to the conditioned media. We demonstrated that SDC-1 over-expression inhibited the proliferation, wound healing, and tube formation of endothelial cells. This effect was mediated by a multitude of angiogenic factors comprising angiopoietin-1 (Fold change ± SD: 0.65 ± 0.07), FGF-4 (1.45 ± 0.04), HGF (1.33 ± 0.07), NRG1-ß1 (1.35 ± 0.08), TSP-1 (0.8 ± 0.02), TIMP-1 (0.89 ± 0.01) and TGF-ß1 (1.35 ± 0.01). SDC-1 silencing increased IL8 (1.33 ± 0.06), promoted wound closure, but did not influence the tube formation of endothelial cells. Pleural effusions from mesothelioma patients showed that Vascular Endothelial Growth Factor (VEGF) levels correlate to soluble SDC-1 levels and have prognostic value. In conclusion, SDC-1 over-expression affects the angiogenic factor secretion of mesothelioma cells and thereby inhibits endothelial cells proliferation, tube formation, and wound healing. VEGF could be used in prognostic evaluation of mesothelioma patients together with SDC-1.

4.
Front Immunol ; 11: 609400, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33613532

RESUMO

A diverse spectrum of immune cells populates the intestinal mucosa reflecting the continuous stimulation by luminal antigens. In lesions of patients with inflammatory bowel disease, an aberrant inflammatory process is characterized by a very prominent infiltrate of activated immune cells producing cytokines and chemokines. These mediators perpetuate intestinal inflammation or may contribute to mucosal protection depending on the cellular context. In order to further characterize this complex immune cell network in intestinal inflammation, we investigated the contribution of the chemokine receptor CCR8 to development of colitis using a mouse model of experimental inflammation. We found that CCR8-/- mice compared to wildtype controls developed strong weight loss accompanied by increased histological and endoscopic signs of mucosal damage. Further experiments revealed that this gut protective function of CCR8 seems to be selectively mediated by the chemotactic ligand CCL1, which was particularly produced by intestinal macrophages during colitis. Moreover, we newly identified CCR8 expression on a subgroup of intestinal innate lymphoid cells producing IFN-γ and linked a functional CCL1/CCR8 axis with their abundance in the gut. Our data therefore suggest that this pathway supports tissue-specific ILC functions important for intestinal homeostasis. Modulation of this regulatory circuit may represent a new strategy to treat inflammatory bowel disease in humans.


Assuntos
Quimiocina CCL1/imunologia , Colite/imunologia , Imunidade Inata/imunologia , Interferon gama/imunologia , Mucosa Intestinal/imunologia , Linfócitos/imunologia , Receptores CCR8/imunologia , Animais , Citocinas/imunologia , Modelos Animais de Doenças , Feminino , Humanos , Inflamação/imunologia , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA