Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Hum Genet ; 141(8): 1355-1369, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35039925

RESUMO

NAA10 is the catalytic subunit of the N-terminal acetyltransferase complex, NatA, which is responsible for N-terminal acetylation of nearly half the human proteome. Since 2011, at least 21 different NAA10 missense variants have been reported as pathogenic in humans. The clinical features associated with this X-linked condition vary, but commonly described features include developmental delay, intellectual disability, cardiac anomalies, brain abnormalities, facial dysmorphism and/or visual impairment. Here, we present eight individuals from five families with five different de novo or inherited NAA10 variants. In order to determine their pathogenicity, we have performed biochemical characterisation of the four novel variants c.16G>C p.(A6P), c.235C>T p.(R79C), c.386A>C p.(Q129P) and c.469G>A p.(E157K). Additionally, we clinically describe one new case with a previously identified pathogenic variant, c.384T>G p.(F128L). Our study provides important insight into how different NAA10 missense variants impact distinct biochemical functions of NAA10 involving the ability of NAA10 to perform N-terminal acetylation. These investigations may partially explain the phenotypic variability in affected individuals and emphasise the complexity of the cellular pathways downstream of NAA10.


Assuntos
Deficiência Intelectual , Acetiltransferase N-Terminal A , Acetiltransferase N-Terminal E , Acetilação , Genes Ligados ao Cromossomo X , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Acetiltransferase N-Terminal A/genética , Acetiltransferase N-Terminal A/metabolismo , Acetiltransferase N-Terminal E/genética , Acetiltransferase N-Terminal E/metabolismo
2.
Ann Neurol ; 90(2): 274-284, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34185323

RESUMO

OBJECTIVE: The MAST family of microtubule-associated serine-threonine kinases (STKs) have distinct expression patterns in the developing and mature human and mouse brain. To date, only MAST1 has been conclusively associated with neurological disease, with de novo variants in individuals with a neurodevelopmental disorder, including a mega corpus callosum. METHODS: Using exome sequencing, we identify MAST3 missense variants in individuals with epilepsy. We also assess the effect of these variants on the ability of MAST3 to phosphorylate the target gene product ARPP-16 in HEK293T cells. RESULTS: We identify de novo missense variants in the STK domain in 11 individuals, including 2 recurrent variants p.G510S (n = 5) and p.G515S (n = 3). All 11 individuals had developmental and epileptic encephalopathy, with 8 having normal development prior to seizure onset at <2 years of age. All patients developed multiple seizure types, 9 of 11 patients had seizures triggered by fever and 9 of 11 patients had drug-resistant seizures. In vitro analysis of HEK293T cells transfected with MAST3 cDNA carrying a subset of these patient-specific missense variants demonstrated variable but generally lower expression, with concomitant increased phosphorylation of the MAST3 target, ARPP-16, compared to wild-type. These findings suggest the patient-specific variants may confer MAST3 gain-of-function. Moreover, single-nuclei RNA sequencing and immunohistochemistry shows that MAST3 expression is restricted to excitatory neurons in the cortex late in prenatal development and postnatally. INTERPRETATION: In summary, we describe MAST3 as a novel epilepsy-associated gene with a potential gain-of-function pathogenic mechanism that may be primarily restricted to excitatory neurons in the cortex. ANN NEUROL 2021;90:274-284.


Assuntos
Epilepsia/diagnóstico por imagem , Epilepsia/genética , Variação Genética/genética , Proteínas Associadas aos Microtúbulos/genética , Proteínas Serina-Treonina Quinases/genética , Adolescente , Adulto , Sequência de Aminoácidos , Animais , Criança , Estudos de Coortes , Epilepsia/metabolismo , Feminino , Seguimentos , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos/biossíntese , Proteínas Serina-Treonina Quinases/biossíntese , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA