RESUMO
BACKGROUND: Onchocerciasis is a disease caused by infection with Onchocerca volvulus, which is transmitted to humans via the bite of several species of black fly, and is responsible for permanent blindness or vision loss, as well as severe skin disease. Predominantly endemic in parts of Africa and Yemen, preventive chemotherapy with mass drug administration of ivermectin is the primary intervention recommended for the elimination of its transmission. METHODS: A dataset of 18,116 geo-referenced prevalence survey datapoints was used to model annual 2000-2018 infection prevalence in Africa and Yemen. Using Bayesian model-based geostatistics, we generated spatially continuous estimates of all-age 2000-2018 onchocerciasis infection prevalence at the 5 × 5-km resolution as well as aggregations to the national level, along with corresponding estimates of the uncertainty in these predictions. RESULTS: As of 2018, the prevalence of onchocerciasis infection continues to be concentrated across central and western Africa, with the highest mean estimates at the national level in Ghana (12.2%, 95% uncertainty interval [UI] 5.0-22.7). Mean estimates exceed 5% infection prevalence at the national level for Cameroon, Central African Republic, Democratic Republic of the Congo (DRC), Guinea-Bissau, Sierra Leone, and South Sudan. CONCLUSIONS: Our analysis suggests that onchocerciasis infection has declined over the last two decades throughout western and central Africa. Focal areas of Angola, Cameroon, the Democratic Republic of the Congo, Ethiopia, Ghana, Guinea, Mali, Nigeria, South Sudan, and Uganda continue to have mean microfiladermia prevalence estimates exceeding 25%. At and above this level, the continuation or initiation of mass drug administration with ivermectin is supported. If national programs aim to eliminate onchocerciasis infection, additional surveillance or supervision of areas of predicted high prevalence would be warranted to ensure sufficiently high coverage of program interventions.
Assuntos
Oncocercose , Teorema de Bayes , Gana , Humanos , Ivermectina/uso terapêutico , Nigéria , Oncocercose/tratamento farmacológico , Oncocercose/epidemiologia , Oncocercose/prevenção & controle , Prevalência , Iêmen/epidemiologiaRESUMO
Ants in the genera Anochetus and Odontomachus belong to one of the largest clades in the subfamily Ponerinae, and are one of four lineages of ants possessing spring-loaded "trap-jaws." Here we present results from the first global species-level molecular phylogenetic analysis of these trap-jaw ants, reconstructed from one mitochondrial, one ribosomal RNA, and three nuclear protein-coding genes. Bayesian and likelihood analyses strongly support reciprocal monophyly for the genera Anochetus and Odontomachus. Additionally, we found strong support for seven trap-jaw ant clades (four in Anochetus and three in Odontomachus) mostly concordant with geographic distribution. Ambiguity remains concerning the closest living non-trap-jaw ant relative of the Anochetus+Odontomachus clade, but Bayes factor hypothesis testing strongly suggests that trap-jaw ants evolved from a short mandible ancestor. Ponerine trap-jaw ants originated in the early Eocene (52.5Mya) in either South America or Southeast Asia, where they have radiated rapidly in the last 30million years, and subsequently dispersed multiple times to Africa and Australia. These results will guide future taxonomic work on the group and act as a phylogenetic framework to study the macroevolution of extreme ant mouthpart specialization.
Assuntos
Formigas/classificação , África , Animais , Formigas/genética , Sudeste Asiático , Austrália , Teorema de Bayes , Citocromos b/classificação , Citocromos b/genética , Citocromos b/metabolismo , Variação Genética , Filogenia , Filogeografia , RNA Ribossômico 28S/classificação , RNA Ribossômico 28S/genética , RNA Ribossômico 28S/metabolismo , América do SulRESUMO
Recent evidence suggests that, in some foci, elimination of onchocerciasis from Africa may be feasible with mass drug administration (MDA) of ivermectin. To achieve continental elimination of transmission, mapping surveys will need to be conducted across all implementation units (IUs) for which endemicity status is currently unknown. Using boosted regression tree models with optimised hyperparameter selection, we estimated environmental suitability for onchocerciasis at the 5 × 5-km resolution across Africa. In order to classify IUs that include locations that are environmentally suitable, we used receiver operating characteristic (ROC) analysis to identify an optimal threshold for suitability concordant with locations where onchocerciasis has been previously detected. This threshold value was then used to classify IUs (more suitable or less suitable) based on the location within the IU with the largest mean prediction. Mean estimates of environmental suitability suggest large areas across West and Central Africa, as well as focal areas of East Africa, are suitable for onchocerciasis transmission, consistent with the presence of current control and elimination of transmission efforts. The ROC analysis identified a mean environmental suitability index of 0·71 as a threshold to classify based on the location with the largest mean prediction within the IU. Of the IUs considered for mapping surveys, 50·2% exceed this threshold for suitability in at least one 5 × 5-km location. The formidable scale of data collection required to map onchocerciasis endemicity across the African continent presents an opportunity to use spatial data to identify areas likely to be suitable for onchocerciasis transmission. National onchocerciasis elimination programmes may wish to consider prioritising these IUs for mapping surveys as human resources, laboratory capacity, and programmatic schedules may constrain survey implementation, and possibly delaying MDA initiation in areas that would ultimately qualify.
Assuntos
Erradicação de Doenças , Oncocercose/epidemiologia , África/epidemiologia , Meio Ambiente , Previsões , Humanos , Ivermectina/administração & dosagem , Administração Massiva de Medicamentos , Oncocercose/tratamento farmacológico , Oncocercose/transmissão , Curva ROCRESUMO
BACKGROUND: Transmission dynamics of mosquito-borne viruses such as dengue, Zika and chikungunya are affected by the longevity of the adult female mosquito. Environmental conditions influence the survival of adult female Aedes mosquitoes, the primary vectors of these viruses. While the association of temperature with Aedes mortality has been relatively well-explored, the role of humidity is less established. The current study's goals were to compile knowledge of the influence of humidity on adult survival in the important vector species Aedes aegypti and Ae. albopictus, and to quantify this relationship while accounting for the modifying effect of temperature. METHODS: We performed a systematic literature review to identify studies reporting experimental results informing the relationships among temperature, humidity and adult survival in Ae. aegypti and Ae. albopictus. Using a novel simulation approach to harmonize disparate survival data, we conducted pooled survival analyses via stratified and mixed effects Cox regression to estimate temperature-dependent associations between humidity and mortality risk for these species across a broad range of temperatures and vapor pressure deficits. RESULTS: After screening 1517 articles, 17 studies (one in semi-field and 16 in laboratory settings) met inclusion criteria and collectively reported results for 192 survival experiments. We review and synthesize relevant findings from these studies. Our stratified model estimated a strong temperature-dependent association of humidity with mortality in both species, though associations were not significant for Ae. albopictus in the mixed effects model. Lowest mortality risks were estimated around 27.5 °C and 21.5 °C for Ae. aegypti and Ae. albopictus, respectively, and mortality increased non-linearly with decreasing humidity. Aedes aegypti had a survival advantage relative to Ae. albopictus in the stratified model under most conditions, but species differences were not significant in the mixed effects model. CONCLUSIONS: Humidity is associated with mortality risk in adult female Ae. aegypti in controlled settings. Data are limited at low humidities, temperature extremes, and for Ae. albopictus, and further studies should be conducted to reduce model uncertainty in these contexts. Desiccation is likely an important factor in Aedes population dynamics and viral transmission in arid regions. Models of Aedes-borne virus transmission may be improved by more comprehensively representing humidity effects.
Assuntos
Aedes/fisiologia , Longevidade , Mosquitos Vetores/fisiologia , Estresse Fisiológico , Animais , Feminino , Umidade , Análise de Sobrevida , TemperaturaRESUMO
BACKGROUND: The See Me Smoke-Free (SMSF) mobile health (mHealth) app was developed to help women quit smoking by targeting concerns about body weight, body image, and self-efficacy through cognitive behavioral techniques and guided imagery audio files addressing smoking, diet, and physical activity. A feasibility trial found associations between SMSF usage and positive treatment outcomes. This paper reports a detailed exploration of program use among eligible individuals consenting to study participation and completing the baseline survey (participants) and ineligible or nonconsenting app installers (nonparticipants), as well as the relationship between program use and treatment outcomes. OBJECTIVE: The aim of this study was to determine whether (1) participants were more likely to set quit dates, be current smokers, and report higher levels of smoking at baseline than nonparticipants; (2) participants opened the app and listened to audio files more frequently than nonparticipants; and (3) participants with more app usage had a higher likelihood of self-reported smoking abstinence at follow up. METHODS: The SMSF feasibility trial was a single arm, within-subjects, prospective cohort study with assessments at baseline and 30 and 90 days post enrollment. The SMSF app was deployed on the Google Play Store for download, and basic profile characteristics were obtained for all app installers. Additional variables were assessed for study participants. Participants were prompted to use the app daily during study participation. Crude differences in baseline characteristics between trial participants and nonparticipants were evaluated using t tests (continuous variables) and Fisher exact tests (categorical variables). Exact Poisson tests were used to assess group-level differences in mean usage rates over the full study period using aggregate Google Analytics data on participation and usage. Negative binomial regression models were used to estimate associations of app usage with participant baseline characteristics after adjustment for putative confounders. Associations between app usage and self-reported smoking abstinence were assessed using separate logistic regression models for each outcome measure. RESULTS: Participants (n=151) were more likely than nonparticipants (n=96) to report female gender (P<.02) and smoking in the 30 days before enrollment (P<.001). Participants and nonparticipants opened the app and updated quit dates at the same average rate (rate ratio [RR] 0.98; 95% CI 0.92-1.04; P=.43), but participants started audio files (RR 1.07; 95% CI 1.00-1.13; P<.04) and completed audio files (RR 1.11; 95% CI 1.03-1.18; P<.003) at significantly higher rates than nonparticipants. Higher app usage among participants was positively associated with some smoking cessation outcomes. CONCLUSIONS: This study suggests potential efficacy of the SMSF app, as increased usage was generally associated with higher self-reported smoking abstinence. A planned randomized controlled trial will assess the SMSF app's efficacy as an intervention tool to help women quit smoking.
RESUMO
INTRODUCTION: An ongoing Zika virus pandemic in Latin America and the Caribbean has raised concerns that travel-related introduction of Zika virus could initiate local transmission in the United States (U.S.) by its primary vector, the mosquito Aedes aegypti. METHODS: We employed meteorologically driven models for 2006-2015 to simulate the potential seasonal abundance of adult Aedes aegypti for fifty cities within or near the margins of its known U.S. range. Mosquito abundance results were analyzed alongside travel and socioeconomic factors that are proxies of viral introduction and vulnerability to human-vector contact. RESULTS: Meteorological conditions are largely unsuitable for Aedes aegypti over the U.S. during winter months (December-March), except in southern Florida and south Texas where comparatively warm conditions can sustain low-to-moderate potential mosquito abundance. Meteorological conditions are suitable for Aedes aegypti across all fifty cities during peak summer months (July-September), though the mosquito has not been documented in all cities. Simulations indicate the highest mosquito abundance occurs in the Southeast and south Texas where locally acquired cases of Aedes-transmitted viruses have been reported previously. Cities in southern Florida and south Texas are at the nexus of high seasonal suitability for Aedes aegypti and strong potential for travel-related virus introduction. Higher poverty rates in cities along the U.S.-Mexico border may correlate with factors that increase human exposure to Aedes aegypti. DISCUSSION: Our results can inform baseline risk for local Zika virus transmission in the U.S. and the optimal timing of vector control activities, and underscore the need for enhanced surveillance for Aedes mosquitoes and Aedes-transmitted viruses.
RESUMO
Trap-jaw ants of the genus Odontomachus produce remarkably fast predatory strikes. The closing mandibles of Odontomachus bauri, for example, can reach speeds of over 60 m s(-1). They use these jaw strikes for both prey capture and locomotion - by striking hard surfaces, they can launch themselves into the air. We tested the hypothesis that morphological variation across the genus is correlated with differences in jaw speeds and accelerations. We video-recorded jaw-strikes at 70 000-100 000 frames s(-1) to measure these parameters and to model force production. Differences in mean speeds ranged from 35.9+/-7.7 m s(-1) for O. chelifer, to 48.8+/-8.9 m s(-1) for O. clarus desertorum. Differences in species' accelerations and jaw sizes resulted in maximum strike forces in the largest ants (O. chelifer) that were four times those generated by the smallest ants (O. ruginodis). To evaluate phylogenetic effects and make statistically valid comparisons, we developed a phylogeny of all sampled Odontomachus species and seven outgroup species (19 species total) using four genetic loci. Jaw acceleration and jaw-scaling factors showed significant phylogenetic non-independence, whereas jaw speed and force did not. Independent contrast (IC) values were used to calculate scaling relationships for jaw length, jaw mass and body mass, which did not deviate significantly from isometry. IC regression of angular acceleration and body size show an inverse relationship, but combined with the isometric increase in jaw length and mass results in greater maximum strike forces for the largest Odontomachus species. Relatively small differences (3%) between IC and species-mean based models suggest that any deviation from isometry in species' force production may be the result of recent selective evolution, rather than deep phylogenetic signal.